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Abstract—In adaptive time division duplex (TDD) broad-
cast multi-antenna orthogonal frequency division multiplex-
ing (OFDM) systems, non-reciprocal transceiver chains at the
base station (BS) cause multi-user interference. This is due
to the inappropriate spatial filter design at the BS based on
the reverse link estimate. Hence, BS transceiver calibration
is required. Provided that an estimate of the forward link
channel is available at the BS, e.g., in a calibration phase, the
transceiver parameters can be estimated by solving a total least
squares (TLS) problem. In addition, if mutual coupling between
the antennas exists the number of unknown front-end parameters
to be estimated increases. Consequently, large matrices need
to be decomposed via singular value decomposition (SVD) to
attain a calibrated system. To deal with these large matrices
a conjugate gradient (CG) method for solving the TLS problem
iteratively is proposed in this paper. Simulation results show that
the calibration based on the CG method achieves almost the same
performance compared to the TLS solution but with significantly
reduced complexity.

I. INTRODUCTION

The application of orthogonal frequency division multi-

plexing (OFDM) has become a state-of-the-art air interface

technology for modern wireless communication systems [1]. In

combination with multi-antenna arrays at the base station (BS)

these systems are able to provide space division multiple

access (SDMA) to multiple users (MU). With channel state

information (CSI) at the BS based on uplink channel estimates

in time division duplex (TDD) mode, adaptive schemes like

frequency-domain pre-equalization can be applied [2]. A pre-

requisite for using the uplink estimates is channel reciprocity

with respect to the baseband, which in general is not fulfilled

as the uplink transmit-receive chain (Tx-Rx chain) is not

reciprocal to the downlink (DL) Tx-Rx chain. Therefore, either

robust pre-equalization schemes [2] or a suitable transceiver

calibration is necessary [3].

It has been shown by the authors in [4] that robust filter

design schemes for pre-equalization are insufficient for severe

non-reciprocal conditions. Instead, the application of a rela-

tive calibration scheme based on a total least squares (TLS)

formulation of the calibration problem (without coupling con-

siderations) showed excellent properties in recovering almost
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equivalent effective up- and downlink channels. The solution

of the TLS problem is usually found via a singular value

decomposition (SVD) [5]. If mutual coupling is present at

the BS, the TLS problem formulation leads to large matrices,

which need to be decomposed via SVD [3]. To overcome

this problem, less complex algorithms must be used to find

the solution of the equivalent minimum eigenvalue problem,

e.g., by an inverse iterative power method [6]. In this con-

tribution a low-complexity algorithm based on a conjugate

gradient (CG) method for solving the TLS calibration problem

in MU-Multiple Input Single Output (MISO)-OFDM systems

is proposed. In this context, the BS not only has non-reciprocal

transceivers but also is influenced by mutual coupling due to

the narrow antenna element spacing of the array, e.g., in a

femtocell BS.

The remainder of the paper is organized as follows. In

Sec. II the system and the applied extended channel model are

described. In addition, the non-reciprocity and the mutual cou-

pling models are introduced. Subsequently, the downlink cali-

bration schemes are stated in Sec. III. The relative calibration

approach based on the SVD solution is reflected in Sec. III-A,

while the CG method and complexity considerations are given

in Sec. III-B and Sec. III-C, respectively. Simulation results

for the calibration principles in different transceiver mismatch

conditions are shown in Sec. IV. Finally, a conclusion is given

in Sec. V.

II. SYSTEM MODEL

A. Extended Channel Model

A downlink (DL) scenario of a system with NB base

station antennas and NM decentralized single-antenna mobile

stations (MS) using OFDM with NC subcarriers is considered,

where NB ≥ NM should hold. The effective downlink matrix

H(k) and the effective uplink (UL) matrix G(k) in frequency-

domain on subcarrier k using a scattering matrix approach [2]

can be written as

H(k) = ARMWRMSMB(k)WTBATB , (1)

and

G(k) = ATMWT
TMSMB(k)W

T
RBARB , (2)
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respectively [4], [7]. Here, the indices T and R denote the

transmit or receive chain at location M for the MS or B
for the BS. The scattering matrix SMB(k) can directly be

replaced by the real physical downlink MIMO channel matrix

HFD(k) in frequency-domain [7]. The channel matrix HFD(k)
results from the frequency-selective time-domain channel ma-

trix HTD(ℓ) ∈ CNM×NB , 0≤ℓ≤LF−1, whose elements are

i.i.d. complex Gaussian distributed. LF denotes the number

of uncorrelated channel taps.

Furthermore, in (1) and (2) the matrices

WT [B/M ] =
(
IN[B/M]

− ΓT [B/M ]S[BB/MM ]

)−1
(3a)

WR[B/M ] =
(
IN[B/M]

− S[BB/MM ]ΓR[B/M ]

)−1
(3b)

describe the mutual coupling and the reflection at the

transceivers, whereas the matrices A[T/R][M/B] contain the

antenna gains in the transmit and the receive paths, respec-

tively. If feedback effects of the BS antennas on the radiation

of the MS is negligible, the matrices

A[T/R]B=diag
{
α[T/R]B,1, . . . , α[T/R]B,NB

}
(4a)

and

Γ[T/R]B=diag
{
γ[T/R]B,1, . . . , γ[T/R]B,NB

}
(4b)

with complex gain factors α[T/R],[B/M ],[i/j] and input/output

reflection coefficients γ[T/R],[B/M ],[i,j] can be modeled as

diagonal matrices [7]. The modeling of these coefficients and

a detailed description of the scattering matrices S[BB/MM ]

are given separately in Sec. II-B. Without loss of generality,

frequency-flat characteristics of the transceiver chains is as-

sumed throughout the paper, meaning that the matrices A and

W are independent of subcarrier index k (cf. (1) and (2)).

If linear pre-equalization is applied in the considered

multi-user broadcast MISO-OFDM system the receive signal

y(k) = [y1(k), . . . , yNM (k)]
T

on subcarrier k stacking all

mobile stations reads

y(k) = β(k)H(k)F(k)d(k) + n(k) , (5)

where d(k) ∈ CNM×1 is the data vector to be transmitted to

the NM MS. The pre-equalization matrix F(k) ∈ CNB×NM in

the minimum mean square error (MMSE) case is determined

using the uplink channel matrix G(k) such that

FMMSE(k) = GH(k)
(
G(k)GH(k) + σ2

nINM

)−1
(6)

holds. Here, the same noise power σ2
n on all subcarriers and

all MS is assumed. The scalar β(k) is chosen such that the

total sum power constraint per subcarrier is fulfilled [4].

In terms of MMSE channel estimation in uplink direction,

the estimated channel matrix Ĝ(k) of one subcarrier can be

modeled by [8]

Ĝ(k) =
√

1− σ2
e G(k) +

√

σ2
e (1− σ2

e)Ψ(k) , (7)

where Ψ(k) a Gaussian error matrix with an entry variance of

one and σ2
e is the estimation error variance. The same holds for

Ĥ(k) with an independent error matrix but here with identical

estimation error variance, which generally does not need to be

the same.
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Fig. 1. Scattering parameters of an exemplary bandpass filter at
fc = 2.6 GHz
a) Input reflection coefficient S11 - b) Transfer factor S21

B. Mutual Coupling and Error Models

Concerning the error model of the complex gain factors that

describe the non-reciprocal behavior of the transceiver chains

each gain factor α[T/R]B,i in (4a) is assumed to be slightly

mismatched. Consequently, α[T/R]B,i = 1 + δ[T/R]B,i holds,

where the statistically independent error terms δ[T/R]B,i are

zero mean complex Gaussian random variables with variance

σ2
δ [2]. These factors are expected to change very slowly in

time compared to the duplex phase and are assumed to be

equal per antenna on all subcarriers k.

The modeling of the reflection coefficients γ[T/R]B,i is mo-

tivated by an exemplary filter for a long-term evolution (LTE)

band at 2.6GHz. The scattering parameters of this filter are

shown in Fig. 1a) and b). Since the input reflection coefficient

S11 is around 20 dB below the transmission factor S21 in the

frequency range of interest, the mean value for γ[T/R]B,i is

set to 0.1. Then

γ[T/R]B,i = 0.1 + κ[T/R]B,i (8)

is used to model the reflection coefficient in (4b). Again

additional error terms κ[T/R]B,i are added, which are zero

mean complex Gaussian random variables with variance σ2
κ.

To determine the scattering matrices S[BB/MM ] in (3), the

antenna array configurations need to be investigated from

an electromagnetic perspective. If at least two antennas are

in proximity regarding the wavelength λ and one of these

antennas is transmitting, the second is irretrievably in the near-

field of the transmitting antenna. As a result, the transmitting

antenna induces a voltage at the ports of the second antenna,

which is not transmitting. This induced voltage can be related

to the impressed current on the transmitting antenna, which

gives the mutual impedance. Hence, the mutual impedance

is a measure for the strength of the antenna coupling due

to the near-field interaction. Taking also the input impedance

ZA of a single antenna element into account, the following

relation between the antenna currents Ii and voltages Vi can
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be established at the BS

Vi = ZA · Ii +
NB∑

j=1,j 6=i

Zij · Ij , (9)

with Zij denoting the mutual impedance between the antenna

elements i and j [9]. Here, ”infinitesimally thin” λ/2 dipoles

are considered for the antenna elements [10]. The input as

well as the mutual impedance can be computed by using the

results presented in [11]. Rewriting the current and voltage

relations indicated by (9) in matrix form, the impedance

matrix Z ∈ CNB×NB is obtained. The latter can be used to

describe the scattering parameter matrix SBB of the base

station antenna array exploiting the following relation [12]

SBB =

(
Z

Z0
+ INB

)−1 (
Z

Z0
− INB

)

. (10)

Here, Z0 = 50Ω denotes the characteristic impedance of the

ports.

It is assumed that no coupling is present between the

MS as the spacing between the users is at least of several

wavelengths such that SMM = ZA

Z0
IM , γ[T/R]M,j ≈ 0 and

hence W[T/R]M ≈ IM . In addition, the gain factors in

matrices A[T/R]M can be set to one as they have no impact

on the system performance [2]. Using the model for α[T/R]B,i

as well as (8) and (10), the matrices WTB and WRB in (3)

can be calculated.

III. DOWNLINK CHANNEL CALIBRATION

A. Calibration via Singular Value Decomposition (SVD)

For the following derivations of the calibration approach

it is assumed that both the estimated CSI of the uplink and

downlink channel are known at the BS. This can be achieved

in a special calibration phase or by means of analog feedback

of the DL channelHence, errors in all variables are obtained

due to the estimation, where we neglect the ˆ-indication for

the remainder of this section.

Starting with (2) and resolving it with respect to SMB ,

inserting the result into (1) leads to

H(k)=ARMWRMW−T
TMA−1

TM
︸ ︷︷ ︸

CM

G(k)A−1
RBW

−T
RBWTBATB

︸ ︷︷ ︸

CB

.

(11)

We define the auxiliary vectors cB , vec
{
C−1

B

}
and

cM ,vec
{
CT

M

}
, where the vec-operator is defined as

vec{B} = vec{[b1 . . . ,bi]} =
[
bT
1 , . . . ,b

T
i

]T
, and gi(k) is

the i-th column of matrix G(k). Then, (11) can be reformu-

lated with

Θ(k) =






INM ⊗ gT
1 (k)

...

INM ⊗ gT
NB

(k)




 and Ω(k) = INB⊗H (k) (12)

to

Ω(k)cB −Θ(k)cM = 0NBNM×1 , (13)

where ⊗ is the Kronecker product. Set c ,
[
cTB cTM

]T
as well

as

Ek=[Ω(k) −Θ(k)] (14a)

and

E =
[
ET

1 , . . . ,E
T
K

]T ∈ C
KNBNM×N2

B+N2
M . (14b)

Thus, (13) can be rewritten to

Ec = 0KNBNM×1 . (15)

Obviously E depends on G(k) and H(k) (cf. [3]). Here,

K defines the number of subcarriers used for calibration,

where the k’s can be arbitrarily chosen due to the presumed

frequency-flat characteristics of the transceivers. As there

are N2
M + N2

B number of unknowns and K ·NMNB linear

equations, multiple subcarriers K are necessary to solve (15).

As described in [3], (15) defines a special case of a

total least squares (TLS) problem [5], where the optimization

problem is defined as

minimize
∆E

‖∆E‖F (16a)

such that (E+∆E) c = 0K ·NBNM×1 . (16b)

The goal is to find a perturbation matrix ∆E with minimum

Frobenius norm that lowers the rank of E, where ∆E is the

correction term of the TLS optimization problem.

The solution to (15) lies in the right null space of E

and can be computed with the singular value decomposition

(SVD). In [5] the connection of the TLS solution to the

SVD was shown. Then, if E = UΣVH depicts the SVD

and matrix V = [v1, . . . ,vNB+NM ] denotes the right singular

vector space, the estimated solution for c depends on the right

singular vector corresponding to the smallest singular value in

Σ such that cTLS = − 1
vNB+NM,NB+NM

vNB+NM . Thus, c can

be fully determined (up to a scalar coefficient, which vanishes

due to the reciprocal multiplication in (11)) if and only if

vNB+NM ,NB+NM 6= 0 holds [5]. Finally, with solution vector

cTLS the matrices G(k) can be adjusted according to (11).

B. Conjugate Gradient Method for Solving the TLS Problem

The problem of the SVD-based TLS algorithm is that it can

be computationally prohibitive for large matrices E. It was

shown that the constrained minimization problem in (16) is

equivalent to minimizing the so-called Rayleigh quotient [13]

f(c) =
cHEHEc

cHc
. (17)

The minimization of the Rayleigh quotient in turn is equivalent

in finding the eigenvector c associated with the smallest eigen-

value of matrix EHE such that min
{

‖∆E‖2F
}

= min{f(c)}
equals the minimum singular value and the TLS solution is

obtained [14]. An advantage of the Rayleigh quotient is the

fact that (17) can be minimized iteratively. One possibility

is to use an inverse power method to find the corresponding

eigenvector [6]. Applying the Rayleigh quotient introduces a

shift equal to this quotient into the inverse iteration [13]. To
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avoid a matrix inverse, this can be solved via a conjugate

gradient (CG) method, e.g., according to [14].

The CG method successively approximates the vector c in

iteration m such that

cm+1 = cm + ξmsm , (18)

where sm is the search direction and ξm the step size. Fol-

lowing [15], after taking the derivative of (17) and minimizing

it, the step size is the solution of a quadratic equation and is

always real, where the smaller value of the two possible solu-

tions corresponds to the minimum eigenvalue such that [14]

ξm =

√
b2 − 4 · d · c− b

2 · d , (19)

with the definitions of b, c and d as in Alg. 1. Now, to update

the solution vector cm+1 iteratively, the calculations listed in

Algorithm 1 are executed. The algorithm either stops after

mmax iterations or if the change of the estimated smallest

singular value falls below a certain threshold, which is set

to ǫthres = 10−5 here.

Algorithm 1 CG Minimization of Rayleigh Quotient

Require: Φ = E
H
E

1: c0 =

[

0N2
B
+N2

M
−1, 1

]T

{initial guess}
2: ρ0 = c

H
0 Φc0 {estimated smallest eigenvalue}

3: r0 = ρc0 −Φc0 {residual}
4: s0 = r0 and m = 0 and ǫ = −∞ {initialize variables}
5: while |ǫ| > ǫthres and m < mmax do

6: Υa,m = c
H
mΦsm and Υb,m = s

H
mΦsm

7: Υc,m = s
H
mcm and Υd,m = s

H
msm

8: b = Υb,m − ρmΥd,m and c = Υa,m − ρmΥc,m

9: d = Υb,mΥc,m −Υa,mΥd,m

10: ξm =

√
b2−4dc−b

2d

11: cm+1 = cm + ξmsm {update eigenvector}
12: cm+1 =

cm+1

||cm+1||2
13: ρm+1 = c

H
m+1Φcm+1 {update Rayleigh quotient}

14: rm+1 = ρm+1cm+1 −Φcm+1

15: ψm = − s
H
mΦrm+1

sHmΦsm

16: sm+1 = rm+1 + ψmsm {update search direction}
17: ǫ =

ρm+1−ρm

ρm
{check convergence}

18: if ǫ > 0 then

19: cm+1 = cm {correct wrong gradient search}
20: break {stop algorithm earlier}
21: end if

22: m← m+ 1

23: end while

24: return cCG = − cm−1

cNB+NM
{approx. TLS solution}

C. Complexity Considerations

The complexity of the SVD depends on the number of

parameters to be estimated, meaning the length of vector

c ∈ CN2
M+N2

B×1. In general, the common SVD calculation

needs around O
((

N2
M +N2

B

)3
)

multiplications, which is not

suitable for large scale matrices E. Following [14], the com-

plexity of the CG method is in the order of O
((

N2
M +N2

B

)2
)
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Fig. 2. Exemplary convergence behavior of the conjugate gradient method
for a MU-MISO-OFDM system with NC = 512 subcarriers and different
numbers of K

per iteration. In addition, it is well known that the CG method

converges quite fast. In Fig. 2 an exemplary convergence

behavior of the CG method for NC = 512, σ2
e = 10−4

and different numbers of calibration carriers K is shown.

The mean square error (MSE) describes the remaining error

between the true effective DL channel and the estimated

channel after calibration. Increasing K proves to be accurate

and additionally converges faster to the TLS solution compared

to smaller K . Hence, for large K , and consequently large

matrices E, the CG method is explicitly suitable for the

calibration process.

IV. SIMULATION RESULTS

In this section, bit error rate results versus Eb/N0 for linear

MMSE pre-equalization in a NB=NM =4 multi-user MISO-

OFDM scenario applying NC=256 subcarriers and 16-QAM

transmission are shown. The utilized QAM soft output demap-

ping is done via max-log approximation. The Eb/N0-ratio is

defined as Eb/N0 = 1/(Rc log2(M)σ2
n), where Rc is the code

rate of the applied channel code. The applied channel code in

the encoded scenarios is a half-rate punctured 3GPP Turbo

Code with additional sub-block interleaving [1]. It is assumed

that a codeword ranges over six OFDM symbols.The guard

interval has a length of Ng = 6, which is set equal to the length

of the considered Rayleigh channel taps at symbol clock LF .

The channel has an almost exponentially decaying power delay

profile. Furthermore, the channel is assumed to be constant for

one codeword but changes from codeword to codeword and

the channel estimation error is σ2
e = 10−4. For completeness,

it has to be mentioned that the guard loss is also considered

in the results. The variance of the reflection coefficients at the

BS is fixed to σ2
κ = −30 dB for all simulations.

Fig. 3 shows the results, where subfigures a) for

σ2
δ = −30 dB and b) for σ2

δ = −20 dB present the uncoded

results and c) (σ2
δ = −20 dB) and d) (σ2

δ = −10 dB) the

coded results, respectively. The uncoded results show a sig-

nificantly decreased performance if no calibration is applied.

The calibration results for K = 32 indicate that only with a
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Fig. 3. BER versus Eb/N0 for a system with NB = NM = 4 and BS
antenna coupling (σ2

κ = −30 dB), NC = 256 subcarriers and 16-QAM
with MMSE pre-equalization and different calibration schemes. The channel
estimation error variance is σ2

e = 10
−4 and the applied channel code in c)

and d) is a half-rate punctured turbo code.

large number of calibration carriers sufficient linear equations

are available to ensure a good estimate of vector c. Otherwise a

decrease in BER is apparent. While the SVD solution achieves

a good performance for K = 64 in the uncoded case, the CG

method with mmax = 50 needs more carriers to significantly

improve the average BER of the users. In case of K = 128
the CG method has the same performance gain compared to

the direct SVD but with considerably reduced complexity.

This substantiates the fact that the CG method is especially

applicable for large-scale matrix problems [13]. With the

utilization of channel coding the system itself is more robust to

reciprocity mismatch. Nevertheless, calibration is necessary as

non-reciprocal transceiver lead to an error floor. The increasing

error rates are in accordance to the results in [4]. Utilizing the

calibration employing K = 128 carriers leads almost to the

same performance as for the reciprocal system with perfect

channel estimation. Again, the CG method performs slightly

worse with less carriers but works as good as the direct SVD

for K → NC in the region of interest around a BER of 10−3.

Remark: To ensure an average low BER in coded scenarios,

cases of divergence must be avoided. Because a strong channel

code guarantees minor occurrences at high SNRs, the cali-

bration results can be allowed to be less accurate. Therefore,

ǫthres should be chosen larger or the lines 18 to 21 in Alg. 1

can be used to avoid a wrong direction of the gradient. In

contrast, without channel coding a case of divergence does

not significantly contribute to the error rates.

V. CONCLUSION

In this paper, it has been shown that relative calibration

techniques for mutually coupled MU-MISO-OFDM systems

with decentralized receivers are able to combat the non-

reciprocal transceiver chains in terms of DL BER if estimated

instantaneous UL/DL-CSI is available at the BS. The CG

method is an iterative low-complexity solution to approximate

the ordinary TLS solution based on direct SVD. Increasing the

number of subcarriers in the TLS approach proved to show bet-

ter performance in these systems. The increasing complexity

is manageable by applying a CG algorithm, which in addition

has faster convergence with more calibration carriers.
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