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Abstract. Efficiently transmitting data in wireless networks requires
joint optimization of routing, scheduling, and power control. Also, trans-
mitting data to multiple destinations (multicasting) in an optimal way
typically involves the solution of difficult combinatorial optimization
problems. To avoid such difficulties, we use the concept of network coding
to design an optimization problem for the problem of transmitting multi-
ple multicast messages through a time-slotted multihop wireless network
whilst allowing multipath routing. Apart from the mathematical model,
we introduce a block co-ordinate descent algorithm that uses information
about active constraints and the decoupled nature of the problem, and
prove its convergence to a global optimum under certain assumptions.
Numerical examples of wireless mesh backhaul networks with fixed nodes
show that the algorithm rapidly provides optimal solutions in networks
with no interference, and good solutions in a range of more challenging
circumstances.
Keywords: multicast, network coding power control, resource alloca-
tion, wireless mesh networks.

1 Introduction

There is an increased interest in communication via wireless mesh networks such
as ad-hoc, sensor or wireless mesh backhauling networks nowadays [1, 2]. In wire-
less networks the link capacities are variable quantities and can be adjusted by
the allocation of resources such as bandwidth, power allocation, and time-slot
length to fully exploit network performance. For efficient data transmission an
integrated routing, time scheduling and power control optimization strategy is
therefore required. This strategy has to take different transmission constraints
into account, for example maximum available power level or limited buffer sizes
at nodes. Also, the inherent decentralized nature of wireless mesh networks man-
dates that distributed algorithms should be developed to implement the joint
routing, scheduling and power control optimization.

Cruz and Santhanam [3] have addressed the problem of finding an optimal
link scheduling and power control policy while minimizing total average power
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consumption. Their algorithm is designed for single-path routing only, does not
consider buffer limitations and has a worst case exponential complexity. Li and
Ephremedis [4] solve at first power control and scheduling jointly. With the power
values obtained, a routing distance is then calculated which in turn is used by
Bellman-Ford routing. However, the proposed separation is performed by not
considering the combinatorial structure of the entire routing, scheduling and
power control problem. Although computationally inexpensive, the algorithm
can end up in a suboptimal solution. Also, it neglects multiple path routing
as well as buffer restrictions. Xiao et.al. [5] proposed dual decomposition as a
promising decomposition approach. By dual decomposition the overall problem
is split into several sub-problems while a master dual problem coordinates them.

Until recently, efficiently transmitting multicast messages through networks
required the solution of difficult combinatorial optimization problems based
around embedding Steiner trees into a particular graph [6]. For such problems,
a centralized polynomial time algorithm has been introduced in [7], while for a
certain class of networks, a distributed coding strategy has been described in [8].
However, using network coding, one can construct a multicast transmission from
a group of unicast transmissions which do not compete for bandwidth. A big step
forward in the practical use of network coding came with the idea of random lin-
ear network coding, discussed in [9], [10] and [11]. There, it has been shown that
with high probability, a random linear network code will result in all receivers
being able to retrieve the message. In terms of incorporating network coding into
a nonlinear optimization problem for cross layer optimization, an important re-
sult can be found in [12] which demonstrates that with network coding, one can
consider a multicast as a collection of unicasts which do not compete for channel
capacity. This idea has then been taken forward in [13] with the introduction of
”conceptual flows” that satisfy flow constraint laws but which do not compete
for channel capacity. This is included in a joint power control and routing opti-
mization problem on a non-timeslotted network by setting the actual flow along
an edge as the maximum of all conceptual flows along that edge. The authors
then go on to solve this problem using a dual decomposition approach similar
to [14].

One possible strategy to design a distributed implementation is to break up
the given problem into manageable sub-problems and solve these sub-problems
by distributed iterative algorithms. This is the strategy that we will use in this
paper. We will consider joint routing, time-scheduling and power control for sin-
gle frequency wireless mesh networks. The wireless transmissions are arranged in
time-slots. However, we take into account that simultaneously active transmis-
sions suffer from multiple access interference. Further to this, we use the recently
developed idea of network coding to incorporate multicast message transmissions
into our optimization problem. This is achieved by forming linear combinations
of data packets, creating encoded packets which can be useful to all multicast
destinations. Using this idea, we will develop an optimization problem for the
transmission of multiple unicast and multicast messages through a network.
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While dual decomposition is a universal approach to solve such optimiza-
tion problems [5, 19], it does not exploit the specific structures apparent here.
By contrast, we propose a novel method that explicitly exploits the combinato-
rial structure of a joint routing, time-scheduling and power control problem by
means of an active constraint method. In particular, the approach is as follows:
We separate scheduling from routing and power allocation by including it in the
constraint set of a simultaneous routing and power control problem. For schedul-
ing, several well known approximations such as Greedy based approaches exist
[15, Section 3.7] that we can leverage on. The constraints we use in the opti-
mization problem are induced by a pre-calculated colouring of the network that,
in turn, reflects the scheduling decisions of any arbitrary scheduler.

For solving the optimization problem considered, we introduce a block co-
ordinate descent method to solve the simultaneous routing and power control
problem and prove that, when the network does not suffer from interference, the
algorithm converges to a global minimizer. The main points of the algorithm are
as follows: (1) We re-write the optimization problem to an equivalent problem by
applying the active constraint method. (2) We decouple the equivalent problem
by solving a (convex) network and a (convex) power assignment problem sepa-
rately. (3) Iterations are performed by switching between the two sub-problems
for which network and power variables act as interchanging parameters.

Finally, we examine the performance of this algorithm when applied to net-
works suffering from interference. These numerical tests are performed by ap-
plying the algorithm, as well as a black box nonlinear solver run from multiple
starting points, to a wireless cellular mesh backhauling network [1, 2]. The back-
hauling network describes a ”regular” cellular network. This models the situation
where, in order to save infrastructure expenses of laying cable or fiber to each
node (base station), we try to extend the range of a given source node with wired
backhaul connection by using several other nodes. These intermediate nodes have
no wired connection and can only communicate with the backhaul via the source
node by wireless mesh communications. The simulation set-up correctly models
mobile radio channel characteristics such as path-loss and slow fading. Testing
indicates that the algorithm provides optimal solutions in zero interference cases,
and good, near optimal solutions in many other interference affected cases.

The rest of this paper is organized as follows. In Section 2 we describe the
network model used for the wireless data network. In Section 3 we describe
how we use the principle of network coding to incorporate multicast message
transmission into our model. In section 4 we formulate the optimization problem.
The co-ordinate descent algorithm for solving the joint routing and power control
problem is presented in Section 5. Finally, in Section 6 we apply the algorithm
to a wireless backhaul network and present the simulation results. We conclude
the paper in Section 7.
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2 Network Model

In this section we will introduce the model of the network through which the
data is to be transmitted. Consider a set of V communication nodes, with s ∈ V
a source node and D ⊂ V a set of receiver nodes. We assume s 6∈ D. Consider
a transmission of identical data from s to all d ∈ D. If D consists of exactly
one node, we term this transmission a unicast. If D ∪ s = V , we term this
transmission a broadcast. Otherwise, we term the transmission a multicast.

The transmission problem we are facing is to transmit messages indexed by
m, each of size Sm bits via a multiple hop wireless network. Each message has
its source node sm and a set of destination nodes Dm, where sm /∈ Dm. Let M
be an index set for the set of messages, so m ∈ M . With multiple path routing
each message can be transmitted via several paths from its source node to any
of its destination nodes. Thus, intermediate nodes can send parts of messages to
many receivers and receive parts of messages from many transmitters.

We denote the nodes by v ∈ V where V is finite. At any time, each of these
nodes v ∈ V can map any parts of messages m ∈ M onto a single link e for
transmission. The set of all links is denoted by E. A wireless communication
link corresponds to an edge e = (u, v) between two nodes u, v ∈ V and is
described by the ordered pair (u, v) ∈ V × V such that u transmits information
directly to v. Moreover, we assume that (v, v) /∈ E for all v ∈ V . We have
that G := (V,E) is a directed graph with node set V and edge set E. For
an arbitrary node v ∈ V , denote by E+(v) := {e ∈ E | e = (v, w) ∈ E}
and E−(v) := {e ∈ E | e = (w, v) ∈ E} the set of outgoing and incoming
edges within E at the node v, respectively. A link represents a wireless resource
characterized by a given bandwidth, time duration, space fraction, or by a given
code assignment.

We assume a time-slotted single frequency network for which the time is
divided into equal slots of length τ seconds while all nodes occupy the same
frequency band of bandwidth B hertz. Time slots are indexed by t ∈ T , with T
as an index set. We take time scheduling into account by assuming that there is
given a coloring of the nodes such that adjacent nodes do not have the same color
(half-duplex constraint) [4]. That is, we are given a number C and a function
coV : V −→ {1, ..., C} such that coV (v) 6= coV (w) for all nodes v, w ∈ V with
(v, w) ∈ E. Here, C is at least as large as the chromatic number of G. Computing
such a coloring can be done by a Greedy approach [15] and is not the focus of
this work.

To take delay constraints into account we introduce tmax as the maximum
number of time slots a message is allowed before arriving at its destination, i.e
T := {1, ..., tmax}.

The interference model we consider includes multiple access interference
caused by simultaneously active transmissions that can not be perfectly sepa-
rated by e.g. code- or space division multiple access (CDMA/SDMA) techniques.
Thus, let Ee,t be the set of edges interfering edge e at time t. The signal atten-
uation from node u to node v is at(u, v) and we assume it remains unchanged
within the duration of a time slot t. We further assume perfect knowledge of
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at(u, v) at the corresponding senders. Let T (e) be the transmitting node and
R(e) be the receiving node of edge e. Hence, at(T (l), R(e)) denotes the attenu-
ation a signal suffers that is transmitted from T (l) but received by node R(e).
For link e such a signal represents multiple-access interference that is caused by
link l.

Furthermore, with pe,t as the (transmit) power to be allocated to link e at
time slot t, the received signal power at node R(e) from the transmitter T (e) is
given by at(T (e), R(e))pe,t. We simplify this interference model, and introduce
shorter notation by assuming all signal attenuations to be time-invariant, and
replace at(T (l), R(e)) with al,e since it is clear we are referring to the transmitter
of edge l and the receiver of edge e. We define the signal-to-interference-plus-
noise ratio (SINR) of edge e ∈ E at time slot t ∈ T as

SINRe,t =
ae,epe,t∑

l∈Ee,t
l 6=e

al,e pl,t + σ2
e

(1)

with σ2
e as additive noise power of edge e. If we only assume thermal noise

to be the same for all edges, we have σ2
e = BN0 with noise spectral density N0.

3 Handling Multicast Transmissions

We will now outline how we are able to build an optimization problem for the task
of optimally transmitting multiple multicast and unicast messages. The standard
approach is a combinatorial approach based on packing steiner trees, [6]. This
method is computationally expensive and using this approach it is not always
possible to meet the theoretical maximum rate for multicast transmissions, [11].
The approach we pursue is to use the novel concept of network coding. Here,
intermediate nodes are given the ability to perform elementary operations on
incoming data packets. Unlike the tree finding approach, this method requires
no combinatorial optimization, and can also be shown to meet the min-mincut
bound for multicast transmissions, [16].

3.1 The Network Coding Principle

The principle of network coding is best illustrated through a simple example
as shown in Figure 1 on the next page. Consider two intermediate nodes in a
network, u and v. Suppose packets A and B arrive at node u. Imagine multicast
destination d1 beyond node v requires only packet A in order to have the com-
plete transmission, and destination d2 only requires packet B (both destinations
have received all the other packets they need through other paths). Without
network coding, both packets, A and B need to be transmitted from u to v, and
both need to be stored in a buffer at v. With network coding, a random com-
bination of the two packets is made at u, X = λA + µB. This encoded packet,
along with the vector (λ, µ) is transmitted to, and stored at, node v before being
forwarded on to the two destinations. d1, with knowledge of B, X and (λ, µ) is
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able to recover A. Similarly, d2 is able to recover B. With this simple example
we were able to transmit and store half as many packets between u and v, at the
cost of some simple linear algebra and the transporting of the encoding vector.
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Fig. 1. Using Network Coding prevents packets bound for different destinations from
competing for bandwidth and storage space

In traditional routing, intermediate nodes are only capable of storing, for-
warding and replicating any packets they receive. The principle of Network Cod-
ing is to open a whole new set of operations at each node. As well as storing,
forwarding and replicating, the nodes are given the ability to combine incoming
packets, thus packets on a nodes outgoing edges can be formed of a mixture of
packets that previously arrived on incoming edges. Rather than the original re-
quired packets, a destination node is presented with a set of recombined packets
of data as well as the information required for retrieving the original information.
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The idea of Network coding is a relatively new one, first suggested in 2000 by
Ahlswede et al, [17]. Over recent years, much research has focussed on ways in
which Network Coding could be employed to improve many aspects of informa-
tion networks, including improving throughput, reducing delays, and improving
robustness. A good overview of network coding can be found in [18].

The benefit of using network coding is that, by forming linear combinations
of data packets, nodes are able to transmit new packets containing information
useful to multiple destinations, where otherwise this may not have been possible.
This redistribution of data means that if the network is able to support a unicast
flow through the network from the source to each of its destinations separately,
it is able to support a multicast flow from the source to all the destinations. This
can be formalized as follows:

Theorem 1. Consider a multicast from a source node s to a destination set
d1, . . . , dk in a fixed capacity network. If the network is able to support a unicast
at rate α from s to di ∀ i = 1, . . . k, using traditional routing with no other traffic
in the network, the network is able to support a multicast from s to d1, . . . , dk

at rate α using linear network coding.

Proof: See [12].
Of course, if it is difficult to calculate the specific Network Code needed

to achieve this multicast rate, the computational effort and time required to
find the solution might render the whole method too expensive. With random
linear network coding, the need to calculate a coding strategy is side-stepped by
allowing each node to choose its encoding coefficients at random from a large
enough finite field. In [9] it is shown that, for large enough finite fields, random
linear network coding achieves the required multicast flow, with probability of
a succesful code transmission converging to one as the field size increases. In
[11], simulation shows that with fields as small as F28 , the actual probability of
decoding failure becomes negligible. This means intermediate nodes no longer
need to be aware of an over-arcing network coding strategy and can simply form
random linear combinations of any incoming packets.

3.2 Building a multicast from non-competing unicasts

The key thing to notice from this discussin is that flows bound for different desti-
nations within the same multicast do not compete for communication bandwidth
when sharing an edge. This means we can treat the multicast flow as a set of
unicast flows, all of which safisfy standard routing flow constraints, but where
separate unicast flows along the same edge do not compete for capacity. The
actual number of coded packets that need to be transmitted down a given edge
during a given time slot is simply the maximum of the number of packets that
the separate unicast flows require. Since each multicast can be broken down
into non-competing unicasts, it is clear that these unicasts do not represent the
movement and storage of physical data, but represents the amount of encoded
data each destination node requires on any given edge or buffer in a particular
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time slot. We therefore refer to these unicast flows used to build the multicast
flow as conceptual flows, using the same naming convention as [13]. Similarly,
in order to construct each conceptual flow, we require conceptual buffer variables
to ensure that each of the unicast flows we are using satisfies flow constraints
at each node. We then require that the physical buffer at each node contains
enough encoded packets during any given time slot to satisfy the demands of
any of the conceptual buffers for that time slot.

Having introduced how we use network coding to build each multicast from
non-competing unicasts, we are now in a position to introduce the decision vari-
ables of our optimization problem.

Firstly, we have conceptual flow variables, cm,d
e,t : The amount of data trans-

mitted along edge e in timeslot t forming part of the conceptual flow of message
m from the multicast source sm to destination d ∈ Dm.

Secondly, we have conceptual buffer variables, dm,d
n,t : The amount of data

stored at node n in timeslot t forming part of the conceptual flow of message m
from the multicast source sm to destination d ∈ Dm.

In order to model the flow of the actual encoded data through the network,
we also need physical flow and buffer variables, fm

e,t, bm
n,t, representing the amount

of encoded data from message m transmitted along a given edge in a given time
slot, and the amount of encoded data from message m stored at a given buffer
in a given time slot.

Communication variable pe,t ∈ R is the transmit power allocated to edge
e at time slot t to transmit the total traffic on edge e (in Watt). If we stack
the different variables to vectors we obtain c = (cm,d

e,t ), d = (dm,d
e,t ), f = (fm

v,t),
b = (bm

v,t), and p = (pe,t). We further use the following parameters. Let Sm ∈ R+

be the size of message m (in bits) and Bv ∈ R+ be the maximum total buffer
size at node v (in bits). Power constraints are Pmax

v ∈ R+ as the maximum
transmission power of a node (in Watt) assumed to be the same for all nodes
and Pmax

e ∈ R+ as the maximum transmission power per edge (in Watt).

4 Optimization Problem

4.1 Problem Description

Let us consider the operation of a wireless data network with the objective to
minimize a convex cost function Φ(p, f ,b) (or to maximize a concave utility
function) which we assume to be monotone increasing in p. The design variables
b, c, d, f and p are subject to a number of constraints. With (e ∈ E, v ∈ V, t ∈ T )
we require the power constraints

pe,t ≥ 0, (2)
pe,t ≤ Pmax

e , (3)∑
e∈E+(v)

pe,t ≤ Pmax
v . (4)
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forming the polyhedral set

Cp := {p|p fulfills (2), (3) and (4)}.

Similar to power constraints, we require that flow constraints form a polyhedral
set Cc. We assume that given source nodes sm have to transmit messages of sizes
Sm to destination sets Dm in a given time tmax, and so the polyhedral set Cc is
defined by the equalities and inequalities

cm,d
e,t ≥ 0 (e ∈ E,m ∈ M,d ∈ Dm, t ∈ T ) (5)

dm,d
v,t ≥ 0 (v ∈ V,m ∈ M, t ∈ T ) (6)

bm
v,t ≤ Bv,m (v ∈ V,m ∈ M, t ∈ T ) (7)

bm
v,1 = 0 (m ∈ M,v ∈ V \ {sm}) (8)

bm
v,tmax

= 0 (m ∈ M,v ∈ V \ {Dm}) (9)

dm,d
sm,1 = Sm (m ∈ M,d ∈ Dm), (10)

dm,d
d,tmax

= Sm (m ∈ M,d ∈ Dm) (11)

fm
e,t = 0 (m ∈ M, coE(e) 6= coT (t)) (12)

dm,d
v,t+1 − dm,d

v,t =
∑

e∈E−(v)

cm,d
e,t −

∑
e∈E+(v)

cm,d
e,t ,

(m ∈ M,d ∈ Dm, v ∈ V, t ∈ T \ {tmax}) (13)

max
d∈Dm

cm,d
e,t ≤ fm

e,t (e ∈ E,m ∈ M,d ∈ Dm, t ∈ T ) (14)

max
d∈Dm

dm,d
e,t ≤ bm

e,t (v ∈ V,m ∈ M,d ∈ Dm, t ∈ T ). (15)

Equation (5) forbids negative conceptual data flows, and with (14) also forbids
negative physical flows. Equation (6) forbids negative conceptual buffer variables,
and with (15) also forbids negative physical buffer variables. Equation (7) avoids
buffer overload, while (9) and (8) ensure all buffers except the source are empty
at the start of the transmission, and all buffers except the destinations are empty
at the end of the transmission.

Equation (10) forces the full message to be at the source of each conceptual
flow at the start of the transmission. To account for delay constraints (11) ensures
that messages reach their destinations completely at tmax at latest.

Coloring is ensured by (12), and (13) is a modified Kirchhoffs Law [19] for
each individual conceptual flow.

Equation (14) ensures that the physical encoded data travelling along any
given edge is enough to satisfy all the conceptual flows using that edge. Similary,
(15) ensures that each buffer contains enough physical encoded data to satisfy all
conceptual buffers at that node. We can now formalize the optimization problem
we are interested in solving:
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minimize Φ(p, f ,b)
subject to (b, c,d, f) ∈ Cc (16)

p ∈ Cp∑
m∈M

(1 + κm)fm
e,t ≤ Re,t(p) e ∈ E+(v), t ∈ T.

By the last constraints we model that the amount of information (in bits) we
can transmit on a single wireless link e at time slot t is bounded from above by
a maximum mutual information bound Re,t(p) that itself depends on the power
setting. The last constraints of (16) are the only constraints coupling network
flow variables (b, c,d, f) with communication variables p, and so we call them
coupling constraints [5]. They represent the most challenging constraints of
the problem as they are also the only non-linear constraints and are indeed
non-convex in f and p.

The factor (1 + κm) is required to model the transmitting of the encoding
coefficients along with the encoded data in order to enable decoding at the
destination nodes. We refer to κm as the encoding information overhead,
and in typical applications it can be expected to be ≈ 0.05.

All the other constraints are either constraints for the network flow variables
or for the communication variables only. Assuming time-invariant channel con-
ditions within the duration of a single time slot t, function Re,t(p) describes
the amount of information of edge e and can be expressed by the well-known
Shannon formula

Re,t(p) = B · τ · log2

(
1 +

1
Ωe

SINRe,t

)
(e ∈ E, t ∈ T ). (17)

Here, SINRe,t is as described in 1. For each edge e, the factor Ωe ∈ R+
0

represents any implementation margin relative to the maximum mutual infor-
mation given by the Shannon formula [20]. In practice, achieving this mutual
information requires adaptive modulation and coding.

Before going on to outline an algorithm for solving the optimization problem,
we present a useful result regarding the location of solutions to this problem:

Theorem 2. Suppose that the objective function Φ : (p,b, f) 7→ Φ(p,b, f) is
strictly monotone in p, and that we want to solve the optimization problem
detailed in (16). Then all coupling constraints are active at each locally optimal
solution of this problem.

Proof. Let x = (p,b, c,d, f) be a feasible point of the problem (16) such that not
all coupling constraints are active. Let I ⊆ E × T be the set of all edge-timeslot
pairs for which the coupling constraint is inactive, that is for (e, t) ∈ I,

∑
m∈M

(1 + κm)fm
e,t < Bτ log2

(
1 +

ae,epe,t∑
l=1...E,l 6=e al,epl,t + BN0

)
(18)



An Active Constraint Method for Multicasting 11

If we can show there is a feasible descent direction from this arbitrary point for
which not all coupling constraints are active, then we have shown this point is
not a local minimizer and therefore any local minimizer must have all coupling
constraints active.

Pick any (e, t) ∈ I and consider the vector d = (0, 0, . . . , 0,−1, 0, . . . , 0)T

where the -1 is in the position corresponding to power variable pe,t. Clearly this
is a descent direction since the objective function is strictly monotone in p. We
now need to check that for suitably small α ∈ R+, xnew := x+ βd is feasible for
all β ∈ [0, α].

Clearly xnew will remain in Cc since we have not altered b, c, d or f . Since
we have not increased any power variables, there is no chance we have violated
the maximum node power or maximum edge power constraints by moving to
xnew.

Since
∑

m∈M (1+κm)fm
e,t ≥ 0, by (18) we have that pe,t > 0 and so pe,t−β ≥ 0

for β ≤ pe,t and so for suitably small β we do not violate the non-negative power
constraint.

In constraint (18), by continuity there exists some q < pe,t such that

∑
m∈M

(1 + κm)fm
e,t = Bτ log2

(
1 +

ae,eq∑
l=1...E,l 6=e al,epl,t + BN0

)
.

As long as pe,t − β ≥ q, constraint (18) remains feasible at xnew. For all other
coupling constraints, pe,t appears on the denominator in the log term on the
right hand side, and so decreasing pe,t increases the right hand side and therefore
cannot compromise feasibility. xnew = x+βd is therefore feasible ∀ β ∈ [0, pe,t−
q]. We have found a feasible descent direction from x and so x was not a local
minimizer.

With this result we are able to rewrite the problem in a number of equivalent
formulations. Using this along with the largely decoupled nature of the problem
we can develop a block co-ordinate descent algorithm.

5 A Primal Co-ordinate Descent Algorithm

The key motivating reason for employing a block co-ordinate approach to solving
the optimization problem is as follows: The variables of this problem can be split
into flow variables (b, c,d, f) and physical communication resource variables p,
and if we fix either set of variables the problem we are left with closely resembles,
or is equivalent to an existing well studied optimization problem. Specifically,
for fixed power variables, we can reformulate the problem as a nonlinear mini-
mum cost multi-commodity flow problem, and for fixed flow variables we have a
standard power control problem. Both of these subproblems can be formulated
as convex optimization problems, and many solution methods exist for solving
these subproblems in a distributed manner.
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To make use of the apparent simplicity of the subproblems, we employ a
primal block co-ordinate descent method where we alternately fix the physi-
cal communication variables, p, and solve the problem over the network flow
variables (b, c,d, f), and then fix the (b, c,d, f) variables and solve over the
p variables. The idea would be to toggle between these two problems until an
optimal point is found.

By Theorem 2, we are able to reformulate the optimization problem with
equality in the coupling constraints,∑

m∈M

(1 + κm)fm
e,t = Re,t(p),

and then rearranging for pe,t,

pe,t =
1

ae,e
(2

1
Bτ

P
m∈M (1+κm)fm

e,t − 1)(
∑
k 6=e

ak,epk,t + σ2) := Je,t(f ,p).

Stacking up the components Je,t into a vector, we can then substitute J(f ,p)
for p in the objective function of our optimization problem, before relaxing
the equality constraint in the coupling constraint to pe,t ≥ Je,t(f ,p) to obtain
another formulation,

minimize Φ(J(f ,p), f ,b)
subject to (b, c,d, f) ∈ Cc (19)

p ∈ Cp

pe,t ≥ Je,t(f ,p), e ∈ E, t ∈ T.

which is almost equivalent to the original formulation, as described in the
following lemma:

Lemma 1. Assume that Φ(p,b, f) is strictly monotone in p. For each local min-
imizer (b0, c0,d0, f0,p0) of (19) there exists a local minimizer (b0, c0,d0, f0,p1)
of (19) with:

– All coupling constraints are active at (b0, c0,d0, f0,p1).
– (b0, c0,d0, f0,p0) and (b0, c0,d0, f0,p1) have the same objective function

value.

Proof. Consider a local minimizer x = (b, c,d, f ,p) of (19).
Case 1: All coupling constraints are active and we are done.
Case 2: ∃ I 6= ∅, I ⊆ E × T such that pe,t > Je,t(f ,p) ∀ (e, t) ∈ I.
Consider (e, t) ∈ I.
Case 2a: ae,l 6= 0 for some l 6= e, s.t.

∑
m∈M fm

l,t > 0, and so pe,t appears in
Jl,t(f ,p) since

Jl,t(f ,p) =
1

al,l
(2

1
Bτ

P
m∈M fm

l,t − 1)(
∑
k 6=l

ak,lpk,t + σ2)
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Since Φ(b, f ,p) is strictly monotone in p,

p̂ ≤ p̄ ⇒ Φ(b, f , p̂) ≤ Φ(b, f , p̄)

Here the inequality is a vector inequality, ie p̂ ≤ p̄ ⇔ p̂e,t ≤ p̄e,t∀ e ∈ E, t ∈ T.
Further, by strict monotonicity, if the vector inequality is strict in at least one
co-ordinate, then the inequality in the function values is strict also. Similarly,

J(f , p̂) ≤ J(f , p̄) ⇒ Φ(b, f ,J(f , p̂)) ≤ Φ(b, f ,J(f , p̄)).

Now consider pnew identical to p but with pe,t replaced by (pe,t − δ) for some
δ > 0. Then,

Jl,t(f ,pnew) =
1

al,l
(2

1
Bτ

P
m∈M fm

e,t − 1)(
∑
k 6=l

ak,lpk,t + ae,l(pe,t − δ) + σ2) < Jl,t(f ,p). (20)

Clearly, decreasing pe,t to pe,t − δ cannot increase Jk,t for any (k, t) ∈ E × T ,
and so J(f ,pnew) ≤ J(f ,p), with strict inequality in at least one co-ordinate.
By strict monotonicity, Φ(b, f ,J(f ,pnew)) < Φ(b, f ,J(f ,p)), and so the descent
vector used in the proof of Theorem 2 is again a descent direction in this case,
and for the same reason as in that proof it is feasible. x is therefore not a local
minimizer, so Case 2a cannot occur.
Case 2b: pe,t does not appear with a non-zero coefficient in any co-ordinate of
J(f ,p), and therefore does not appear in the objective function. We can therefore
reduce pe,t ∀ (e, t) ∈ I until pe,t = Je,t(f ,p) ∀ (e, t) ∈ I, without compromising
feasibility of any other constraint, to get a new point with the same objective
function value, with all coupling constraints active, without altering b, c,d or f .

We are now able to use these equivalent, and near equivalent formulations to
decompose the optimization problem into two convex subproblems.

Network flow (routing) subproblem We assume feasible fixed power vari-
ables p ∈ Cp. Using formulation (19) we need to solve the optimization problem

minimize Φ(J(p, f), f ,b)
subject to (b, c,d, f) ∈ Cc, (21)∑

m∈M

(1 + κm)fm
e,t ≤ Re,t(p).

where b, c,d, f are the optimization variables.

Power Control subproblem We assume feasible network variables (b, c,d, f) ∈
Cc. We need to solve the optimization problem

minimize Φ(p, f ,b)
subject to p ∈ Cp, (22)

p � J(p, c).
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where p are the optimization variables.
As mentioned above, both of these subproblems are convex. The block co-

ordinate descent algorithm is now described in Algorithm 1 below.
Algorithm 1: Block Co-ordinate Descent Algorithm

1. Input: All parameters for problem (16).
2. Choose p̂(0) ∈ Cp so that problem (21) is feasible;
3. Choose (b̂(0), ĉ(0), d̂(0), f̂ (0)) arbitrarily
4. i := 0
5. While stopping criterion for (b̂(i), ĉ(i), d̂(i), f̂ (i), p̂(i)) not fulfilled

(a) Set p̂ := p̂(i) and solve problem (21).

(b) Denote the result by (b̂(i+1), ĉ(i+1), d̂(i+1), f̂ (i+1)) .

(c) Set (b̂, ĉ, d̂, f̂) := (b̂(i+1), ĉ(i+1), d̂(i+1), f̂ (i+1)) and solve problem (22).
Denote the result by p̂(i+1).

(d) i := i + 1.
6. Output: (b̂(i), ĉ(i), d̂(i), f̂ (i), p̂(i))

Since (16) is a nonconvex problem, one cannot expect this algorithm to con-
verge to a globally optimal solution in general. As the following results show,
the algorithm stops within two complete iterations, and in the zero interference
case, the coupling constraints become convex and the algorithm converges to a
globally optimal solution under certain starting conditions.

Lemma 2. After one solution of each of the subproblems (21) and (22), the
block co-ordinate algorithm terminates at an iteration point at which all coupling
constraints are active.

Proof. We prove this constructively, working through the algorithm from an
arbitrary starting point: Let p0 be our initial choice of p, and (b1, c1,d1, f1) the
solution to (21) with p fixed at p0.

Let p1 be the solution of (22) with the routing variables fixed at (b1, c1,d1, f1).
We know, from the proof of Thm 2 that

∑
m∈M (1+κm)(fm

e,t)
1 = Ψe,t(p1) ∀ e ∈

E, t ∈ T .
Consider now subproblem (21) with p fixed at p1, particularly the coupling

constraints p1
e,t ≥ Je,t(f ,p1), which we rearrange back to

∑
m∈M (1 + κm)fm

e,t =
Re,t(p1) ∀ e ∈ E, t ∈ T.

We already know we have a feasible point (b1, c1,d1, f1) which uses all
available capacity on all edges, and in solving the network flow subproblem
we are seeking another feasible point which uses less capacity on some edges
than f1, but never any more capacity on any edges than f1. Clearly no such
point exists and so the feasible set for this subproblem is a singleton, namely
{(b1, c1,d1, f1)}, so (b2, c2,d2, f2), the solution of this subproblem must be
(b1, c1,d1, f1) and therefore p2 = p1 and so on.
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By definition, the optimal function value of the power control subproblem is
Φ(b1, f1,p1), and the optimal function value of the network flow subproblem is
Φ(b2, f2,J(f2,p1)) = Φ(b1, f1,J(f1,p1)).

Since
∑

m∈M (fm
e,t)

1 = Re,t(p1) ∀ e ∈ E, t ∈ T , we see that J(f1,p1) = p1,
and so the optimal function values to the two subproblems are equal for all but
SP1(p0).

Note that Lemma 2 does not say a great deal about the quality of solutions
provided by the algorithm, other than that they lie on the surface where all
coupling constraints are active. At least this is a sensible place to be since we
know all solutions lie on this surface also.

Lemma 3. Suppose we wish to solve optimization problem, (16), using the co-
ordinate descent algorithm 1. Assume the network suffers from no interference,
that is

Re,t(p) = Bτ log2(1 +
ae,e

σ2
pe,t).

Assume further that at (b1, c1,d1, f1), the minimizer of the network flow sub-
problem, no coupling constraints are active, that is∑

m∈M

(1 + κm)(fm
e,t)

1 < Re,t(p0)∀e ∈ E, t ∈ T.

Then, setting p1 as the global minimizer of the power control subproblem ap-
plied to (b1, c1,d1, f1), (b1, c1,d1, f1,p1) is a global minimizer of the original
optimization problem (16).

Proof. Note that, in the zero interference case, power variables no longer appear
in the objective function of problem formulation(19) since

Je,t(f ,p) =
σ2

ae,e
(2

1
Bτ

P
m∈M (1+κm)fm

e,t − 1) = Je,t(f).

The network flow subproblem is therefore:

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

p0
e,t ≥ Je,t(f)

This is a convex optimization problem, and so (b1, c1,d1, f1) is a global min-
imizer for the subproblem. Now, by assumption p0

e,t > Je,t(f1) ∀e ∈ E, t ∈ T ,
and so (b1, c1,d1, f1) is also a global minimizer for the same problem without
any coupling constraints:

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

By extension, for any p ∈ Cp, (b1, c1,d1, f1,p) is a global minimizer of:

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

p ∈ Cp
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Adding additional constraints cannot decrease the optimal objective function
value for a problem, so if (b1, c1,d1, f1,p) remains feasible for a problem with
additional constraints, it will be a global minimizer for that problem as well.

Now, since we assumed p0
e,t > Je,t(f1)∀ e ∈ E, t ∈ T in the statement of the

lemma, (b1, c1,d1, f1,p0) is clearly feasible for

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

p ∈ Cp,∑
m∈M fm

e,t ≤ Bτ log2(1 + ae,epe,t) ∀e ∈ E, t ∈ T.

(b1, c1,d1, f1,p0) is therefore a global minimzer for this problem, which is ex-
actly formulation (19) of the original problem. Solving the power control sub-
problem applied to (b1, c1,d1, f1) we obtain p1 for which all coupling constraints
are active. (b1, c1,d1, f1,p1) is thus a global minimizer for (19) for which all
coupling constraints are active, and therefore a global minimizer of the original
problem (16).

Lemma 3 provides us with a simple test to perform on the solution of the
network flow problem applied to (p0) to tell us if we will reach a global minimizer.
The following theorem provides a condition on the choice of p0 to guarantee
convergence to the global minimizer in the zero interference case.

Theorem 3. Assume Cp contains only edge power bounds and not node power
bounds and that the networks suffers no interference. Then the co-ordinate de-
scent algorithm terminates at the global minimizer of problem (16) if we choose
p0

e,t = Pmax
e ∀e ∈ E, t ∈ T .

Proof. Consider (b1, c1,d1, f1), the minimizer of the network flow subproblem
applied to (p0):

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

Pmax
e ≥ Je,t(f) ∀e ∈ E, t ∈ T.

(23)

Since this problem is convex, (b1, c1,d1, f1) is a global minimizer for this prob-
lem, and therefore (b1, c1,d1, f1,p0) is a global minimizer for the problem:

min Φ(b, f ,J(f))
s.t. (b, c,d, f) ∈ Cb,c,d,f

0 ≤ pe,t ≤ Pmax
e ∀e ∈ E, t ∈ T,

pe,t ≥ Je,t(f) ∀e ∈ E, t ∈ T.

(24)

since the feasible region for (24) is a subset of the feasible region for (23). Solving
the power control subproblem applied to (b1, c1,d1, f1) we attain p1 for which
all coupling constraints are active. (b1, c1,d1, f1,p1) is thus a global minimizer
of (19) for which all coupling constraints are active and is therefore a global
minimizer of (16).
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The greatest difficulty with solving this optimization problem algorithmically
in cases where we have cross channel interference is the non-convex coupling
constraint between the edge flows and the transmit powers. The standard way
around this problem is to apply an approximation and change of variables to
convert these constraints to convex constraints [14], [21]. This convexified prob-
lem is then solved using a dual decomposition algorithm. One drawback of this
approach is that the approximation is often a very bad approximation, and the
dual algorithm converges at a sublinear rate. Without convexifying the problem,
there is often a duality gap making it difficult or impossible to get optimal primal
variables from optimal dual variables.

In networks with interference, we can still expect the algorithm to consider-
ably outperform the dual approach in terms of speed, since at every iteration of
the dual decomposition algorithm, the solutions to two subproblems of similar
difficulty to the subproblems in the co-ordinate descent algorithm are required.
In the co-ordinate descent algorithm, these subproblems need only be solved once
each, whereas in the dual decomposition subgradient approach, each subproblem
was solved tens or hundreds of times during the course of the algorithm. In the
next section we will present numerical results, backing up the theoretical results
shown in this chapter as well as showing the value of the co-ordinate descent
algorithm, even if only treated as a heuristic with no guarantee of convergence
to a local minimizer.

6 Simulation Results

In this section, we present some numerical results of the co-ordinate descent
algorithm as applied to a multicast transmission in a wireless mesh backhaul
network. The network under consideration is a typical cellular network with
hexagonal cell structure. The cells are arranged around a center cell by rings and
a node is located in the center of a hexagon.This models the situation where, to
save infrastructure expenses like laying cable or fiber to each node in a network,
we try to extend the range of given source node (center node) by intermediate
nodes being wireless connected. The source node has wired backhaul connection
only, while all other nodes have no wired backhaul connection and can only
communicate with the wireless mesh backhaul via the source node. We require
that wireless links can only be formed between nodes in adjacent rings. This
means, (1) a node can not transmit to any node that is more than one ring
away, and, (2) intra-ring communication is not allowed so that nodes belonging
to the same ring have no wireless link established. We consider the case where the
first ring consists of 3 nodes, the second ring 5 nodes, and the third ring consists
of the three multicast destination nodes. The objective function we assume is to
minimize total transmitted power with Φ(p) =

∑
e∈E,t∈T pe,t.

Since both subproblems have been shown to have unique solutions, we did
not deem it important to solve them using methods one would practically use in
wireless settings. We want to get a feel for the algorithms overall performance and
were not concerned with implementation at subproblem level. For this reason,
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both subproblems where solved with state-of-the-art solvers, namely the e04mf
dense linear solver from NAG, and it’s sparse nonlinear counterpart, e04ug [22].

We initialize all starting powers to maximum, since this is known to lead to
optimal solutions in the zero interference case. In some high interference cases
this means the starting point is infeasible and so the algorithm fails.

In line with Theorem 3, it was found that for all problem instances tested,
the algorithm terminated after one solution of each subproblem at a point where
all coupling constraints were active.

Supporting Lemma 3 and Theorem 3, we tested both networks in the zero
interference case over a range of values of bandwidth, timeslot length, number
of available timeslots, message size and background noise, using both Network
Coding and simplistic routing, and found that in each case the block co-ordinate
descent algorithm returned a global minimizer.

The main results of interest came when looking at problem instances with
interference. In many instances, the algorithm finds feasible solutions that are
close to optimal.

In figure 2 on the next page we investigate the backhaul network where we
have used realistic parameter values and gain matrices. We compare the results
found by our algorithm to the best found results of a strong black box solver
started from multiple starting points, namely the NAG solver e04ug [22]. We see
that for small messages, the co-ordinate descent algorithm returns solutions near
global minimizers. As the message size increases, the solutions become subopti-
mal, and for messages too large, our choice of p0 results in an infeasible network
flow subproblem. We also compare results using network coding to model the
multicast, to the naive approach of treating a multicast as multiple indepen-
dent unicasts. We see that using the network coding model, the algorithm is
able to handle larger messages before the starting point becomes infeasible. We
also see that, as expected, in solutions from the black-box and from the co-
ordinate descent algorithm, the total transmit power required when using the
network coding model is significantly reduced compared with the naive approach
of treating the multicast as separate unicasts.

7 Conclusions

We have designed an optimization problem for the transmission of unicast and
multicast messages through a time-slotted multipath, multihop wireless network.
Through the idea of network coding we were able to incorporate the multicast
transmissions in a simple way, resulting in large performance gains when com-
pared to a naive approach whilst avoiding the complex combinatorial optimiza-
tion problem associated with a tree finding approach. The optimization problem
lends itself to being solved by a block co-ordinate descent approach, and in the
zero interference case, we are able to guarantee convergence to a global optimum.
Although this method does not guarantee to find global optima in cases where
we consider cross channel interference, in many cases it provides feasible, near
optimal solutions.
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Fig. 2. Total multicast transmit energy for varying message sizes, with inter-cell in-
terference only in the backhaul network over 20 timeslots, comparing the co-ordinate
descent algorithm to a blackbox solver.
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