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Deep Neural Networks

Deep neural networks have recently shown impressive results in a variety of
real-world applications.

Some Examples...

Image classification (ImageNet).
 Hierarchical classification of images.

Games (AlphaGo).
 Success against world class players.

Speech Recognition (Siri).
 Current standard in numerous cell phones.

Very few theoretical results explaining their success!
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More Highlights: Image Classification, II

Result of a neural network trained to produce describing sentences for
images (Karpathy and Fei-Fei; 2017):
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Even more Highlights: Style Transfer

Result of a neural network trained to transfer a style (Gatys, Ecker, and
Bethge; 2015):
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Further Applications of Deep Neural Networks

Some Examples from Areas in Mathematics...

Imaging Sciences.
 Image denoising (Burger, Schuler, Harmeling; 2012).

PDE Solvers.
 Schrödinger equation (Rupp, Tkatchenko, Müller,

von Lilienfeld; 2012).

Inverse Problems.
 Limited-angle tomography (K, März, Samek,

Srinivasan; 2018).

Deep, Deep Trouble:

Deep Learnings Impact on Image Processing, Mathematics, and Humanity

Michael Elad (CS, Technion), SIAM News
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Inverse Problems and Deep Neural Networks

Examples:

Denoising.

Inpainting.

Magnetic Resonance Tomography.

...

Generalized Tikhonov Regularization:
Given an ill-posed inverse problem Kx = y , where K : X → Y , an
approximate solution xα ∈ X , α > 0, can be determined by

min
x̃
‖Kx̃ − y‖2 + αP(x̃).

Deep Learning Approaches:

Pure deep learning.

Combine the “physics” of the problem with deep learning; often by
invoking the adjoint operator K ∗.
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Limited-Angle Tomography

Sparse Regularization with Shearlets
(PSNR 37.3)

Combined Shearlet-DNN Approach
(PSNR 43.4)

Original Filtered Backprojection
(PSNR 24.9)
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A bit of history...
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First Appearance of Neural Networks

Key Task of McCulloch and Pitts (1943):

Develop an algorithmic approach to learning.

Mimicking the functionality of the human brain.

Goal: Artifical Intelligence!
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First Neural Networks

Neural Networks:

Neurons arranged in layers.

Layers connected by weighted edges.

Training algorithms learn the weights.

Training based on a training data set.

Results:

Significant theoretical progress.

Barely any practically interesting applications.
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Neural Networks

Definition:
Assume the following notions:

d ∈ N: Dimension of input layer.

L: Number of layers.

N: Number of neurons.

σ : R→ R: (Non-linear) function called rectifier.

W` : RN`−1 → RN` , ` = 1, . . . , L: Affine linear maps.

Then Φ : Rd → RNL given by

Φ(x) = WLσ(WL−1σ(. . . σ(W1(x))), x ∈ Rd ,

is called a (deep) neural network (DNN).
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Sparse Connectivity

Remark: The affine linear map W` is defined by a matrix A` ∈ RN`−1×N`

and an affine part b` ∈ RN` via

W`(x) = A`x + b`.

A1 =

 a1
1 a1

2 0
0 0 a1

3

0 0 a1
4


A2 =

(
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1 a2
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3

)

x1 x2 x3

a1
1

a1
2

a1
3

a1
4

a2
1

a2
2

a2
3

Definition: We write Φ ∈ NNL,M,d ,σ, where M number of edges with
non-zero weight. A DNN with small M is called sparsely connected.
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Training of Deep Neural Networks

High-Level Set Up:

Given are (random) samples of a function
such as f :M→ {1, 2, . . . ,K}.

Given an architecture of a deep neural network,
i.e., a choice of d , L, (N`)

L
`=1, and σ.

Sometimes selected entries of the matrices (A`)
L
`=1,

i.e., weights, are set to zero at this point.

Learn the affine-linear functions (W`)
L
`=1 = (A` ·+b`)

L
`=1, i.e., the

weights and offsets, yielding the network

Φ : Rd → RNL , Φ(x) = WLσ(WL−1σ(. . . σ(W1(x))).

This is often done by backpropagation, a special case of gradient descent.

Goal: Φ ≈ f
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Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 Networks with hundreds of layers can be trained.
 Deep Neural Networks!

Age of Data starts.
 Vast amounts of training data is available.

Nowadays we see various applications such as...

...the previously discussed ones.

...automatic cars.

The future might see much more sensitive applications such as...

...medical applications.

...business/law applications.

...military applications.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 15 / 133



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 Networks with hundreds of layers can be trained.
 Deep Neural Networks!

Age of Data starts.
 Vast amounts of training data is available.

Nowadays we see various applications such as...

...the previously discussed ones.

...automatic cars.

The future might see much more sensitive applications such as...

...medical applications.

...business/law applications.

...military applications.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 15 / 133



Second Appearance of Neural Networks

Key Observations by Y. LeCun et al. (around 2000):

Drastic improvement of computing power.
 Networks with hundreds of layers can be trained.
 Deep Neural Networks!

Age of Data starts.
 Vast amounts of training data is available.

Nowadays we see various applications such as...

...the previously discussed ones.

...automatic cars.

The future might see much more sensitive applications such as...

...medical applications.

...business/law applications.

...military applications.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 15 / 133



Problem with Deep Neural Networks

Current Situation:

Setting up a deep neural network for a particular application is
trail-and-error.

Training a deep neural network is very unpredictable.

Working on applications typically require large teams.

No knowledge about why a deep neural network made a decision.

Very few theoretical results explaining their success!
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 Applied Harmonic Analysis, Approximation Theory, ...

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 Differential Geometry, Optimal Control, Optimization, ...

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 Learning Theory, Optimization, Statistics, ...

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 Information Theory, ...
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Outline

1 Basics of Mathematical Learning Theory
General Problem Setting
The Sampling Error
The Approximation Error

2 Deep Neural Networks
Basic Definitions
Stochastic Gradient Descent

3 Expressivity of Deep Neural Networks
Universal Approximation
Sparse Connectivity
Convolutional Neural Networks

4 Explainability
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Mathematical Learning Theory
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What is Learning?

Definition by T. Mitchell (1997):
“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P, if its performance at
tasks in T , as measured by P, improves with experience E .”

 Needs certainly to be made mathematically precise!
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Example for Task T , I

Classification Task:
Compute a function f : Rn → {1, . . . , k}, which maps a data point x ∈ Rn

to the class k .

Handwritten Digits:

The function f should, for instance, satisfy f ( ) = 5.
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Example for Task T , II

Regression Task:
Compute a function f : Rn → R, which hence predicts a numerical value.

Some Applications:

Expected claim amount of an insured person.

Prediction of future prices of securities.
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Example for Task T , III

Density Estimation Task:
Learn a probability density p : R→ R+, which can be interpreted as a
probability distribution on the space the test data was drawn from.

Some Applications:

Finding corrupted data.

Determining anomalies in data.
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Example for Experience E

Experience as a Data Set:
The experience is typically given by a data set containing many data points
such as xi ∈ X for all i = 1, . . . ,m.

Two Cases:

Supervised learning:

I Each data point is associated with a label.
 Think of a classification task, in which you know the classes the

data points in the (test) data set belong to.

Unsupervised learning:

I The data point are not labeled.
 Think of a classification task, in which you do not know the classes

the data points in the (test) data set belong to.
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Example for Performance Measure P

Accuracy as Performance Measure:
The performance is typically measured by the proportion of data points, for
which the model (function) outputs the correct value.

Cross-Validation:
The data set it often split into two sets:

Training set:
This is used to learn the function or density.

Test set:
This is used to measure the performance of the model.
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Linear Regression as one Example, I

Task T :
Predict the function f : Rn → R.

Experience E :
We split our data set into

training set ((x train
i , y train

i ))m
i=1 ⊆ Rn × R,

test set ((x test
i , y test

i ))m
i=1 ⊆ Rn × R.

Performance Measure P:
We evaluate the performance of an estimator f̂ : Rn → R as the mean
squared error

1

m

m∑
i=1

|f̂ (x test
i )− y test

i |2.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 26 / 133



Linear Regression as one Example, II

Learning Algorithm:

Define a hypothesis space

H := span{ϕ1, . . . , ϕ`} ⊆ C (Rn).

Given training data

z := ((x train
i , y train

i ))m
i=1 ⊆ Rn × R.

Define the empirical error/risk for some f : Rn → R by

Ez(f ) :=
1

m

m∑
i=1

(f (x train
i )− y train

i )2.

Find the empirical target function

fH,z := argminf ∈HEz(f ).
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Linear Regression as one Example, III

Computing the Empirical Target Function:

Note that every f ∈ H can be written as
∑`

i=1 wiϕi .

We set
y := (y train

i )m
i=1 and w := (wi )

`
i=1.

Let
A = (ϕj (x

train
i ))i ,j ∈ Rm×`.

With this notation, we obtain

Ez(f ) = ‖Aw − y‖2.

Let
w∗ := argminw∈R`Ez(f ).

Then the seeked estimate (= solution of the regression task) is

f∗ :=
∑̀
i=1

(w∗)iϕi .
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Underfitting versus Overfitting
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General Problem Setting

Assumption:
Let

(a) X ⊆ Rn be compact,

(b) Y = Rk (often we have k = 1),

(c) % be a probability measure on Z := X × Y .

The Learning Problem:
Find a function f : X → Y , which minimizes the (least square) error

E(f ) :=

∫
Z

(f (x)− y)2d%(x , y).

That means that the goal is to determine

g = argminf :X→Y E(f ).
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Solution of the Problem

Definition:
For x ∈ X let %(y |x) be the conditional probability measure on Y (with
respect to x) and %X be the marginal probability measure on X . We have

%X (S) = %(π−1
X (S)),

where πX : X × Y → X , (x , y) 7→ x . Then also∫
Z
φ(x , y)d%(x , y) =

∫
X

(∫
Y
φ(x , y)d%(y |x)

)
d%X (x)

for every integrable function φ : Z → R. Define the regression function by

f% : X → Y , f%(x) =

∫
Y
yd%(y |x), for x ∈ X .

Proposition:
For every integrable function f : X → Y we have

E(f ) =

∫
X

(f (x)− f%(x))2d%X (x) + σ2
%

where

σ2
% :=

∫
X
σ2

g (x)d%X (x)

and σ2
g (x) is the variance of the function gx : Y → Y with

gx (y) = y − f%(x).
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The True Situation

Definition:
Let z := ((x1, y1), ..., (xm, ym)) be a sample in Zm. We then define the
empirical error of f : X → Y with respect to z by

Ez (f ) :=
1

m

m∑
i=1

(f (xi )− yi )
2.

Remarks:

The error E(f ) cannot be computed because we don’t know the
probability measure, but the empirical error Ez (f ) can be.

Bounding E(f )− Ez (f ) allows us to bound the actual error E(f ) from
the observed Ez (f ) and give us some hope to approximate the
regression function.
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Assuming a Hypothesis Space

Definition:

Let H be a compact subset of C (X ), equipped with the norm

‖f ‖∞ := sup
x∈X
|f (x)|.

We call H hypothesis or model space.
The target function fH ∈ H is defined by

fH := argminf ∈HE(f ).

Let z = ((x1, y1), ...(xm, ym)) ∈ Zm be a sample. The empirical target
function is defined as

fH,z = argminf ∈HEz (f ).

Corollary:
Under the above assumptions, we have

fH = argminf ∈H

∫
X

(f (x)− f%(x))2d%X (x).
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Example for Hypothesis Space

Intuition behind Feature Maps:

Suppose there exists a suitable similarity measure K : X × X → R on
X and we would like to search for the closest points to some x ∈ X .

Assume there exists a map Φ : X → Rn which linearizes K as
K (x , x ′) = 〈Φ(x),Φ(x ′)〉.

Question: For which K does there exist such a feature map?
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Mercer Kernels

Definition:
Fix some map K : X × X → R.

K is called symmetric, if K (x , x ′) = K (x ′, x) for all x , x ′ ∈ X .
Let x := {x1, ..., xk} ⊆ X . Then the matrix K (x) ∈ Rk×k with entries
K (xi , xj ) for i , j = 1, ...k is called a Gramian of K in x.
K is called positive semi-definite, if everyone of its Gramians is always
positive-semidefinite.
K is a Mercer Kernel, if it is symmetric, positive semi-definite and
continuous.

Example:

Let f : R+
0 → R be strictly monotone and let K be defined by

K (x , x ′) := f (‖x − x ′‖2). This is a Mercer kernel.
In particular, the Gaussian kernel

K (x , x ′) = e
−‖x−x′‖2

c2 , c > 0,

is a Mercer kernel.
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Reproducing Kernel Hilbert Spaces

Theorem (Mercer Theorem):
Let K be a Mercer kernel. Then there exists a unique Hilbert space HK of
functions defined on X mapping into R with

(i) the functions Kx : x ′ → K (x , x ′) belong to HK for all x ∈ X .

(ii) span{Kx : x ∈ X} = HK .

(iii) For all f ∈ HK and x ∈ X , we have f (x) = 〈f ,Kx〉HK
, which in

particular means that K (x , x ′) = 〈Kx ,Kx ′〉 for all x , x ′ ∈ X .

The spaces HK are called Reproducing Kernel Hilbert Spaces (RKHS).

Proposition:
Let HK be a reproducing kernel Hilbert space, where the kernel K is
defined over some X , which is assumed to be compact. For R > 0, BR (0) is
a hypothesis space.
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Sample and Approximation Error

Definition:
Let z ∈ Zm be a sample, let H be a hypothesis space and let fH and fH,z
be defined as before. Then let

EH(f ) := E(f )− E(fH)

be the error of f in H. Then the empirical error E(fH,z ) decomposes as

E(fH,z ) = EH(fH,z )︸ ︷︷ ︸
sample error

+ E(fH)︸ ︷︷ ︸
approximation error

.

Remarks:

Sample error: This originates from the samples not approximating the
regression function well enough.

Approximation error: This emerges from not choosing the right space.

Typically, enlarging H will reduce the approximation error, but the
sampling error increases. This is called the Bias-Variance trade-off.
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Universally Best Method?

General Problem:
Given samples ((xi , yi ))m

i=1 ∈ Zm(= (X × Y )m).

Learn f which minimizes the error E(f ) :=
∫

Z (f (x)− y)2d%(x , y).

With this, also learn the probability distribution %.

Determine according to which probability measure the samples are generated!

Approaches:

(Regularized) least squares

Maximum A Posteriori (MAP) estimate

Principal Component Analysis (PCA)

(Kernel) Support Vector Machines (SVM)

...

Aim for a universally best method!!!
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Deep Neural Networks: Basics

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 39 / 133



Artificial Neurons

Mimic the human brain!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 40 / 133



Artificial Neurons

Definition: An artificial neuron with weights w1, ...,wn ∈ R, bias b ∈ R and
activation function (rectifier) σ : R→ R is defined as the function
f : Rn → R given by

f (x1, ..., xn) = σ

(
n∑

i=1

xiwi − b

)
= σ(〈x ,w〉 − b),

where w = (w1, ...,wn) and x = (x1, ..., xn).

Examples of Activation Functions:

Heaviside function σ(x) =

{
1, x > 0,

0, x ≤ 0.

Sigmoid function σ(x) = 1
1+e−x .

Rectifiable Linear Unit (ReLU) σ(x) = max{0, x}.
Softmax function σ(x) = ln(1 + ex ).
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Artificial Neural Network

Definition:
An artificial neural network is a graph which consists of artificial neurons. A
feed-forward neural network is a directed, acyclic graph. All other neural
networks are called recurrent neural networks.
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Key Notions, I

Definition: Let

d ∈ N be the input dimension,

L ∈ N be the number of layers,

N0,N1, ...,NL the number of neurons in each layer and N0 := d ,

Al ∈ RNl×Nl−1 , l = 1, ..., L be the weights of the edges

bl ∈ RNl , l = 1, ..., L be the biases, and

σ : R→ R be the (non-linear) activation function/rectifier.
Then

Φ = ((Al , bl ))L
l=1

is called neural network (“architecture”) and the map

Rσ(Φ) : Rd → RNL , Rσ(Φ)(x) := xL,

where x0 := x , xl := σ(Alxl−1 − bl ), l = 1, ...L− 1, and xL := ALxL−1 − bL

is called the realization of Φ with activation function σ.
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Key Notions, II

Definition (continued):
We further call

N(Φ) := d +
∑L

l=1 NL the total number of neurons,

L(Φ) := L the number of layers,

M(Φ) :=
∑L

l=1 ‖Al‖0 the number of weights (edges) where ‖ · ‖0 is
the number of non-zero entries.

We say that

Φ is sparsely connected, if M(Φ) is small,

Φ is a shallow neural network, if L(Φ) is small,

Φ is a deep neural network, if L(Φ) is large.

For d ∈ N and M, L,N ∈ N ∪ {∞}, we denote by

NN d ,M,N,L

the set of neural networks Φ with input dimension d , NL = 1 and

M(Φ) ≤ M,N(Φ) ≤ N, L(Φ) ≤ L.
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Key Notions, III

Definition (continued):
If the size of the weights are a concern, we denote by

NNR
d ,M,N,L

the set of neural networks Φ with input dimension d , NL = 1, with

M(Φ) ≤ M,N(Φ) ≤ N, L(Φ) ≤ L,

and with all weights bounded by R.
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Getting Familiar with the Notions...

Examples:
(1) Let Φ be given by

A1 =

1 2 0
0 0 5
0 0 4

 , b1 =

2
3
4

 , A2 =

(
2 6 0
0 0 7

)
, b1 =

(
8
8

)
.

Then Φ ∈ NN d ,M,N,L with

d = 3, M = 7, L = 2, and N = 8.

(2) An artificial neuron is a realization with activation function σ of a neural
network Φ ∈ NN d ,M,N,L with

M = d , L = d + 1, and N = 1.
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Basic Operations: Concatenation

Lemma: Let L1, L2 ∈ N and Φi = ((Ai
1, b

i
1), ..., (Ai

Li
, bi

Li
)), i = 1, 2, be

neural networks such that the input layer of Φ1 has the same dimension as
the output layer of Φ2. Then, for any rectifier σ,

Rσ(Φ1 ◦ Φ2) = Rσ(Φ1) ◦ Rσ(Φ2) and L(Φ1 ◦ Φ2) = L1 + L2 − 1,

where Φ1 ◦ Φ2 denotes the concatenation of Φ1 and Φ2:

((A2
1, b

2
1), ...(A2

L2−1, b
2
L2−1), (A1

1A
2
L2
,A1

1b
2
L2

+ b1
1), (A1

2, b
1
2), ...(A1

L1
, b1

L1
)).
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Basic Operations: Parallelization

Lemma: Let L ∈ N and Φi = ((Ai
1, b

i
1), ..., (Ai

L, b
i
L)), i = 1, 2.... Then, for

any rectifier σ and any x ∈ Rd ,

(Rσ(P(Φ1,Φ2)))(x) = (Rσ(Φ1)(x),Rσ(Φ2)(x)),

L(P(Φ1,Φ2)) = L(Φ1) + L(Φ2),

M(P(Φ1,Φ2)) = M(Φ1) + M(Φ2),

where P(Φ1,Φ2) denotes the parallelization of Φ1 and Φ2:

P(Φ1,Φ2) := ((Â1, b̂1), ..., (ÂL, b̂L)) with

Â1 =

(
A1

1

A2
1

)
, b̂1 =

(
b1

1

b2
1

)
, Âl =

(
A1

l 0
0 A2

l

)
, b̂l =

(
b1

l

b2
l

)
, 1 ≤ l ≤ L.
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Doing Nothing...

Lemma: Define
ΦId := ((A1, b1), (A2, b2))

with

A1 =

(
IdRd

−IdRd

)
, b1 = b2 = 0, A2 = (IdRd ,−IdRd ).

Then
RReLU(Φ1)(x) = x for all x ∈ Rd .

Remark: Let Φ be a neural network with input dimension d . Then

RReLU(Φ) = RReLU(Φ ◦ ΦId),

i.e., different architectures can lead to the same realization.
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Deep Neural Networks: Training
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Problem Setting

Let d = N0 ∈ N and N1, ...,NL, L ∈ N and let σ be a rectifier. Then
consider the hypothesis space

H := {Rσ(Φ) : Φ = ((A1, b1), ..., (AL, bL)), Al ∈ RNl−1,Nl , bl ∈ RNl}.

Task: Given samples z = ((xi , yi ))m
i=1 ⊆ Rd ×RNL , find the empirical target

function

fz := fH,z = argminf ∈H
1

m

m∑
i=1

(f (xi )− yi )
2.

More General Task: One can also consider a more general case such as

fz = argminf ∈H

m∑
i=1

L(f , xi , yi )

where L : C (Rd ,RNL)× Rd × RNL → R is a loss function.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 51 / 133



Problem Setting

Let d = N0 ∈ N and N1, ...,NL, L ∈ N and let σ be a rectifier. Then
consider the hypothesis space

H := {Rσ(Φ) : Φ = ((A1, b1), ..., (AL, bL)), Al ∈ RNl−1,Nl , bl ∈ RNl}.

Task: Given samples z = ((xi , yi ))m
i=1 ⊆ Rd ×RNL , find the empirical target

function

fz := fH,z = argminf ∈H
1

m

m∑
i=1

(f (xi )− yi )
2.

More General Task: One can also consider a more general case such as

fz = argminf ∈H

m∑
i=1

L(f , xi , yi )

where L : C (Rd ,RNL)× Rd × RNL → R is a loss function.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 51 / 133



Gradient Descent

Optimization Approach: A simple optimization method is gradient descent.
For F : RN → R, this amounts to

un+1 ← un − η∇F (un) for all n ∈ N

where ∇F (u) = ( ∂F
∂u1

(u), ... ∂F
∂un

(u)) and η is the step size.

In our problem... we have

F =
m∑

i=1

L(f , xi , yi ) and u = ((Al , bl ))L
l=1.

Since

∇((Al ,bl ))L
l=1

F =
m∑

i=1

∇((Al ,bl ))L
l=1
L(f , xi , yi ),

we need to compute

∂L(f , x , y)

∂(Al )i ,j
and

∂L(f , x , y)

∂(bl )i
for all i , j , l .
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Backpropagation

Data: A neural network f , a loss function L, points x , y .

Result: The matrices ∇(Al ,bl )
L
l=1
L(f , x , y).

Algorithm:

Compute al , zl for l = 0, ...L;

Set δL := 2(f (x)− y);

Then ∂L(f ,x ,y)
∂AL

= δL · aT
L−1 and ∂L(f ,x ,y)

∂bL
= δL;

for l = L− 1 to 1 do

δl := diag(σ′(zl ))AT
l+1 · δl+1;

Then
∂L(f , x , y)

∂Al
= δla

T
l−1 and

∂L(f , x , y)

∂bl
= δl ;

return ∇(Al ,bl )
L
l=1
L(f , x , y).
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Stochastic Gradient Descent

Goal: Find a stationary point of

F =
m∑

i=1

Fi : RN → R where Fi = L(f , xi , yi ).

Data: A neural network f , a loss function L.

Result: A point un.

Algorithm:

Set starting value u0 and n = 0.

while (error is large), do
Pick i∗ ∈ {1, ...,m} uniformly at random;
Update un+1 ← un − η∇Fi∗ ;
Set n + 1← n;

return un.

 Mini-Batch!
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Expressivity of Neural Networks: Universality
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Expressivity

Main Task:
Deep neural networks approximate highly complex functions typically based
on given sampling points.

Image Classification:

f :M→ {1, 2, . . . ,K}

Speech Recognition:

f : RS1 → RS2
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Main Research Goal

Questions:

Which architecture to choose for a particular application?

What is the expressive power of a given architecture?

What effect has the depth of a neural network in this respect?

What is the complexity of the approximating neural network?

Mathematical Problem:
Under which conditions on a neural network Φ and an activation function σ
can every function from a prescribed function class C be arbitrarily well
approximated, i.e.

‖Rσ(Φ)− f ‖∞ ≤ ε, for all f ∈ C.
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Universal Approximation Theorem

Universal Approximation Theorem (Cybenko, 1989)(Hornik, 1991)
(Pinkus, 1999):
Let σ : R→ R be continuous, but not a polynomial. Also, fix d ≥ 1, L = 2,
NL ≥ 1, and a compact set K ⊆ Rd . Then, for any continuous
f : Rd → RNL and every ε > 0, there exist M,N ∈ N and Φ ∈ NN d ,M,N,2

with
sup
x∈K
|Rσ(Φ)(x)− f (x)| ≤ ε.

...there exist N ∈ N, ak , bk ∈ R,wk ∈ Rd such that

sup
x∈K
|

N∑
k=1

akσ(〈wk , x〉)− f (x)| ≤ ε.

Interpretation: Every continuous function can be approximated up to an
error of ε > 0 with a neural network with a single hidden layer and with
O(N) neurons.

What is the connection between ε and N?
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One Size Fits All?

“Universal Network Theorem” (Maiorov and Pinkus, 1999):
There exists an activation function σ : R→ R such that for any d ∈ N,
K ⊂ Rd compact, f : K → R continuous, and any ε > 0, we find an
associated neural network Φ with two hidden layers of fixed size only
dependent on dimension d such that

sup
x∈K
|Rσ(Φ)(x)− f (x)| ≤ ε.

The weights can be arbitrarily huge!
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Effective Approximation

Definition: Given a function class C ⊆ L2(Rd ) and an activation function σ.
Then C has the effective approximation rate γeff (C, σ) > 0, if there exists a
polynomial π such that with

ΓM(f ) := inf
Φ∈NNπ(M)

d,M,N,π(log(M))

‖Rσ(Φ)− f ‖L2(Rd ), M ∈ N, f ∈ C,

we have
sup
f ∈C

ΓM(f ) = O(M−γ
eff (C,σ)) as M →∞.

Remark: Inspired by Donoho (1999) from classical approximation theory.

Task:
Analyze the expressive power of DNNs in terms of memory efficiency!
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Expressivity of Sparsely Connected Deep Neural Networks
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Sparsely Connected Deep Neural Networks

Key Problem:

Deep neural networks employed in practice
often consist of hundreds of layers.

Training and operation of such networks
pose formidable computational challenge.

 Employ deep neural networks with sparse connectivity!

Example of Speech Recognition:

Typically speech recognition is performed in the cloud (e.g. SIRI).

New speech recognition systems (e.g. Android) can operate offline and
are based on a sparsely connected deep neural network.

Key Challenge for Memory Efficient DNNs:
Approximation accuracy ↔ Complexity of approximating DNN

in terms of sparse connectivity
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Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd ) and (ϕi )i∈I ⊆ L2(Rd ). Measure the suitability of
(ϕi )i∈I for uniformly approximating functions from C.

Definition: The error of best M-term approximation of some f ∈ C is
given by

‖f − fM‖L2(Rd ) := inf
IM⊂I ,#IM =M,(ci )i∈IM

‖f −
∑
i∈IM

ciϕi‖L2(Rd ).

The largest γ > 0 such that

sup
f ∈C
‖f − fM‖L2(Rd ) = O(M−γ) as M →∞

determines the optimal (sparse) approximation rate of C by (ϕi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Example: Wavelets

Definition (1D): Let φ ∈ L2(R) be a scaling function and ψ ∈ L2(R) be a
wavelet. Then the associated wavelet system is defined by

{φ(x −m) : m ∈ Z} ∪ {2j/2 ψ(2jx −m) : j ≥ 0,m ∈ Z}.

Definition (2D): A wavelet system is defined by

{φ(1)(x −m) : m ∈ Z2} ∪ {2jψ(i)(2jx −m) : j ≥ 0,m ∈ Z2, i = 1, 2, 3},

where ψ(1)(x) = φ(x1)ψ(x2),

φ(1)(x) = φ(x1)φ(x2) and ψ(2)(x) = ψ(x1)φ(x2),
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Wavelet Decomposition: JPEG2000
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Wavelet Decomposition: JPEG2000

Original

25% Compression 5% Compression
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Fitting Model for Images

Definition (Donoho; 2001):
The set of cartoon-like functions E2(R2) is defined by

E2(R2) = {f ∈ L2(R2) : f = f0 + f1 · χB},

where B ⊂ [0, 1]2 nonempty, simply connected with C 2-boundary, ∂B has
bounded curvature, and fi ∈ C 2(R2) with supp fi ⊆ [0, 1]2 and ‖fi‖C 2 ≤ 1
for i = 0, 1.

Theorem:
Given a wavelet orthonormal basis (ψλ)λ∈Λ ⊆ L2(R2), the decay rate of the
L2-error of best M-term approximation of f ∈ E2(R2) is

‖f − fM‖2 � M−
1
2 , M →∞, where fM =

∑
λ∈ΛM

cλψλ.

But this is not the optimal rate (Donoho; 2001)!
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Function Approximation in a Nutshell

Goal: Given C ⊆ L2(Rd ) and (ϕi )i∈I ⊆ L2(Rd ). Measure the suitability of
(ϕi )i∈I for uniformly approximating functions from C.

Definition: The error of best M-term approximation of some f ∈ C is
given by

‖f − fM‖L2(Rd ) := inf
IM⊂I ,#IM =M,(ci )i∈IM

‖f −
∑
i∈IM

ciϕi‖L2(Rd ).

The largest γ > 0 such that

sup
f ∈C
‖f − fM‖L2(Rd ) = O(M−γ) as M →∞

determines the optimal (sparse) approximation rate of C by (ϕi )i∈I .

Approximation accuracy ↔ Complexity of approximating system
in terms of sparsity
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Approximation with Sparse Deep Neural Networks

Definition: Given C ⊆ L2(Rd ) and fixed σ. Then C has the effective
approximation rate γeff (C, σ) > 0, if there exists a polynomial π such that
with

ΓM(f ) := inf
Φ∈NNπ(M)

d,M,N,π(log(M))

‖f − Rσ(Φ)‖L2(Rd ), M ∈ N, f ∈ C,

we have
sup
f ∈C

ΓM(f ) = O(M−γ
eff (C,σ)) as M →∞.

Approximation accuracy ↔ Complexity of approximating DNN
in terms of memory efficiency
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Non-Exhaustive List of Previous Results

Approximation by NNs with one Single Hidden Layer:
Bounds in terms terms of nodes and sample size (Barron; 1993, 1994).

Localized approximations (Chui, Li, and Mhaskar; 1994).

Fundamental lower bound on approximation rates (DeVore, Oskolkov, and
Petrushev; 1997)(Candès; 1998).

Lower bounds on the sparsity in terms of number of neurons (Schmitt; 1999).

Approximation using specific rectifiers (Cybenko; 1989).

Approximation of specific function classes (Mhaskar and Micchelli; 1995), (Mhaskar;
1996).

Approximation by NNs with Multiple Hidden Layers:
Approximation with sigmoidal rectifiers (Hornik, Stinchcombe, and White; 1989).

Approximation of continuous functions (Funahashi; 1998).

Approximation of functions together and their derivatives (Nguyen-Thien and
Tran-Cong; 1999).

Relation between one and multi layers (Eldan and Shamir; 2016), (Mhaskar and
Poggio; 2016).

Approximation by DDNs versus best M-term approximations by wavelets (Shaham,
Cloninger, and Coifman; 2017).
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Challenges

(1) How many edges do we need for a certain accuracy?
 Conceptual lower bound on the number of edges of the

DNN, which each learning algorithm has to obey!

(2) Are there DNNs which are memory-optimal?
 Sharpness of the bound by explicit construction of optimal DNNs!

(3) But what happens in practise using ReLUs and backpropagation?
 Success of certain (parallel) network topologies to reach optimal

bound!
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A Lower Bound on Sparse Connectivity
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Rate Distortion Theory

To use information theoretic arguments, we require the following notions
from information theory:

Definition:
Let d ∈ N. Then, for each ` ∈ N, we let

E` := {E : L2(Rd )→ {0, 1}`}

denote the set of binary encoders with length ` and

D` := {D : {0, 1}` → L2(Rd )}

the set of binary decoders of length `.
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Rate Distortion Theory

Definition (continued):
For arbitrary ε > 0 and C ⊂ L2(Rd ), the minimax code length L(ε, C) is
given by

L(ε, C) := min{` ∈ N : ∃(E ,D) ∈ E` ×D` : sup
f ∈C
‖D(E (f ))− f ‖L2(Rd ) ≤ ε},

and the optimal exponent γ∗(C) is defined by

γ∗(C) := inf{γ ∈ R : L(ε, C) = O(ε−γ)}.

Interpretation:
The optimal exponent γ∗(C) describes the dependence of the code length
on the required approximation quality.

γ∗(C) is a measure of the complexity of the function class!
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Optimal Exponent

Example:

Let C ⊂ Bs
p,q(Rd ) be bounded. Then we have

γ∗(C) =
d

s
.

(Donoho; 2001) Let C = E2(R2), the class of cartoon-like functions.
Then we have

γ∗(C) ≥ 1.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 75 / 133



A Fundamental Lower Bound

Theorem (Bölcskei, Grohs, K, and Petersen; 2017):
Let d ∈ N, σ : R→ R, c > 0, and let C ⊂ L2(Rd ). Further, let

Learn : (0, 1)× C → NN∞,∞,d ,σ

satisfy that, for each f ∈ C and 0 < ε < 1:

(1) Each weight of Learn(ε, f ) can be encoded with < −c log2(ε) bits,

(2) and
sup
f ∈C
‖f − Learn(ε, f )‖L2(Rd ) ≤ ε.

Then, for all γ < γ∗(C),

εγ sup
f ∈C
M(Learn(ε, f ))→∞ as ε→ 0,

where M(Learn(ε, f )) denotes the number of non-zero weights in
Learn(ε, f ).
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Idea of Proof

Every network with M edges can be encoded in a bit string of length O(M).

1

2 3

4 5 6

7

1 2

3 4 5 76

8 9 10

Encode:

# layers,

# neurons in each layer,

for each neuron in chronological
order # the number of children,

for each neuron in chronological
order the indices of children,

in chronological order the
weights of edges.
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A Fundamental Lower Bound

Some implications and remarks:

If a neural network stems from a fixed learning procedure Learn,
then, for all γ < γ∗(C), there does not exist C > 0 such that

sup
f ∈C
M(Learn(ε, f )) ≤ Cε−γ for all ε > 0,

ε

M(Learn(ε, C))

⇒ There exists a fundamental lower bound
on the number of edges.

What happens for γ = γ∗(C)?

This bound is in terms of the edges, hence the sparsity of the
connectivity, not the neurons. However, the number of neurons is
always bounded up to a uniform constant by the number of edges.
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Back to the Effective Approximation

Corollary (Bölcskei, Grohs, K, and Petersen; 2017):
Given a function class C ⊆ L2(Rd ) and an activation function σ with
certain weak properties. Then the effective approximation rate γeff (C, σ) of
C satisfies

γeff (C, σ) ≤ 1

γ∗(C)
.

Even though the ‘classical’ approximation rate can be unbounded,

the effective one is bounded by the complexity of the function class!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 79 / 133



Optimally Sparse Deep Neural Networks
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DNNs and Representation Systems, I

Question:
Can we exploit approximation results with representation systems?

Observation: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Rσ(Φi ).

Then we can construct a network Φ with O(M) edges with

Rσ(Φ) =
∑
i∈IM

ciϕi , if |IM | = M.
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DNNs and Representation Systems, II

Corollary: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Rσ(Φi ).

There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd ), there exists
IM ⊂ I with

‖f −
∑
i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ε by a neural
network with only O(ε−γ

∗(C)) edges.

Proof:

There exists a network Φ with O(M) edges with Rσ(Φ) =
∑

i∈IM
ciϕi .

Set ε = C̃M−1/γ∗(C) and solve for the number of edges M, yielding

M = O(ε−γ
∗(C)).
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DNNs and Representation Systems, II

Corollary: Assume a system (ϕi )i∈I ⊂ L2(Rd ) satisfies:

For each i ∈ I , there exists a neural network Φi with at most C > 0
edges such that ϕi = Rσ(Φi ).

There exists C̃ > 0 such that, for all f ∈ C ⊂ L2(Rd ), there exists
IM ⊂ I with

‖f −
∑
i∈IM

ciϕi‖ ≤ C̃M−1/γ∗(C).

Then every f ∈ C can be approximated up to an error of ε by a neural
network with only O(ε−γ

∗(C)) edges.

Recall: If a neural network stems from a fixed learning procedure Learn,
then, for all γ < γ∗(C), there does not exist C > 0 such that

sup
f ∈C
M(Learn(ε, f )) ≤ Cε−γ for all ε > 0.
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).

(2) Determine an associated representation system with the following
properties:

I The elements of this system can be realized by a neural network with
controlled number of edges.

I This system provides optimally sparse approximations for C.

DNNs have as much approximation power as most classical systems!

 But this does not yet control the size of the weights!
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Applied Harmonic Analysis

Representation systems designed by Applied Harmonic Analysis concepts
have established themselves as a standard tool in applied mathematics,
computer science, and engineering.

Examples:

Wavelets.

Ridgelets.

Curvelets.

Shearlets.

...

Key Property:
Fast Algorithms combined with Sparse Approximation Properties!
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Affine Transforms

Building Principle:
Many systems from applied harmonic analysis such as

wavelets,

ridgelets,

shearlets,

constitute affine systems:

{| detA|d/2ψ(A · −t) : A ∈ G ⊆ GL(d), t ∈ Zd}, ψ ∈ L2(Rd ).

Realization by Neural Networks:
The following conditions are equivalent:

(i) | detA|d/2ψ(A · −t) can be realized by a neural network Φ1.

(ii) ψ can be realized by a neural network Φ2.

Also, Φ1 and Φ2 have the same number of edges up to a constant factor.
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What are Shearlets?
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Key Ideas of the Shearlet Construction

Wavelet versus Shearlet Approximation:

Parabolic scaling (‘width ≈ length2’):

A2j =

(
2j 0

0 2j/2

)
, j ∈ Z.

Orientation via shearing:

Sk =

(
1 k
0 1

)
, k ∈ Z.

Advantage:

Shearing leaves the digital grid Z2 invariant.

Uniform theory for the continuum and digital situation.
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Shearlet Systems

Affine systems:

{| detM|1/2ψ(M · −m) : M ∈ G ⊆ GL2, m ∈ Z2}.

Definition (K, Labate; 2006):
For ψ ∈ L2(R2), the associated shearlet system is defined by

{2
3j
4 ψ(SkA2j · −m) : j , k ∈ Z,m ∈ Z2}.
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Example of Classical (Band-Limited) Shearlet

Let ψ ∈ L2(R2) be defined by

ψ̂(ξ) = ψ̂(ξ1, ξ2) = ψ̂1(ξ1) ψ̂2( ξ2
ξ1

),

where

ψ1 wavelet, supp(ψ̂1) ⊆ [−2,−1
2 ] ∪ [ 1

2 , 2] and ψ̂1 ∈ C∞(R).

supp(ψ̂2) ⊆ [−1, 1] and ψ̂2 ∈ C∞(R).
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(Cone-adapted) Discrete Shearlet Systems

Definition (K, Labate; 2006):
The (cone-adapted) discrete shearlet system SH(c ;φ, ψ, ψ̃), c > 0,
generated by φ ∈ L2(R2) and ψ, ψ̃ ∈ L2(R2) is the union of

{φ(· − cm) : m ∈ Z2},

{23j/4ψ(SkA2j · −cm) : j ≥ 0, |k | ≤ d2j/2e,m ∈ Z2},

{23j/4ψ̃(S̃k Ã2j · −cm) : j ≥ 0, |k| ≤ d2j/2e,m ∈ Z2}.

Theorem (K, Labate, Lim, Weiss; 2006):
For ψ, ψ̃ classical shearlets, SH(1;φ, ψ, ψ̃) is a Parseval frame for L2(R2):

A‖f ‖2
2 ≤

∑
σ∈SH(1;φ,ψ,ψ̃)

|〈f , σ〉|2 ≤ B‖f ‖2
2 for all f ∈ L2(R2)

holds for A = B = 1.
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Compactly Supported Shearlets

Theorem (Kittipoom, K, Lim; 2012):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then there exists c0 such that SH(c ;φ, ψ, ψ̃) forms a
shearlet frame with controllable frame bounds for all c ≤ c0.

Remark: Exemplary class with B/A ≈ 4.

Theorem (K, Lim; 2011):

Let φ, ψ, ψ̃ ∈ L2(R2) be compactly supported, and let ψ̂, ˆ̃ψ satisfy certain
decay condition. Then SH(φ, ψ, ψ̃) provides an optimally sparse
approximation of f ∈ E2(R2), i.e.,

‖f − fN‖2
2 ≤ C · N−2 · (logN)3, N →∞.
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Recent Approaches to Fast Shearlet Transforms

www.ShearLab.org:

Separable Shearlet Transform (Lim; 2009)

Digital Shearlet Transform (K, Shahram, Zhuang; 2011)

2D&3D (parallelized) Shearlet Transform (K, Lim, Reisenhofer; 2014)

Additional Code:

Filter-based implementation (Easley, Labate, Lim; 2009)

Fast Finite Shearlet Transform (Häuser, Steidl; 2014)

Shearlet Toolbox 2D&3D (Easley, Labate, Lim, Negy; 2014)

Theoretical Approaches:

Adaptive Directional Subdivision Schemes (K, Sauer; 2009)

Shearlet Unitary Extension Principle (Han, K, Shen; 2011)

Gabor Shearlets (Bodmann, K, Zhuang; 2013)
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Application to Inverse Problems

Examples:

Denoising.

Feature Extraction.

Inpainting.

Magnetic Resonance Tomography.

...

Sparse Regularization:
Given an ill-posed inverse problem Kx = y , where K : X → Y and x is
known to be sparsely representable by a shearlet frame (ση)η, an
approximate solution xα ∈ X , α > 0, can be determined by

min
x̃
‖Kx̃ − y‖2 + α‖(〈x̃ , ση〉)η‖1.

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 94 / 133



Extension to α-Shearlets

Main Idea:

Introduction of a parameter α ∈ [0, 1] to measure the amount of
anisotropy.
For j ∈ Z, define

Aα,j =

(
2j 0
0 2αj

)
.

2−αj

2−j

Illustration:

α = 0 1
2 1

Ridgelets Curvelets/Shearlets Wavelets
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α-Shearlets

Definition (Grohs, Keiper, K, and Schäfer; 2016)(Voigtlaender; 2017):
For c ∈ R+ and α ∈ [0, 1], the cone-adapted α-shearlet system
SHα(φ, ψ, ψ̃, c) generated by φ, ψ, ψ̃ ∈ L2(R2) is defined by

SHα(φ, ψ, ψ̃, c) := Φ(φ, c , α) ∪Ψ(ψ, c , α) ∪ Ψ̃(ψ̃, c , α),

where

Φ(φ, c , α) := {φ(· −m) : m ∈ cZ2},
Ψ(ψ, c , α) := {2j(1+α)/2ψ(SkAα,j · −m) : j ≥ 0, |k| ≤ d2j(1−α)e,

m ∈ cZ2, k ∈ Z2},
Ψ̃(ψ̃, c , α) := {2j(1+α)/2ψ̃(ST

k Ãα,j · −m) : j ≥ 0, |k | ≤ d2j(1−α)e,
m ∈ cZ2, k ∈ Z2}.
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Cartoon-Like Functions

Definition (Donoho; 2001)(Grohs, Keiper, K, and Schäfer; 2016):
Let α ∈ [ 1

2 , 1] and ν > 0. We then define the class of α-cartoon-like
functions by

E
1
α (R2) = {f ∈ L2(R2) : f = f1 + χB f2},

where B ⊂ [0, 1]2 with ∂B ∈ C
1
α , and the functions f1 and f2 satisfy

f1, f2 ∈ C
1
α

0 ([0, 1]2), ‖f1‖
C

1
α
, ‖f2‖

C
1
α
, ‖∂B‖

C
1
α
< ν.

Illustration:

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 97 / 133



Optimal Sparse Approximation with α-Shearlets

Theorem (Grohs, Keiper, K, and Schäfer; 2016)(Voigtlaender; 2017):
Let α ∈ [ 1

2 , 1], let φ, ψ ∈ L2(R2) be sufficiently smooth and compactly
supported, and let ψ have sufficiently many vanishing moments. Also set
ψ̃(x1, x2) := ψ(x2, x1) for all x1, x2 ∈ R.
Then there exists some c∗ > 0 such that, for every ε > 0, there exists a
constant Cε > 0 with

‖f − fN‖L2(R2) ≤ CεN
− 1

2α
+ε for all f ∈ E

1
α (R2),

where fN is a best N-term approximation with respect to SHα(ϕ,ψ, ψ̃, c)
and 0 < c < c∗.

This is the (almost) optimal sparse approximation rate!
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
Yes

(2) Determine an associated representation system with the following
properties:
Yes

I The elements of this system can be realized by a neural network with
controlled number of edges.
Yes

I This system provides optimally sparse approximations for C.
This has been proven!
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Road Map

General Approach:

(1) Determine a class of functions C ⊆ L2(R2).
 α-Cartoon-like functions!

(2) Determine an associated representation system with the following
properties:
 α-Shearlets!

I The elements of this system can be realized by a neural network with
controlled number of edges.
 Still to be analyzed!

I This system provides optimally sparse approximations for C.
 This has been proven!
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Construction of Generators

Next Task: Realize sufficiently smooth functions with sufficiently many
vanishing moments with a neural network.

Wavelet generators (LeCun; 1987), (Shaham, Cloninger, and Coifman;
2017):

Assume rectifiers σ(x) = max{x , 0} (ReLUs).

Define

t(x) := σ(x)− σ(x − 1)− σ(x − 2) + σ(x − 3).

σ
t

0 0 1 2 3

 t can be constructed with a two layer network.
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Construction of Wavelet Generators

Construction by (Shaham, Cloninger, and Coifman; 2017) continued:

Observe that
φ(x1, x2) := σ(t(x1) + t(x2)− 1)

yields a 2D bump function.

Summing up shifted versions of φ yields a function ψ with vanishing
moments.

Then ψ can be realized by a 3 layer neural network.

This cannot yield differentiable functions ψ!
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New Class of Rectifiers

Definition (Bölcskei, Grohs, K, Petersen; 2017):
Let σ : R→ R+, σ ∈ C∞(R) satisfy

σ(x) =

{
0 for x ≤ 0,
x for x ≥ K ,

for some constant K > 0. Then we call σ an admissible smooth rectifier.

Construction of ‘good’ generators:
Let σ be an admissible smooth rectifier, and define

t(x) := σ(x)− σ(x − 1)− σ(x − 2) + σ(x − 3),

φ(x) := σ(t(x1) + t(x2)− 1).

This yields smooth bump functions φ, and thus smooth functions ψ with
many vanishing moments.
 Leads to appropriate shearlet generators!
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Optimal Approximation

Theorem (Bölcskei, Grohs, K, and Petersen; 2017): Let σ be an admissible
smooth rectifier, and let ε > 0. Then there exist Cε > 0 such that the
following holds:

For all f ∈ E
1
α (R2) and N ∈ N, we can construct a neural network

Φ ∈ NN3,O(N),σ,O(polylog(N)) satisfying

‖f − Rσ(Φ)‖L2(R2) ≤ CεN
− 1

2α
−ε.

This is the optimal approximation rate:

Theorem (Grohs, Keiper, K, Schäfer; 2016): We have

γ∗(E
1
α (R2)) = 2α.
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Functions on Manifolds

Situation:
We now consider f :M⊆ Rd → R, where M
is an immersed submanifold of dimension m < d .

Road Map for Extension of Results:

Construct atlas for M by covering it with open balls.

Obtain a smooth partition of unity of M.

Represent any function on M as a sum of functions on Rm.

 We require function classes C which are invariant with respect to

diffeomorphisms and multiplications by smooth functions such as E 1
α (R2).

Theorem (Bah, Keiper, and K; 2017):
“Deep neural networks are optimal for the approximation of piecewise
smooth functions on manifolds.”

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 104 / 133



Finally some Numerics...
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Approximation by Learned Networks

Typically weights are learnt by backpropagation. This raises the following
question:

Does this lead to the optimal sparse connectivity?

Our setup:

Fixed network topology with ReLUs.

Specific functions to learn.

Learning through backpropagation.

Analysis of the connection between approximation error and number of
edges.
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Chosen Network Topology

Topology inspired by previous construction of functions:
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Example: Function 1

We train the network using the following function:

50 100 150 200 250

50

100

150

200

250

Function 1: Linear Singularity
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Training with Function 1

Approximation Error:

10
-5

10
-4

10
-3

10
-2

10
-1

100 200180160140120

Error

# of edges

Observation: The decay is exponential. This is expected if the network is a
sum of 0-shearlets, which are ridgelets.
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Training with Function 1

The network with fixed topology naturally admits subnetworks.

Examples of Subnetworks:

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

10 20 30 40 50 60

10

20

30

40

50

60

These have indeed the shape of ridgelets!
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Example: Function 2

We train the network using the following function:

20 40 60 80 100 120

20

40

60

80

100

120

Function 2: Curvilinear Singularity
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Training with Function 2

Approximation Error:

10
2 10

3
10
4

10
5

10
-4

10
-3

10
-2

10
-1Error

# of edges

Observation: The decay is of the order M−1. This is expected if the
network is a sum of 1

2 -shearlets.
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Training with Function 2

Examples of Subnetworks:

These seem to be indeed anisotropic!
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Training with Function 2

Form of Approximation:

Largest Elements Medium Sized Elements Smallest Elements

The learnt neural network has a multiscale behavior!
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Convolutional Neural Networks
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Typical Convolutional Neural Network
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Convolutional Layer

Definition:

A convolutional node has a stack of images X ∈ Rn1,n2,S as input.
Given a filter W ∈ RF ,F ,S , where F is the spatial extend of the filter,
and a bias b ∈ R, it computes

Z [i , j ] = (W ∗12 X )[i , j ] + b

=
S∑

k=1

W [·, ·, k] ∗ [·, ·, k]︸ ︷︷ ︸
convolution for each image

+b

A convolutional layer consists of K convolutional nodes
((Wk , bk ))K

k=1 ⊆ RF ,F ,S × R and produces as output a stack

Z [i , j , k] := Wk ∗12 X + bk

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 117 / 133



Pooling Layer

Definition:
A pooling operator R acts layerwise on each Z ∈ Rn1,n2,S and results in

R(Z ) ∈ Rm1,m2,S ,m1 < n1,m2 < n2.

Examples:
1 Sub-Sampling:

R(Z )[i , j , k] = Z [s1i , s2j , k]

with s1
n1
, s2

n2
. Then m1 = n1

s1
,m = n2

s2
.

2 Averaging:

R(Z )[i , j , k] =

s1i+s1−1∑
l=s1·i

s2j+s2−1∑
t=s2·j

Z [l , t, k]

 1

s1 + s2

3 Max-Pooling:

R(Z )[i , j , k] = max
l=s1·i ,...s1·i+s1−1,t=s2·i ,...s2·j+s2−1

|Z [l , t, k]|
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Overall Architecture

Definition:
A convolutional neural network (CNN) with L layers consists of L iterated
applications of a convolutional layer followed by an activation layer and
possibly a pooling layer.

Remark:
A typical architecture consists of the following components (e.g., LeNet
(LeCun et. al 1998)):

First a CNN as feature-extractor.

Second a fully connected NN as classifier.
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A Mathematical Approach

A Very Nice Idea...
The scattering transform (Mallat, 2014) is a special convolutional neural
network:

It uses fixed predefined (wavelet) filters.

It performs almost as good as a trained neural network in some
applications.

It is more accessible to theoretical analysis.

There exists a continuous as well as discrete theory.
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Scattering Transform
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Scattering Transform

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 122 / 133



Scattering Transform

Definition: Let

Ψn = {ψλn}λn∈Λn , ψλn ∈ L1(Rd ) ∩ L2(Rd ) with∑
λn∈Λn

‖f ∗ ψλn‖2
2 ≤ Bn‖f ‖2

2 for all f ∈ L2(R),

For Rn ≥ 1 the subsampling factor, let

(Un[λn]f )(x) = R2
n |f ∗ ψλn |(Rnx), λ ∈ Rd ,

For a path of index sets q = (λ1, ...λn), λi ∈ Λi let

U[q]f = Un[λn](Un−1[λn−1]− (U1[λ1]f )),

χn−1 := ψλn for every n ∈ N.

The associated scattering transformation ΦΩ is defined by

f 7→ ΦΩ(f ) :=
∞⋃

n=0

{U[q]f ∗ χn−1}q=(λ1,...λn)︸ ︷︷ ︸
Interpretation: ”feature vector”

.
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Translation Invariance of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):
Let ΦΩ be a scattering transformation with Rn := 1 for all n. Then Φn is
translation invariant, i.e.

ΦΩ(Tt f ) = TtΦΩ(f )

for all t ∈ Rd with (Tt f )(x) = f (x − t), x ∈ Rd , in particular

U[q](Tt f ) ∗ χn−1 = Tt(U[q]f ∗ χn−1)

for all t ∈ Rd .
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Deformation Stability of the Scattering Transform

Theorem (Mallat; 2014)(Wiatowski at al.; 2016):
Let ΦΩ be a scattering transformation with maxn∈N max{Bn,BnL

2
n} ≤ 1.

Then for any K > 0, the scattering transformation ΦΩ is stable on E2
s (Rd )

with respect to deformations.
This means that for every K > 0, there exists CK > 0 such that for all
f ∈ E2

s (Rd ) and τ ∈ C1(Rd ,Rd ) with

‖τ‖∞ ≤
1

2
and ‖Dτ‖∞ ≤

1

2d
,

we have

‖|ΦΩ(Fτ f )− ΦΩ(f )|‖ ≤ CK‖τ‖
1
2∞,

where
(Fτ f )(x) = f (x − τ(x)).
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Explainability
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Relevance Maps

Goal: Consider the realization of a neural network

f : Rd → R.

Determine the relevance of each xp of x = (x1, ...xd ) for the output f (x).

Definition:
A collection R = (Rp)d

p=1 of functions Rp : Rd → R is called relevance map.
R is non-negative, if Rp(x) ≥ 0 for all p, x .

R is conservative with respect to f , if∑
p

Rp(x) = f (x).

R is consistent, if it is both non-negative and conservative.

Remark: Consistency implies that the decision f (x) is distributed among the
input pixels and only the contribution towards the decision is counted
(not against it).
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Sensitivity Analysis

Definition:
Assume f is continuously differentiable. Then

Rp(x) := (
∂f (x)

∂xp
)2

is a relevance map called sensitivity analysis.

Remarks:

This relevance map is non-negative, but not conservative or consistent.

Sensitivity analysis only uses ∇f , but not the decision f (x). It answers
the question ”Changing which pixels makes the image look less/more
like a cat?”, but not ”Which pixels make the image a cat?”.
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Taylor Decomposition Relevance Map

Definition (Müller et al.; 2017):
Assume f is continuously differentiable and x̃ a suitably chosen root point
of f , for instance f (x̃) = 0. Then

Rp(x) :=
∂f (x̃)

∂xp
(xp − x̃p)

is the Taylor decomposition relevance map.

Remarks:

The idea is to choose a root point x̃ near x which is neutral with
respect to f in the sense of f (x) = 0.
Up to second-order terms, this relevance map is conservative:

f (x) = f (x̃) +∇f (x̃)T (x − x̃) + O(‖x − x̃‖2)

=
∑

p

Rp(x) + O(‖x − x̃‖2).

This relevance map can be efficiently computed by starting at f (x)
and going reversely through the network.
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Deep Taylor Decomposition
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Let’s conclude...
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Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 We discussed architectures and several approximation results!

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 We discussed stochastic gradient descent, but the theory is just starting!

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 There are so far no theoretical results known!

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 We briefly discussed relevance maps!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 132 / 133



Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 We discussed architectures and several approximation results!

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 We discussed stochastic gradient descent, but the theory is just starting!

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 There are so far no theoretical results known!

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 We briefly discussed relevance maps!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 132 / 133



Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 We discussed architectures and several approximation results!

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 We discussed stochastic gradient descent, but the theory is just starting!

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 There are so far no theoretical results known!

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 We briefly discussed relevance maps!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 132 / 133



Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 We discussed architectures and several approximation results!

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 We discussed stochastic gradient descent, but the theory is just starting!

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 There are so far no theoretical results known!

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 We briefly discussed relevance maps!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 132 / 133



Fundamental Questions concerning Deep Neural Networks

Expressivity:
I How powerful is the network architecture?
I Can it indeed represent the correct functions?

 We discussed architectures and several approximation results!

Learning:
I Why does the current learning algorithm produce anything reasonable?
I What are good starting values?

 We discussed stochastic gradient descent, but the theory is just starting!

Generalization:
I Why do deep neural networks perform that well on data sets, which do

not belong to the input-output pairs from a training set?
I What impact has the depth of the network?

 There are so far no theoretical results known!

Explainability:
I Why did a trained deep neural network reach a certain decision?
I Which components of the input do contribute most?

 We briefly discussed relevance maps!

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 132 / 133



Technische Universität Berlin
Applied Functional Analysis Group  

THANK YOU!

References available at:

www.math.tu-berlin.de/∼kutyniok

Our Blog/Database for the Mathematical Theory for Deep Learning:

www.DeepMath.org

Gitta Kutyniok (TU Berlin) Mathematics of Deep Neural Networks AIT Workshop, 2018 133 / 133


	Basics of Mathematical Learning Theory
	General Problem Setting
	The Sampling Error
	The Approximation Error

	Deep Neural Networks
	Basic Definitions
	Stochastic Gradient Descent

	Expressivity of Deep Neural Networks
	Universal Approximation
	Sparse Connectivity
	Convolutional Neural Networks

	Explainability

	anm2: 
	2.9: 
	2.8: 
	2.7: 
	2.6: 
	2.5: 
	2.4: 
	2.3: 
	2.2: 
	2.1: 
	2.0: 
	anm1: 
	1.6: 
	1.5: 
	1.4: 
	1.3: 
	1.2: 
	1.1: 
	1.0: 
	anm0: 
	0.8: 
	0.7: 
	0.6: 
	0.5: 
	0.4: 
	0.3: 
	0.2: 
	0.1: 
	0.0: 


