

3G/4G Mobile Communications Systems

Dr. Stefan Brück Qualcomm Corporate R&D Center Germany

Chapter II:

Basics of Wireless and Mobile Communications

Basics of Wireless and Mobile Communications

- Frequencies
- Signals
- Signal propagation
- Multiplexing
- Spread spectrum
- Cellular systems
- Communication Links
- Duplex Modes

Mobile Communication Systems – The Issues

- What does it require?
 - Provide telecommunition services
 - Voice (conversation, messaging)
 - Data (fax, SMS/MMS, internet)
 - Video (conversation, streaming, broadcast)
 - Anywhere \rightarrow Coverage
 - Anytime \rightarrow Ubiquitous connectivity, reachability
 - Wireless \rightarrow Without cord/wire
 - Mobile \rightarrow In motion, on the move (terrestrial)
 - Secure \rightarrow Integrity, identity, privacy, authenticity, non-repudiation
 - Reliable → Guaranteed quality of service

			Frequenz Wellenl ä r	ge Beispiele	loktro	mogno	tio Spootrum
					lekirc	magne	aic Spectrum
	kung	Statisches Feld		Kernspin-			
Π	raftwir			ionographi	/	100 MHz:	UKW Radio, VHF TV
a h l u n g	×	Z e n Bahnstrom	- 0,3 Hz - 1 Mio. H - 3 Hz - 100.000 H 16 ² / ₃ Hz 18.000 H 20 Hz	m- Bahnstrom		400 MHz:	UHF TV
e Str		Drehstrom	- 300 Hz 6.000 H - 300 Hz - 1.000 H - 3 kHz - 100 H	m m 50-Hz-Stromversorgung im Haushalt		450 MHz:	C-Netz
p u			– 30 kHz– 10 k	m LW PC-Monitor		900 MHz:	GSM900 (D-Netz)
siere	6 1	rz Radio ⊊ TV	- 300 kHz - 1 k - 3 MHz - 100			1800 MHz:	GSM1800 (E-Netz)
i o n i	irkun	n b a u fue d n Mikro-	- 300 MHz - 1 - 3 GHz - 100 m	m – C.Netz P.Netz m – E.Netz m – E.Netz		1900 MHz:	DECT (schnurl. Telefon)
i c h t	r m e w	± wellen	— 30 GHz— 10 n — 300 GHz— 1 n	m- m-		2000 MHz:	UMTS (3G)
Z	W ä	Infrarot	- 3 THz - 100 µ - 30 THz - 10 µ	m – Mikrowelle m –		2400 MHz:	WLAN, Bluetooth
		Licht UV-Licht	- 300 HZ+ 10 - 3·10 ¹⁵ Hz+ 100 r - 3·10 ¹⁶ Hz+ 10 r	m- m-		2450 MHz:	Mikrowellenherd
otrahlung	t i o n	Röntgenstrahlung	-3.10^{17} Hz -11	m-			
lonisierende 3	lonisa	Gammastrahlung	- 3·10 ¹⁹ Hz + 100 µ - 3·10 ¹⁹ Hz + 10 µ - 3·10 ²⁰ Hz + 1 µ	m- m-		3500 MHz:	WiMax

Frequencies for Communication (Spectrum)

- VLF = Very Low Frequency
- LF = Low Frequency
- MF = Medium Frequency
- HF = High Frequency
- VHF = Very High Frequency

- UHF = Ultra High Frequency
- SHF = Super High Frequency
- EHF = Extra High Frequency
- UV = Ultraviolet Light

Frequency and wave length:

$$\lambda = c/f$$

wave length λ , speed of light $c \cong 3 \times 10^8$ m/s, frequency f

Frequencies for Mobile Communication

VHF-/UHF-ranges for mobile radio

- Simple, small antennas
- Good propagation characteristics (limited reflections, small path loss, penetration of walls)
- Typically used for radio & TV (terrestrial+satellite) broadcast, wireless telecommunication (cordless/mobile phone)
- SHF and higher for directed radio links, satellite communication
 - Small antenna, strong focus
 - Larger bandwidth available
 - No penetration of walls
- Mobile systems and wireless LANs use frequencies in UHF to SHF spectrum
 - Some systems planned up to EHF
 - Limitations due to absorption by water and oxygen molecules (resonance frequencies)
 - Weather dependent fading, signal loss caused by heavy rainfall etc.

Slide 7

Frequencies and Regulations

 ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones (licensed)	GSM 450-457, 479- 486/460-467,489-496, 890-915/935-960, 1710-1785/1805-1880 UMTS (FDD) 1920- 1980, 2110-2190 UMTS (TDD) 1900- 1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones (un- licensed)	CT1+ 885-887, 930- 932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930- 1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs (un- licensed)	IEEE 802.11 b 2400-2483 802.11a/HIPERLAN 2 5150-5350, 5470-5725	902-928 IEEE 802.11 2400-2483 5150-5350, 5725-5825	IEEE 802.11 2471-2497 5150-5250
Others	RF-Control 27, 128, 418, 433, 868	RF-Control 315, 915	RF-Control 426, 868
WiMax (IEEE 802.16, licensed)	2.3GHz, 2.5GHz and 3.5GHz	2.3GHz, 2.5GHz and 3.5GHz	2.3GHz , 2.5GHz and 3.5GHz

Abbreviations:

AMPS Advanced Mobile Phone System **CDMA Code Division Multiple** Access **CT Cordless Telephone DECT Digital Enhanced** Cordless Telecommunications GSM Global System for Mobile Communications **HIPERLAN High-Performance** LAN IEEE Institute of Electrical and **Electronics Engineers JCT Japanese Cordless** Telephone NMT Nordic Mobile Telephone PACS Personal Access **Communications System** PACS-UB PACS- Unlicensed Band PDC Pacific Digital Cellular PHS Personal Handyphone System **TDMA Time Division Multiple** Access WiMAX Worldwide Interoperability for Microwave Access

UMTS Frequency Bands (FDD mode only)

Operating Band	Frequency Band	UL Frequencies UE transmit (MHz)	DL Frequencies UE receive (MHz)	Typically used in region
I	l 2100 1920 - 1980		2110 - 2170	EU, Asia
II	1900	1850 - 1910	1930 - 1990	America
III 1800 171		1710 - 1785	1805 - 1880	EU (future use,)
IV	1700	1710 - 1755	2110 - 2155	Japan
V	850	824 - 849	869 - 894	America, Australia, Brazil
VI	800	830 - 840	875 - 885	Japan
VII	2600	2500 - 2570	2620 - 2690	"Extension Band"
VIII	900	880 - 915	925 - 960	EU (future use)
IX	1800	1749.9 - 1784.9	1844.9 - 1879.9	Japan
X	1700	1710 - 1770	2110 - 2170	America/US

Frequency Auction 2010 - Germany

800 MHz Bereich (Digitale Dividende)

Nutzer	Uplink	Downlink	Preis	The amount of spectrum that will be freed up by
Deutsche Telekom	852-862 MHz	811-821 MHz	1,153 Mrd. €	the switchover from analogue to digital terrestrial TV
Vodafone	842-852 MHz	801–811 MHz	1,210 Mrd. €	is known as the Digital Dividend
O ₂	832–842 MHz	791–801 MHz	1,212 Mrd. €	

2,6 GHz Bereich

	Free	uenzduplex (FD)	Zeitduplex (TDD)		
Nutzer	Uplink	Downlink	Preis	Uplink+Downlink	Preis
Deutsche Telekom	2520-2540 MHz	2640–2660 MHz	76,228 Mio. €	2605–2610 MHz	8,598 Mio. €
Vodafone	2500-2520 MHz	2620–2640 MHz	73,464 Mio. €	2580–2605 MHz	44,96 Mio. €
E-Plus	2540-2550 MHz	2660–2670 MHz	36,67 Mio. €	2570–2580 MHz	16,502 Mio. €
02	2550-2570 MHz	2670–2690 MHz	71,415 Mio. €	2610–2620 MHz	16,458 Mio. €

Signal Propagation – Path Loss

- Propagation in free space always like light (straight line, line of sight)
- Receiving power proportional to
 - 1 / (d·f/c)² (ideal)
 - 1/(d·f/c)^α (α=3...4 realistically)
 - d = distance between sender and receiver
 - f = carrier frequency
- Receiving power additionally influenced by
 - fading (frequency dependent)
 - shadowing
 - reflection at large obstacles
 - scattering at small obstacles
 - diffraction at edges

shadowing

reflection

scattering

11

Radio Propagation: Received Power

- The received power decreases with increasing distance
- Typically, the power in watts is converted to dBm
- The differences in received power at distances $d_2 d_1 = d$
 - Ideal: -20 · log₁₀(d)
 - Realistic: -35 · log₁₀(d), -40 · log₁₀(d)
- The power is reduced by 35 40 dB per decade
- Examples:
 - d₁ = 1m, d₂ = 10m
 - d₁ = 10m, d₂ = 100m

Quick Exercise: iPhone 4 "AntennaGate"

- The received power is reduced by 24dB in case the antenna is capped by the hand of the user
- Let's assume a typical pathloss model for urban scenarios:

 $PL_{dB} = 128.1 + 36.7 \cdot \log_{10}(d/km)$

- The Tx power of the base station is assumed to be 43dBm
- Questions:
 - Assume the iPhone 4 user is at a distance of 700m to the base station. What is the received power in case he does not touch his phone?
 - Now he touches his phone. By how many meters has the iPhone 4 user to move towards the base station in order to get the same received power again?

Bars to Signal Strength Mapping in iPhone 4

Multipath Propagation – Inter Symbol Interference

 Signal can take many different paths between sender and receiver due to reflection, scattering, diffraction

Time dispersion: signal is dispersed over time

→ Interference with "neighbor" symbols, Inter Symbol Interference (ISI)

Delayed signal received via longer path

Signal received by direct path

Effects of Mobility – Fading

- Channel characteristics change over time and location
 - Signal paths change
 - Different delay variations of different signal parts (frequencies)
 - Different phases of signal parts
 - → Quick changes in the power received (short-term fading or **fast fading**)
- Additional changes in
 - Distance to sender
 - Obstacles further away
 - ➔ Slow changes in the average power Received (long-term fading, slow fading, shadow fading)

Mobile Radio Channel – Received Power

Refer to : P. Jung, Analyse und Entwurf digitaler Mobilfunksysteme, B.G. Teubner, 1997, p. 67, figure 3.5

Fast Fading

 Simulation showing time and frequency dependency of a multipath fading channel

Interferences

Interference	Problem
Intersymbol Interference (ISI)	Multipath; superposition of same radiated data symbol transmitted via different paths
Multiple Access Interference (MAI)	Different user signals interfere dependent on the access scheme used (T/F/CDMA)
Intra-Cell Interference	Interference caused by users belonging to same cell
Inter-Cell Interference	Interference caused by users belonging to neighbor cells

Carrier to Interference Ratio (CIR, C/I)

 Ratio of Carrier-to-Interference power at the receiver

$$CIR = \frac{C}{\sum I_{j} + N}$$

 The minimum required CIR depends on the system and the signal processing potential of the receiver technology

Quelle: B. Walke, M.P. Atthoff, P.Seidenberg, UMTS – Ein Kurs, Weil der Stadt 2001,

Coverage Limited Systems (Lack of Coverage)

- Mobile stations located far away from BS (at cell border or even beyond the coverage zone)
- C at the receiver is too low, because the path loss between sender and receiver is too high

Signal C is too low

→ No signal reception possible

Quelle: B. Walke, M.P. Althoff, P.Seidenberg, UMTS – Ein Kurs, Weil der Stadt 2001

Interference Limited Systems (Lack of Capacity)

- Mobile station is within coverage zone
- C is sufficient, but too much interference I at the receiver
- → Interference I is too large
- → No more resources / capacity left

Quelle: B. Walke, M.P. Althoff, P.Seidenberg, UMTS - Ein Kurs, Weil der Stadt 2001

Information Theory: Channel Capacity (1)

- Bandwidth limited Additive White Gaussian Noise (AWGN) channel
- Gaussian codebooks
- Single transmit antenna
- Single receive antenna (SISO)
- Shannon (1950): Channel Capacity <= Maximum mutual information between sink and source

C. Shannon Bell Labs Technical Journal, 1950

Information Theory: Channel Capacity (2)

For S/N >>1 (high signal-to-noise ratio), approximate

$$C \approx B \frac{1}{3} \frac{S}{N}_{dB}$$
 [bps]

- Observation: Bandwidth and S/N are means to increase capacity
- Means to increase capacity:
 - With low bandwidth very high data rate is possible provided
 - S/N is high enough
 - Example: Higher order modulation schemes
 - With high noise (low S/N) data communication is possible if
 - Bandwidth is large
 - Example: Spread Spectrum...
 - Shannon channel capacity has been seen as a "unreachable" theoretical limit, for a long time
 - However: Turbo coding (1993) pushes practical systems up to 0.5 dB to Shannon channel bandwidth

Link Capacity for Various Technologies

- The link capacity of current systems is quickly approaching the Shannon limit
- Link Performance of 3G & 4G Systems approaches the Shannon Bound

Multiplexing

- Goal: Multiple use of a shared medium
- Multiplexing in 4 dimensions
 - Space (s_i)
 - Time (t)
 - Frequency (f)
 - Code (c)
- Multiple use is possible, if resource (channel) is different in at least one dimension
- Important: Guard spaces needed!

Frequency Multiplex (FDMA)

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time
- Advantages:
 - No dynamic coordination needed
 - Applicable to analog signals
- Disadvantages:
 - Waste of bandwidth if the traffic is distributed unevenly
 - Inflexible
 - Guard space

Time Multiplex (TDMA)

- A channel gets the whole spectrum for a certain amount of time
- Advantages:
 - Only one carrier in the medium at any time
 - Throughput high even for many users
- Disadvantages:
 - Precise synchronization needed

Time and Frequency Multiplex (FDMA/TDMA)

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
 - Example: GSM (frequency hopping)
- Advantages:
 - Protection against frequency selective interference
- Disadvantage
 - Precise coordination required

Code Multiplex (CDMA)

- Each channel has a unique code
 - Example: UMTS
- All channels use the same spectrum at the same time

 k_1

- Advantages:
 - Bandwidth efficient
 - No coordination and synchronization necessary
 - Good protection against interference and tapping
- Disadvantages:
 - More complex receivers
 - Intra cell interference

Cellular Systems: Space Division Multiplex

- Cell structure implements **Space Division Multiplex**:
 - Base station covers a certain transmission area (cell)
- Mobile stations communicate only via the base station
- Advantages of cell structures:
 - Higher capacity, higher number of users
 - Less transmission power needed
 - More robust, decentralized
 - Base station deals with interference, transmission area, etc. locally
- Disadvantages:
 - Fixed network needed for the base stations
 - Handover (changing from one cell to another) necessary
 - Interference with other cells
- Cell sizes vary from tens of meters in urban areas to many km in rural areas (e.g. maximum of 35 km radius in GSM)

Cellular Systems: Frequency Planning I

- Frequency reuse only with a certain distance between the base stations
 - Applied in GSM, not needed in UMTS, may be applied in early deployments of LTE

• Fixed frequency assignment:

- Certain frequencies are assigned to a certain cell
- Problem: different traffic load in different cells
- Dynamic frequency assignment:
 - Base station chooses frequencies depending on the frequencies already used in neighbor cells
 - Assignment can also be based on interference measurements

t₆

r1

 f_6

 f_7

t₁

 f_6

 f_7

Cellular Systems: Frequency Planning II

3 cell cluster

7 cell cluster

3 cell cluster with 3 sector antennas

Sectorisation

- Directive antennas are usually applied at a site (location of a base station)
- The geographical area is sectorized
 - Protection against intra and inter cell interference
- A site (= base station) typically consists of three, sometimes six sectors (= cells)

Antennas and Sectorisation

Spread Spectrum Technology

Problem of radio transmission: Frequency dependent fading can wipe out narrow band signals for duration of the interference

- Solution: spread the narrow band signal into a broad band signal using a special code
 - \Rightarrow Protection against narrow band interference

- Side effects:
 - Coexistence of several signals without dynamic coordination
- Alternatives:
 - Direct Sequence (UMTS)
 - Frequency Hopping (slow FH: GSM, fast FH: Bluetooth)

Effects of Spreading and Interference

Spreading and Frequency Selective Fading

narrowband signals can suffer from deep fades

spread signal more robust against frequency selective fading

Direct Sequence Spread Spectrum – I/II

- XOR of the signal with pseudo-random number (chipping sequence)
 - many chips per bit (e.g., 128) result in higher bandwidth of the signal
- Advantages
 - reduces frequency selective fading
 - in cellular networks
 - base stations can use the same frequency range
 - several base stations can detect and recover the signal
 - soft handover
- Disadvantages
 - precise power control needed
 - Relatively large bandwdth needed
 - UMTS applies 3.84 Mcps \rightarrow 5 MHz bandwidth needed

Direct Sequence Spread Spectrum – II/II

Communication Link Types

- Each terminal needs an uplink and a downlink
- Types of communication links:
 - Simplex
 - unidirectional link transmission
 - Half Duplex
 - Bi-directional (but not simultaneous)
 - Duplex
 - simultaneous bi-directional link transmission, two types:
 - Frequency division duplexing (FDD)
 - Time division duplexing (TDD)

Duplex Modes

Frequency Division Duplex (FDD)

 Separate frequency bands for up- and downlink

Time Division Duplex (TDD)

 Separation of up- and downlink traffic on time axis

Examples:

GSM, IS-95, UMTS (FDD), LTE(FDD)

Examples:

DECT, UMTS (TDD), LTE (TDD)