

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Dr.-Ing. Carsten Bockelmann

Institute for Telecommunications and High-Frequency Techniques

Department of Communications Engineering

Room: SPT C3160, Phone: 0421/218-62386

bockelmann@ant.uni-bremen.de

<u>Lecture</u> Thursday, 10:00 – 12:00 in N3130 <u>Exercise</u> Wednesday, 14:00 – 16:00 in N1250 Dates for exercises will be announced during lectures.

<u>Tutor</u>

Tobias Monsees Room: SPT C3220

Phone 218-62407 tmonsees@ant.uni-bremen.de

www.ant.uni-bremen.de/courses/atdc/

Outline

- Part 1: Linear Algebra
 - Eigenvalues and eigenvectors, pseudo inverse
 - Decompositions (QR, unitary matrices, singular value, Cholesky)
- Part 2: Basics and Preliminaries
 - Motivating systems with **M**ultiple Inputs and **M**ultiple **O**utputs (multiple access techniques)
 - General classification and description of MIMO systems (SIMO, MISO, MIMO)
 - Mobile Radio Channel
- Part 3: Information Theory for MIMO Systems
 - Repetition of IT basics, channel capacity for SISO AWGN channel
 - Extension to SISO fading channels
 - Generalization for the MIMO case
- Part 4: Multiple Antenna Systems
 - SIMO: diversity gain, beamforming at receiver
 - MISO: space-time coding, beamforming at transmitter
 - MIMO: BLAST with detection strategies
 - Influence of channel (correlation)
- Part 5: Relaying Systems
 - Basic relaying structures
 - Relaying protocols and exemplary configurations

Outline

- Part 6: In Network Processing
- Part 7: Compressive Sensing
 - Motivating Sampling below Nyquist
 - Reconstruction principles and algorithms
 - Applications

Multiple Antenna Systems

- Exploiting Multiple Antennas for Diversity Enhancement
- SIMO
 - Diversity, Maximum Ratio Combining (beam forming at receiver)
- MISO
 - Beam forming at transmitter
 - Space-Time Coding
 - Orthogonal Space-Time Blockcodes
 - Space-Time Trellis Codes
- MIMO: Layered Space-Time Codes (BLAST) with detection strategies
 - Maximum-Likelihood, Linear Equalization
 - V-BLAST detection algorithm
 - QR-based Successive Interference Cancellation, SQRD
 - Sphere Detection

Exploiting Multiple Antennas

for Diversity Enhancement

 $y[k] = h[k] \cdot x[k] + n[k]$

 $p_{|h|}(\xi) = \begin{cases} 2\xi \cdot e^{-\xi^2} & \text{for } \xi \ge 0\\ 0 & \text{else} \end{cases}$

 $p_{|h|^2}(\xi) = \begin{cases} e^{-\xi} & \text{for } \xi \ge 0\\ 0 & \text{else} \end{cases}$

 $P_{
m b}(|h|^2) = rac{1}{2} {
m erfc} \left(\sqrt{|h|^2 rac{\overline{E}_{
m b}}{N_0}}
ight)$

Motivation for Antenna Diversity (1)

h|k|

 $\lfloor n \lfloor k \rfloor$

- Flat Rayleigh fading channel x[k]
- Statistic of channel coefficient ($\sigma_h^2 = 1$)
 - Magnitude is Rayleigh distributed
 - Squared magnitude is chi-squared distributed with 2 degrees of freedom
- Bit Error Rate
 - BER is random variable depending on $|h|^2$
 - Average (ergodic) BER

$$\overline{P}_{\rm b} = {\rm E}\left\{P_{\rm b}(|h|^2)\right\} = \int_0^\infty P_{\rm b}(|h|^2 = \xi)p_{|h|^2}(\xi)d\xi = \frac{1}{2}\left[1 - \sqrt{1 - \frac{1}{1 + E_{\rm b}/N_0}}\right]$$

Outage probability for a certain target error rate

$$P_{\rm out}(P_{\rm b,target}) = \Pr\{P_{\rm b} > P_{\rm b,target}\} = 1 - \exp\left(-\frac{[E_{\rm b}/N_0]_{\rm target}}{\overline{E}_{\rm b}/N_0}\right)$$

Universität Bremen

Motivation for Antenna Diversity (2)

Outage probability for Rayleigh fading channel (for BPSK transmission)

• Utilization of diversity to increase performance of wireless communication

Universität Bremen

What is Diversity ?

- Different sources of diversity: Frequency, Time, Polarization, Code, Space
- General: receive D statistically independent replicas of same signal
 - Maximum Ratio Combining (MRC) represents maximum likelihood estimation

$$\tilde{x} = \sum_{j=1}^{D} h_{j}^{*} \cdot y_{j} = \sum_{j=1}^{D} h_{j}^{*} \cdot (h_{j}x + n_{j})$$
$$= x \cdot \sum_{j=1}^{D} |h_{j}|^{2} + \sum_{j=1}^{D} h_{j}^{*}n_{j}$$

- BER analysis
 - Receive power at each branch $E_s |h_j|^4$
 - Noise term contains sum of *D* i.i.d.
 Gaussian processes, weighted by h_i^{*}
 - \rightarrow zero-mean Gaussian process with variance $\sigma_n^2 \sum |h_j|^2$
 - Average receive power per Bit after MRC: E_s

SNR Distribution for Maximum Ratio Combining

- MRC: constructive superposition of independent signal parts
- Equivalent SISO channel

- Distribution of signal to noise ratio after maximum ratio combining
- $\gamma = \sum_{j=1}^{D} \gamma_j$

Chi-squared distribution with 2D degrees of freedom

$$p_{\gamma}(\xi) = \frac{\xi^{D-1}}{(D-1)! \cdot (E_s/N_0)^D} \cdot \exp\left(-\frac{\xi}{E_s/N_0}\right)$$

Universität Bremen

SNR distribution and BER for Maximum Ratio Combining

- Density approaches Dirac impulse for $D \rightarrow \infty \rightarrow AWGN$
 - Error rate performance reaches AWGN channel for $D \rightarrow \infty$

Single-Input Multiple-Output Systems (SIMO)

• Multiple antennas only at receiver $\mathbf{y} = \mathbf{h} \cdot x + \mathbf{n}$

- Optimal receiver performs spatial matched filtering (Rx-beamforming)
 - Matched filter maximizes SNR by maximum ratio combining (MRC)

$$\tilde{x} = \frac{\mathbf{h}^H}{\|\mathbf{h}\|} \cdot \mathbf{y} = x \cdot \frac{1}{\|\mathbf{h}\|} \cdot \sum_{j=1}^{N_{\mathrm{R}}} |h_j|^2 + \tilde{n} = x \cdot \|\mathbf{h}\| + \tilde{n}$$

Universität Bremen

Gain after Maximum Ratio Combining

MRC transforms SIMO model into a SISO channel with maximized SNR

$$SNR = \sum_{j=1}^{N_R} |h_j|^2 \cdot \frac{E_s}{N_0}$$

• Two different gains:

versität Bremen

- Antenna gain in dB: 10 log₁₀(N_R)
- **Diversity gain** due to averaging statistically independent channels
- Normalizing signal to noise ratio after MRC hides antenna gain for illustration of diversity effect

$$\gamma = \frac{\mathrm{SNR}}{N_{\mathrm{R}}} = \frac{1}{N_{\mathrm{R}}} \cdot \sum_{j=1}^{N_{\mathrm{R}}} |h_j|^2 \cdot \frac{E_s}{N_0}$$

MASI Measurement for IEEE802.11a (36 Mbit/s-Mode)

Universität Bremen

SNR Distribution after Maximum Ratio Combining

- Rayleigh fading channels
- i.i.d. coefficients
 - Sufficient antenna spacing required
 - Chi-squared distribution with 2N_R degrees of freedom

$$p_{\gamma}(\xi) = \frac{\xi^{N_{\mathrm{R}}-1}}{(N_{\mathrm{R}}-1)!} \cdot e^{-\xi}$$

Error Rate Performance for Diversity

- Error rate performance reaches AWGN channel for $N_{\rm R} \rightarrow \infty$
- Slope of curve increases for growing N_R

Comparison of Rayleigh and Rice Fading

- Rice suffers less from fading due to line-of-sight path
- Rice channel reaches the AWGN channel with less diversity

Comparison of Rayleigh and Rice Fading

- No diversity gain for Rice factor $K \rightarrow \infty$ due to normalization and no fading
- Diversity concepts are only an appropriate means in severe fading conditions

$$E_{\rm s}/N_0 = 12 {\rm ~dB}$$

Influence of Correlation between Diversity Paths

• Diversity gain vanishes for increasing correlation ($\rho \rightarrow 1$), here for BPSK with identical distributed channels at $E_s/N_0 = 12 \text{ dB}$

Transmit Diversity ?

- Receive diversity can be achieved with multiple receive antennas
- Can transmit diversity be obtained by transmitting same signal with N_T antennas?

$$y = \frac{x}{\sqrt{N_T}} \cdot \sum_{i=1}^{N_T} h_i + n$$

Average receive power per symbol

$$\frac{E_s}{N_T} \left(\sum_{i=1}^{N_T} h_i\right)^2$$

- Coefficients h_i are i.i.d. with variance $\sigma_h^2 = 1$
- New Rayleigh distributed coefficient with $\sigma_{\tilde{h}}^2 = N_T$

incoherent superposition \rightarrow constructive and destructive addition of paths

• Error probability
$$P_b = \frac{1}{2} \operatorname{erfc}\left(\sqrt{\frac{E_s \left(\sum_{i=1}^{N_T} h_i\right)^2}{N_T \cdot N_0}}\right) = \frac{1}{2} \operatorname{erfc}\left(\sum_{i=1}^{N_T} h_i \sqrt{\frac{E_s}{N_T \cdot N_0}}\right)$$

No diversity gain!!!

Universität Bremen

Multiple-Input Single-Output Systems (MISO)

- Multiple antennas only at transmitter
 - Appropriate pre-processing required

 $y = \underline{\mathbf{h}} \cdot \mathbf{x} + n = \mathbf{h} \cdot \mathbf{A}\mathbf{s} + n$

 $\mathbf{h} = \left[\begin{array}{ccc} h_1 & h_2 & \cdots & h_{N_{\mathrm{T}}} \end{array} \right]$

- Different levels of channel knowledge (channel state information, CSI) at transmitter
 - Perfect channel knowledge → beam forming
 - No channel knowledge

versität Bremen

- \rightarrow space-time coding
- Total transmit energy normalized to $E_s = E\{||\mathbf{x}||^2\}$

MISO Systems: Perfect Channel Knowledge at Transmitter

• Optimum transmitter maximizes SNR at receiver by using matched filter with normalized transmit power: $\mathbf{A} = \mathbf{\underline{h}}^{H} / ||\mathbf{\underline{h}}||$

$$\tilde{s} = \underline{\mathbf{h}} \cdot \underbrace{\frac{\mathbf{h}^{H}}{\|\underline{\mathbf{h}}\|}}_{\mathbf{x}} s + n = s \cdot \frac{1}{\|\underline{\mathbf{h}}\|} \cdot \sum_{i=1}^{N_{\mathrm{T}}} |h_{i}|^{2} + n$$
$$= \|\underline{\mathbf{h}}\| \cdot s + n$$

- **Tx-Beamforming** by maximum ratio combining
- Two different gains
 - Antenna gain: $10 \log_{10}(N_{\rm T})$ in dB
 - Diversity gain

versität Bremen

MISO system with perfect CSI at transmitter equivalent to SIMO system

Extension to MIMO-Systems: Multilayer-Transmission

- Assuming instantaneous knowledge at transmitter and receiver
- Singular value decomposition of channel matrix $\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$
- Exploiting all eigenmodes of channel supports multiple data streams
 - Transmitter $\mathbf{x} = \mathbf{V} \cdot \mathbf{s}$

• Receiver
$$\tilde{\mathbf{s}} = \mathbf{U}^H \cdot \mathbf{y} = \mathbf{U}^H \cdot (\mathbf{H}\mathbf{x} + \mathbf{n})$$

$$= \underbrace{\mathbf{U}^H \cdot \mathbf{U}}_{\mathbf{I}_{N_{\mathrm{R}}}} \Sigma \underbrace{\mathbf{V}^H \cdot \mathbf{V}}_{\mathbf{I}_{N_{\mathrm{T}}}} \mathbf{s} + \mathbf{U}^H \cdot \mathbf{n} = \Sigma \cdot \mathbf{s} + \tilde{\mathbf{n}}$$

$$\underbrace{\tilde{s}_i = \Sigma_i \cdot s_i + \tilde{n}_i}_{\tilde{i}_i = \tilde{i}_i \cdot \tilde{i}_i + \tilde{i}_i}$$

- Transforming MIMO system into parallel SISO systems by singular value decomposition
- Number of parallel layers depend on rank of H
- Adaptation of modulation/coding per parallel layer by water-filling

Space-Time Codes

- General principle of STC
- Error Rate Analysis of MIMO Systems
- Space-Time Blockcodes
- Space-Time Trelliscodes

 $y_1|k|$

 $y_2|k|$

 $y_{N_{\mathrm{B}}}|k|$

 $x_1|k|$

 $x_2|k|$

Space-Time Codes (STC)

- Space-Time Codes (STC)
 - Achieve transmit diversity without requiring CSI@Tx
 - Coding = arranging the transmitted symbols in space and time
 - Orthogonal Space-Time Block Codes (STBC)
 - Space-Time Trellis Codes (STTC) also provide coding gain $x_{N_{\mathrm{T}}}|k$
 - •
 - Transmit diversity schemes can be combined with multiple receive antennas!
- Transmission of block of length $L \rightarrow \text{code matrix } \mathbf{X}$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}[1] & \mathbf{x}[2] & \dots & \mathbf{x}[L] \end{bmatrix} = \begin{bmatrix} x_1[1] & x_1[2] & \dots & x_1[L] \\ \vdots & & & \\ x_{N_{\mathrm{T}}}[1] & x_{N_{\mathrm{T}}}[2] & \dots & x_{N_{\mathrm{T}}}[L] \end{bmatrix}$$

- Space-Time Code specifies how the code matrix X is generated
 - Mapping of information symbols $s_1, ..., s_m$ onto transmit symbols $x_i[k]$
 - Appropriate design criteria for STC are required!

Instantaneous Pairwise Error Probability

 Probability to decide in favor of code P{X matrix E, when X was transmitted

$$\mathrm{P}\{\mathbf{X} \to \mathbf{E} | \mathbf{H}\} \Box \exp\left(-\frac{E_s}{4N_o} d^2\left(\mathbf{X}, \mathbf{E} | \mathbf{H}\right)\right)$$

Squared Euclidian distance of corresponding received sequences

$$d^{2}\left(\mathbf{X}, \mathbf{E} | \mathbf{H}\right) = \sum_{k=1}^{L} \|\mathbf{H} \cdot \left(\mathbf{x}[k] - \mathbf{e}[k]\right)\|^{2} = \sum_{j=1}^{N_{\mathrm{R}}} \underline{\mathbf{h}}_{j} \cdot \Delta\left(\mathbf{X}, \mathbf{E}\right) \cdot \underline{\mathbf{h}}_{j}^{H}$$

• With squared distance matrix and eigenvalue decomposition $r = \operatorname{rank}\{\Delta(\mathbf{X}, \mathbf{E})\}$ $\Delta(\mathbf{X}, \mathbf{E}) = (\mathbf{X} - \mathbf{E}) \cdot (\mathbf{X} - \mathbf{E})^{H} = \mathbf{U} \mathbf{\Lambda} \mathbf{U}^{H}$ $\lambda_{1}, \dots, \lambda_{r} > 0$ the enversed Euclidian distance becomes

the squared Euclidian distance becomes

$$d^{2}(\mathbf{X}, \mathbf{E} | \mathbf{H}) = \sum_{j=1}^{N_{\mathrm{R}}} \underline{\mathbf{h}}_{j} \cdot \mathbf{U} \Lambda \mathbf{U}^{H} \cdot \underline{\mathbf{h}}_{j}^{H} = \sum_{j=1}^{N_{\mathrm{R}}} \underline{\mathbf{b}}_{j} \Lambda \underline{\mathbf{b}}_{j}^{H} = \sum_{j=1}^{N_{\mathrm{R}}} \sum_{i=1}^{N_{\mathrm{T}}} |b_{j,i}|^{2} \lambda_{i}$$

with $\underline{\mathbf{b}}_j = \underline{\mathbf{h}}_j \cdot \mathbf{U}$ elements $b_{j,i}$ of $\underline{\mathbf{b}}_j$ are still Rayleigh distributed with same variance

$$\blacktriangleright \mathbf{P}\{\mathbf{X} \to \mathbf{E}|\mathbf{H}\} \square \exp\left(-\frac{E_s}{4N_0} \sum_{j=1}^{N_{\mathrm{R}}} \sum_{i=1}^{N_{\mathrm{T}}} |b_{j,i}|^2 \lambda_i\right) = \prod_{j=1}^{N_{\mathrm{R}}} \prod_{i=1}^{N_{\mathrm{T}}} \exp\left(-\frac{E_s}{4N_0} |b_{j,i}|^2 \lambda_i\right)$$

Average Pairwise Error Probability

Average pairwise error probability

$$\mathbf{P}\{\mathbf{X} \to \mathbf{E}\} = \mathbf{E}_{\mathbf{H}}\{\mathbf{P}\{\mathbf{X} \to \mathbf{E} | \mathbf{H}\}\} = \mathbf{E}_{\beta} \left\{ \prod_{j=1}^{N_{\mathrm{R}}} \prod_{i=1}^{N_{\mathrm{T}}} \exp\left(-\frac{E_s}{4N_0} |b_{j,i}|^2 \lambda_i\right) \right\}$$

Calculation of expected value w.r.t to β yields

$$\mathsf{P}\{\mathbf{X} \to \mathbf{E}\} \ \Box \ \prod_{i=1}^{r} \left(1 + \frac{E_s}{4N_0}\lambda_i\right)^{-N_{\mathrm{R}}} \ \Box \ \left(\left(\prod_{i=1}^{r}\lambda_i\right)^{1/r} \cdot \frac{E_s}{4N_0}\right)^{-r \cdot N_{\mathrm{R}}} \right| \begin{array}{l} \lambda_1, \dots, \lambda_r > 0\\ \lambda_{r+1}, \dots, \lambda_{N_{\mathrm{T}}} = 0 \end{array}$$

- **Diversity gain** determines the slope of BER curve in log-scale $g_{\rm D} = r \cdot N_{\rm R}$

Coding gain determines horizontal shift

$$g_{\rm C} = \min_{(\mathbf{X}, \mathbf{E})} \left(\prod_{i=1}^r \lambda_i\right)^{1/r}$$

• For difference matrix of full rank (
$$r = N_T$$
)

$$g_{\mathrm{C}} = \min_{(\mathbf{X}, \mathbf{E})} \left(\det \mathbf{\Delta}(\mathbf{X}, \mathbf{E})
ight)^{1/N_{\mathrm{T}}}$$

Design Criteria for Space-Time Codes

Rank Criterion:

In order to achieve the maximum diversity $N_T \cdot N_R$, the difference matrix (**X**-**E**) has to be full rank for any codeword matrices **X** and **E**.

If (X-E) has a minimum rank *r* over the set of pairs of distinct words, a diversity of $r \cdot N_R$ is achieved

• Determinant Criterion:

In order to achieve the maximum coding gain for a given diversity gain of $N_T \cdot N_R$, maximize the minimum product of eigenvalues for any two codeword matrices **X** and **E**.

$$g_C = \min_{(\mathbf{X}, \mathbf{E})} \left(\prod_{i=1}^{r=N_{\mathrm{T}}}\right)^{1/N_{\mathrm{T}}} = \min_{(\mathbf{X}, \mathbf{E})} \left(\det \Delta(\mathbf{X}, \mathbf{E})\right)^{1/N_{\mathrm{T}}}$$

Universität Bremen

Orthogonal Space-Time Blockcodes (OSTBC)

Orthogonal Space-Time Blockcodes

- Alamouti's scheme
 - Transmission scheme for $N_T = 2$ antennas
 - Equivalent to MRC with 2 antennas at receiver
- Generalization by Tarokh for more than 2 transmit antennas
 - Orthogonal Space-Time Blockcodes
- Simple modulation scheme for limited number of transmit antennas
- Easy detection (demodulation) by linear combination of the received signals
- Transmit diversity schemes can be combined with multiple receive antennas!

Alamouti's Scheme (1)

Code word matrix of two consecutive time steps

$$\mathbf{X} = \begin{bmatrix} x_1[k] & x_1[k+1] \\ x_2[k] & x_2[k+1] \end{bmatrix} = \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix}$$

• Received signal vector of one block $\mathbf{Y} = \mathbf{H}\mathbf{X} + \mathbf{N}$

$$\begin{bmatrix} y_1[k] & y_1[k+1] \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \end{bmatrix} \cdot \begin{bmatrix} s_1 & -s_2^* \\ s_2 & s_1^* \end{bmatrix} + \begin{bmatrix} n_1[k] & n_1[k+1] \end{bmatrix}$$

$$= \begin{bmatrix} h_{1,1}s_1 + h_{1,2}s_2 & -h_{1,1}s_2^* + h_{1,2}s_1^* \end{bmatrix} + \begin{bmatrix} n_1[k] & n_1[k+1] \end{bmatrix}$$

$$= \begin{bmatrix} n_{1,1}s_1 + h_{1,2}s_2 & -h_{1,1}s_2^* + h_{1,2}s_1^* \end{bmatrix} + \begin{bmatrix} n_1[k] & n_1[k+1] \end{bmatrix}$$

$$= \begin{bmatrix} y_1[k] \\ y_1^*[k+1] \end{bmatrix} = \begin{bmatrix} h_{1,1}s_1 + h_{1,2}s_2 \\ -h_{1,1}^*s_2 + h_{1,2}^*s_1 \end{bmatrix} + \begin{bmatrix} n_1[k] \\ n_1^*[k+1] \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{1,2}^* & -h_{1,1}^* \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} n_1[k] \\ n_1^*[k+1] \end{bmatrix}$$

Universität Bremen

Alamouti's Scheme (2)

Linear combining is matched filtering

$$\begin{bmatrix} \tilde{s}_{1} \\ \tilde{s}_{2} \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{1,2}^{*} & -h_{1,1}^{*} \end{bmatrix}^{H} \begin{bmatrix} y_{1}[k] \\ y_{1}^{*}[k+1] \end{bmatrix} = \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{1,2}^{*} & -h_{1,1}^{*} \end{bmatrix}^{H} \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{1,2}^{*} & -h_{1,1}^{*} \end{bmatrix} \begin{bmatrix} s_{1} \\ s_{2} \end{bmatrix} + \begin{bmatrix} h_{1,1} & h_{1,2} \\ h_{1,2}^{*} & -h_{1,1}^{*} \end{bmatrix}^{H} \begin{bmatrix} n_{1}[k] \\ n_{1}^{*}[k+1] \end{bmatrix}$$
$$\underbrace{\left(|h_{1,1}|^{2} + |h_{1,2}|^{2} \right) \cdot \mathbf{I}_{2}}_{\left(|h_{1,1}|^{2} + |h_{1,2}|^{2} \right) \cdot \mathbf{I}_{2}}$$
noise term is still white
$$\begin{bmatrix} \tilde{n}_{1} \\ \tilde{n}_{2} \end{bmatrix}$$

Modified received signal vector after linear combining

$$\begin{bmatrix} \tilde{s}_1 \\ \tilde{s}_2 \end{bmatrix} = \left(|h_{1,1}|^2 + |h_{1,2}|^2 \right) \cdot \begin{bmatrix} s_1 \\ s_2 \end{bmatrix} + \begin{bmatrix} \tilde{n}_1 \\ \tilde{n}_2 \end{bmatrix} \implies \tilde{\mathbf{s}} = \|\mathbf{H}\|^2 \cdot \mathbf{s} + \tilde{\mathbf{n}}$$
Diversity degree $g_D = 2!$

- Two independent signals \tilde{s}_1 and \tilde{s}_2 to represent s_1 and s_2
- Code rate: $R_c^{ST} = 1$ (2 symbols in 2 time slots)

versität Bremen

 Independent detection of signals on basis of linear combining allows very simple receiver structure!

General Remarks on Orthogonal STBC (1)

- General Results from matrix theory
 - Orthogonal matrices with complex elements for code rate 1 exists only for $N_T = 2$ antennas \rightarrow Alamouti
 - Orthogonal matrices with complex elements for code rate 1/2 exist for any number of transmit antennas
 - Orthogonal matrices with complex elements for code rate 3/4 exist for N_T = 3 and N_T = 4 antennas
 - Orthogonal quadratic matrices with real valued elements for code rate 1 exist only for $N_T = 2$, $N_T = 4$ and $N_T = 8$
- System with N_T transmit antennas
 - Transmission of m different information symbols S_m
 - Occupation of *p* time slots for transmission
 - Description by $N_T \times p$ code matrix G_{N_T}

General Remarks on Orthogonal STBC (2)

- Space-Time code rate: m symbols are transmitted in p timeslots
- Spectral efficiency $R_c^{ST} \cdot \log_2(M)Bit/s/Hz$

 $R_c^{ST} = \frac{m}{p}$

- Elements of G_{N_T} are given by linear combinations of the variables $0, s_1, s_1^*, s_2, s_2^*, \cdots, s_m, s_m^*$ → STBC are linear codes
 - Only with conjugated elements linear description is possible because conjugation is no linear transformation
 - Code matrix G_{N_T} consists of orthogonal rows

$$\mathcal{G}_{N_T} \cdot \mathcal{G}_{N_T}^H = \left(|s_1|^2 + |s_2|^2 + \dots + |s_m|^2 \right) \cdot \mathbf{I}_{N_T}$$

• Alternatively, real valued description with twice as large matrices possible

$$\mathcal{G}_{N_T}(0, s_1, s_1^*, s_2, s_2^*, \cdots, s_m, s_m^*) \to \tilde{\mathcal{G}}_{N_T}(0, s_1', s_1'', s_2', s_2'', \cdots, s_m', s_m'')$$

Real and Complex Representation of Alamouti's Scheme

• Alamouti's scheme with $N_T = 2, m = 2, p = 2$: $R_c^{ST} = \frac{m}{p} = 1$

$$\mathcal{G}_2 = \mathcal{G}_2\left(0, s_1, s_1^*, s_2, s_2^*\right) = \begin{bmatrix} s_1 & -s_2 * \\ s_2 & s_1^* \end{bmatrix} \implies \mathbf{y} = \begin{bmatrix} y[k] \\ y[k+1] \end{bmatrix} = \begin{bmatrix} s_1 & s_2 \\ -s_2^* & s_1^* \end{bmatrix} \cdot \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + \begin{bmatrix} n[k] \\ n[k+1] \end{bmatrix}$$

Real representation

$$\tilde{\mathcal{G}}_{2} = \tilde{\mathcal{G}}_{2} \left(s_{1}', s_{1}'', s_{2}', s_{2}'' \right) = \begin{bmatrix} s_{1}' & s_{2}' & -s_{1}'' & -s_{2}'' \\ -s_{2}' & s_{1}' & s_{2}'' & -s_{1}'' \\ s_{1}'' & s_{2}'' & s_{1}' & s_{2}' \\ -s_{2}'' & s_{1}'' & -s_{2}' & s_{1}'' \end{bmatrix} = \begin{bmatrix} \operatorname{Re} & -\operatorname{Im} \\ \operatorname{Im} & \operatorname{Re} \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y'[k] \\ y'[k+1] \\ y''[k] \\ y''[k+1] \end{bmatrix} = \begin{bmatrix} s'_1 & s'_2 & -s''_1 & -s''_2 \\ -s'_2 & s'_1 & s''_2 & -s''_1 \\ s''_1 & s''_2 & s'_1 & s'_2 \\ -s''_2 & s''_1 & -s'_2 & s'_1 \end{bmatrix} \cdot \begin{bmatrix} h'_1 \\ h'_2 \\ h''_1 \\ h''_2 \end{bmatrix} + \begin{bmatrix} n'[k] \\ n''[k+1] \\ n''[k] \\ n''[k+1] \end{bmatrix}$$

Universität Bremen

Orthogonal STBC for Rate 1/2, $N_T = 3$

• $N_T = 3$ antennas, m = 4 information symbols, p = 8 time slots

$$\mathcal{G}_{3} = \begin{bmatrix}
s_{1} & -s_{2} & -s_{3} & -s_{4} & s_{1}^{*} & -s_{2}^{*} & -s_{3}^{*} & -s_{4}^{*} \\
s_{2} & s_{1} & s_{4} & -s_{3} & s_{2}^{*} & s_{1}^{*} & s_{4}^{*} & -s_{3}^{*} \\
s_{3} & -s_{4} & s_{1} & s_{2} & s_{3}^{*} & -s_{4}^{*} & s_{1}^{*} & s_{2}^{*}
\end{bmatrix} \implies \qquad \mathcal{R}_{c}^{ST} = \frac{m}{p} = \frac{4}{8} = 0.5$$

• Rows of code matrix \mathcal{G}_3 are orthogonal $\mathcal{G}_3 \cdot \mathcal{G}_3^H = (|s_1|^2 + |s_2|^2 + |s_3|^2 + |s_4|^2) \cdot \mathbf{I}_3$

Receive vector y of dimension 1x8

$$\mathbf{y} = \mathbf{H} \cdot \mathcal{G}_3 + \mathbf{n} = \begin{bmatrix} h_{1,1} & h_{1,2} & h_{1,3} \end{bmatrix} \cdot \begin{bmatrix} s_1 & -s_2 & -s_3 & -s_4 & s_1^* & -s_2^* & -s_3^* & -s_4^* \\ s_2 & s_1 & s_4 & -s_3 & s_2^* & s_1^* & s_4^* & -s_3^* \\ s_3 & -s_4 & s_1 & s_2 & s_3^* & -s_4^* & s_1^* & s_2^* \end{bmatrix} + \mathbf{n}$$

$$\mathbf{y} = \begin{bmatrix} h_{1,1}s_1 + h_{1,2}s_2 + h_{1,3}s_3 & -h_{1,1}s_2 + h_{1,2}s_1 - h_{1,3}s_4 & -h_{1,1}s_3 + h_{1,2}s_4 + h_{1,3}s_2 \\ \cdots \begin{bmatrix} -h_{1,1}s_4 - h_{1,2}s_3 + h_{1,3}s_2 & h_{1,1}s_1^* + h_{1,2}s_2^* + h_{1,3}s_3^* & -h_{1,1}s_2^* + h_{1,2}s_1^* - h_{1,3}s_4^* \end{bmatrix} + \mathbf{n} \\ \cdots \begin{bmatrix} -h_{1,1}s_3^* + h_{1,2}s_4^* + h_{1,3}s_1^* & -h_{1,1}s_4^* - h_{1,2}s_3^* + h_{1,3}s_2^* \end{bmatrix}$$

Universität Bremen

Orthogonal STBC for Rate 1/2, $N_T = 3$

 Generate modified receive vector by conjugation of signals received in time instances 5,..., 8

- Equivalent channel matrix $\tilde{\mathbf{H}}$ contains orthogonal columns
- Modified received signal vector after linear combining

$$\tilde{\mathbf{s}} = \tilde{\mathbf{H}}^H \cdot \tilde{\mathbf{y}} = \tilde{\mathbf{H}}^H \cdot \tilde{\mathbf{H}} \cdot \mathbf{s} + \tilde{\mathbf{H}}^H \tilde{\mathbf{n}} = \|\tilde{\mathbf{H}}\|^2 \mathbf{s} + \tilde{\tilde{\mathbf{n}}}$$

iversität Bremen

Orthogonal STBC for Rate 1/2 , $N_T = 4$

• $N_T = 4$ antennas, m = 4 information symbols, p = 8 time slots

• Modified receive vector \rightarrow equivalent channel matrix $\tilde{\mathbf{H}}$ with orthogonal columns

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \\ y_5 \\ y_6 \\ y_7 \\ y_8 \end{bmatrix} = \begin{bmatrix} h_1 & h_2 & h_3 & h_4 \\ h_2 & -h_1 & h_4 & -h_3 \\ h_3 & -h_4 & -h_1 & h_2 \\ h_4 & h_3 & -h_2 & -h_1 \\ h_1^* & h_2^* & h_3^* & h_4^* \\ h_2^* & -h_1^* & h_4^* & -h_3^* \\ h_3^* & -h_4^* & -h_1^* & h_2^* \\ h_4^* & h_3^* & -h_2^* & -h_1^* \end{bmatrix} \cdot \begin{bmatrix} s_1 \\ s_2 \\ s_3 \\ s_4 \end{bmatrix} \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ n_4 \\ n_5^5 \\ n_6^* \\ n_7^* \\ n_8^* \end{bmatrix}$$

Universität Bremen

Orthogonal STBC for Rate 3/4

• $N_T = 3$ antennas, m = 3 information symbols, p = 4 time slots

$$\mathcal{H}_{3} = \begin{bmatrix} s_{1} & -s_{2}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} \\ s_{2} & s_{1}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & -\frac{1}{\sqrt{2}}s_{3}^{*} \\ \frac{1}{\sqrt{2}}s_{3} & \frac{1}{\sqrt{2}}s_{3} & \frac{1}{2}(-s_{1}-s_{1}^{*}+s_{2}-s_{2}^{*}) & \frac{1}{2}(s_{1}-s_{1}^{*}+s_{2}+s_{2}^{*}) \end{bmatrix} \begin{bmatrix} R_{c}^{ST} = \frac{m}{p} = \frac{3}{4} \end{bmatrix}$$

• $N_T = 4$ antennas, m = 3 information symbols, p = 4 time slots

$$\mathcal{H}_{3} = \begin{bmatrix} s_{1} & -s_{2}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} \\ s_{2} & s_{1}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & -\frac{1}{\sqrt{2}}s_{3}^{*} \\ \frac{1}{\sqrt{2}}s_{3} & \frac{1}{\sqrt{2}}s_{3} & \frac{1}{2}(-s_{1}-s_{1}^{*}+s_{2}-s_{2}^{*}) & \frac{1}{2}(s_{1}-s_{1}^{*}+s_{2}+s_{2}^{*}) \\ \frac{1}{\sqrt{2}}s_{3} & -\frac{1}{\sqrt{2}}s_{3} & \frac{1}{2}(s_{1}-s_{1}^{*}-s_{2}-s_{2}^{*}) & -\frac{1}{2}(s_{1}+s_{1}^{*}+s_{2}-s_{2}^{*}) \end{bmatrix}$$

$$R_c^{ST} = \frac{m}{p} = \frac{3}{4}$$

Simulation Results for STBC (1)

- Simulation parameters
 - Alamouti-STBC, $N_{\rm T}$ = 2,

$$\mathcal{G}_2 = \left[\begin{array}{cc} s_1 & -s_2^* \\ s_2 & s_1^* \end{array} \right]$$

- 2 symbols in 2 time slots $\rightarrow R_c^{ST} = 1$
- QPSK → 2 bits / time slot
- Results
 - Diversity gain determines slope of BER
 - Diversity of N_T·N_R results in strong performance improvement

Simulation Results for STBC (2)

Simulation parameters
 STBC for N_T= 3,

$$\mathcal{H}_{3} = \begin{bmatrix} s_{1} & -s_{2}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} \\ s_{2} & s_{1}^{*} & \frac{1}{\sqrt{2}}s_{3}^{*} & -\frac{1}{\sqrt{2}}s_{3}^{*} \\ \frac{1}{\sqrt{2}}s_{3} & \frac{1}{\sqrt{2}}s_{3} & -s_{1}^{\prime} + s_{2}^{\prime\prime} & s_{1}^{\prime\prime} + s_{2}^{\prime} \end{bmatrix}$$

- 3 symbols in 4 time slots $\rightarrow R_c = 3/4$
- QPSK \rightarrow 1.5 bits / slot
- Result
 - Increased diversity in comparison to Alamouti due to $N_{\rm T}$ · $N_{\rm R}$

Selected References for STBC

Paper

- S.M. Alamouti: A Simple Transmit Diversity Technique for Wireless Communications, IEEE Journal on Select Areas in Communications, vol. 16, no. 8, October 1998
- V. Tarokh, H. Jafarkhani and A.R. Calderbank: Space-Time Block Codes from Orthogonal Designs, IEEE Trans. on Information Theory, Vol. 45, No. 5, pp. 1456-1467, July 1999
- V. Tarokh, H. Jafarkhani and A. R. Calderbank: Space-Time Block Coding for Wireless Communications: Performance Results, IEEE Journal on Selected Areas in Communications, Vol. 17, No. 3, pp. 451-460, March 1999
- Online books:
 - D. Tse, P. Viswanath: Fundamentals of Wireless Communication, Cambridge, 2005
- Printed books:

versität Bremen

- V. Kühn: Wireless Communications over MIMO Channels, Wiley, 2006
- A. Paulraj, R. Nabar, D. Gore: Introduction to Space-Time Wireless Communications, Cambridge, 2003
- M. Jankiraman: Space-Time Codes and MIMO Systems, Artech House, 2004
- G.B. Giannakis, Z. Liu, X. Ma, S. Zhou: Space-Time Coding for Broadband Wireless Communications, Wiley, 2006
- E.G. Larsson, P. Stoica: Space-Time Block Coding for Wireless Communications, Cambridge, 2003
- E. Biglieri, et al: MIMO Wireless Communications, Cambridge, 2007

Space-Time Trellis Codes (STTC)

- Orthogonal Space-Time Block Codes do not achieve any coding gain
- Exploit diversity as well as coding gain by applying trellis codes
- Non-orthogonal block codes also possible, but not subject of this course

Space-Time Trellis-Codes: Delay Diversity

- Properties of delay diversity
 - Transmit delayed replicas of the same signal from different antennas
 - Flat MISO channel transformed into frequency selective SISO channel
 - Equalization of received signal, e.g. by Viterbi equalizer
 - Maximum diversity $N_{\rm T} \cdot N_{\rm R}$ is achieved
 - Drawback: computational costs grow exponentially with diversity order
- Are there better codes than repetition code?

Encoder Structure for Delay Diversity

- Nonrecursive convolutional encoder realized by binary shift registers
- Example: Delay-Diversity for QPSK, $N_{\rm T} = 2$ transmit antennas, 4 states

• Transmit vector (QPSK symbols with natural mapping): $\mathbf{x}[k] =$

$$= egin{bmatrix} x_1[k] \ x_2[k] \end{bmatrix} = \mathcal{M}\{\mathbf{c}[k]\}$$

Universität Bremen

Trellis Representation for Delay Diversity

Example Trellis structure for delay diversity Input $\mathbf{b} = \begin{bmatrix} 01 & 11 & 10 & 00 \end{bmatrix}^T$ Output Input State b[k-1] $\mathbf{c}[k]$ $\mathbf{b}[k]$ Input 01 11 10 00 **00 →** ζ₀ 00,10,20,30 $\mathbf{b}[k]$ $10 \rightarrow \zeta_1$ 01,11,21,31 $01 \rightarrow \zeta_2$ 02,12,22,32 Output $\mathbf{c}[k]$ 20 32 13 01 $11 \rightarrow \zeta_3$ 03,13,23,33 •Output $\mathbf{C} = \begin{bmatrix} 2 & 3 & 1 & 0 \\ 0 & 2 & 3 & 1 \end{bmatrix}$ Im 📊 **QPSK** constellation Code word matrix Re $\mathbf{X} = \begin{vmatrix} -1 & -j & j & 1 \\ 1 & -1 & -j & j \end{vmatrix}$

General Encoder Structure for STTC

• Example for 8-PSK, $N_{\rm T} = 2$ and shift register with memory ℓ

Universität Bremen

Code Search for Space-Time Trellis Codes

- Different codes for different configurations
 - Number of transmit antennas
 - Order of modulation
 - Length of register \rightarrow number of states
- Codes for same configuration differ only in generator coefficients
- Systematic code search by calculating diversity gain and coding gain for all permutations of G
 - Look only for Space-Time Trellis Codes with maximum diversity
 - Choose the code with highest coding gain among those with maximum diversity
 - Best (known) Space-Time Trellis Code for 2 transmit antennas, QPSK, 4 states found by Yan and Blum, Lehigh University

$$\mathbf{G}_{\mathrm{opt}} = \begin{bmatrix} 2 & 0 & 1 & 2 \\ 2 & 2 & 2 & 1 \end{bmatrix}$$

Simulation Results for STTC

- Simulation parameters
 - $N_{\rm T} = 2$, 4-PSK, 100 symbols
- Results
 - Diversity gain determines slope of FER
 - Coding gain affects horizontal shift for codes of same diversity
 - Performance of STTC of same constellation differ only for N_R>1
 - Increased coding gain with larger number of states, but also higher decoding effort

Cyclic Delay Diversity for OFDM

- Transmission of cyclic shifted version of same OFDM symbol
- Frequency selectivity of channel increased (can only be exploited by channel coding)
- Approach consistent with standard:
 - → no modification of receiver required

Selected References for STTC

Paper

- V. Tarokh, N. Seshadri and A. R. Calderbank: Space-Time Codes for High Data Rate Wireless Communication: Performance Criterion and Code Construction, IEEE Transactions on Information Theory, Vol. 44, No. 2, March 1998, pp. 744-765
- S. Bäro: Performance Analysis of Space-Time Trellis Coded Modulation of Flat Fading Channels, ITG-Diskussionssitzung Systeme mit intelligenten Antennen, Stuttgart, Germany, April 1999
- S. Bäro, G. Bauch: Improved Codes for Space-Time Trellis Coded Modulation, IEEE Communications Letters, Vol. 4, No. 1, pp. 20-22, Januar 2000
- X. Lin and R.S. Blume: Systematic Design of Space-Time Codes Employing Multiple Trellis Coded Modulation, ITC, Vol. 1, pp. 102-109, Phoenix, AZ, 2000
- Online books:
 - D. Tse, P. Viswanath: Fundamentals of Wireless Communication, Cambridge, 2005
- Books
 - V. Kühn: Wireless Communications over MIMO Channels, Wiley, 2006
 - A. Paulraj, R. Nabar, D. Gore: Introduction to Space-Time Wireless Communications, Cambridge, 2003
 - M. Jankiraman: Space-Time Codes and MIMO Systems, Artech House, 2004
 - G.B. Giannakis, Z. Liu, X. Ma, S. Zhou: Space-Time Coding for Broadband Wireless Communications, Wiley, 2006
 - E. Biglieri, et al: MIMO Wireless Communications, Cambridge, 2007

Layered Space-Time Codes (BLAST)

Transmission of multiple (parallel) data streams for higher data rates without increasing bandwidth

V-BLAST Transmitter

- V-BLAST → Vertical Bell-Labs LAyered Space-Time Architecture
 - Transmitted code words (layers) are vertically arranged
 - Each layer is transmitted over one particular antenna

Structure of transmit signal (example: four transmit antennas)

either uncoded orindividually encoded,multiple users possible

D-BLAST Transmitter

- D-BLAST → Diagonal Bell-Labs LAyered Space-Time Architecture
 - Transmitted code words (layers) are distributed over all antennas
 - Higher diversity gain for each layer compared to V-BLAST (with FEC coding)

Structure of transmit signal (example: four transmit antennas)

each layer is individually encoded,

multiple users possible

Receiver for the V-BLAST Scheme

- Optimal Detection Scheme
 - Maximum-Likelihood Detection
- Linear Equalizer
 - Zero-Forcing Criterion
 - Minimum Mean Square Error Criterion
- Successive Interference Cancellation
 - V-BLAST Detection Algorithm
 - SIC on bases of Sorted QR Decomposition
 - Post Sorting Algorithm
- Sphere Detection

Optimal Detection

Received signals are superposition of all transmit signals (plus noise)

 $\mathbf{y} = \sum_{i=1}^{N_{\mathrm{T}}} \mathbf{h}_i x_i + \mathbf{n} = \mathbf{H} \cdot \mathbf{x} + \mathbf{n}$

- Optimum detector fulfills maximum likelihood (ML) criterion
 - Coded transmission: Find set of code words (sequences → MLSE) that was transmitted most likely → Extremely high computational complexity
 - Uncoded transmission: Find set of symbols that was transmitted most likely
 - \rightarrow Solve linear equation system with respect to the discrete symbol alphabet
 - \rightarrow Still very high computational complexity

Optimal Detection

Maximum-Likelihood (ML)

$$\hat{\mathbf{x}}_{\mathrm{ML}} = \arg \max_{\mathbf{x} \in \mathrm{A}^{N_T}} p(\mathbf{y} | \mathbf{H}, \mathbf{x}) = \arg \min_{\mathbf{x} \in \mathrm{A}^{N_T}} \| \mathbf{y} - \mathbf{H} \mathbf{x} \|^2$$

- Brute Force:
 Find minimum Euclidian distance over all $\mathbf{x} \in A^{N_T}$
- → Effort grows exponentially with spectral efficiency $\eta = \operatorname{ld}(M)N_{\mathrm{T}}$
- → Example: $N_{\rm T}$ =4 and 16-QAM: $M^{N_{\rm T}} = 2^{{\rm ld}(M)N_{\rm T}} = 16^4 = 65536$
- More efficient implementation by Sphere-Detection (SD)
 - Efficient algorithm with low best case complexity
 - Still high worst case complexity
- Less complex detection:
 - Linear processing

versität Bremen

Suboptimal non-linear processing

Linear Equalizer (Linear Detector, LD)

- Linear filtering of receive signals $\tilde{\mathbf{x}} = \mathbf{G} \cdot \mathbf{y} = \mathbf{G} \cdot (\mathbf{H}\mathbf{x} + \mathbf{n})$
- Quantization per layer

$$\hat{x}_i = Q\{\tilde{x}_i\}$$

- Derivation of the filter matrix G
 - Error vector

versität Bremen

$$\mathbf{e} = \tilde{\mathbf{x}} - \mathbf{x} = \mathbf{GHn} + \mathbf{Gn} - \mathbf{x} = (\mathbf{GH} - \mathbf{I}_{N_{\mathrm{T}}})\mathbf{x} + \mathbf{Gn}$$

Error covariance matrix diagonal elements determine layer-specific errors

 $\boldsymbol{\Phi}_{\mathbf{ee}} = \mathrm{E}\{\mathbf{ee}^{H}\} = \mathrm{E}\{(\tilde{\mathbf{x}} - \mathbf{x})(\tilde{\mathbf{x}} - \mathbf{x})^{H}\} = (\mathbf{GH} - \mathbf{I}_{N_{\mathrm{T}}})(\mathbf{GH} - \mathbf{I}_{N_{\mathrm{T}}})^{H} + \mathbf{G}\boldsymbol{\Phi}_{\mathbf{nn}}\mathbf{G}^{H}$

- Average power of the estimation error is given by $E\{||e||\} = tr\{\Phi_{ee}\}|$
- General form of the filter output signal $\tilde{\mathbf{x}} = \mathrm{dg}\{\mathbf{GH}\} \cdot \mathbf{x} + \overline{\mathrm{dg}}\{\mathbf{GH}\} \cdot \mathbf{x} + \mathbf{Gn}$

Linear Equalizer (Linear Detector, LD)

- Linear filtering of receive signals
- Quantization per layer

$$\tilde{\mathbf{x}} = \mathbf{G} \cdot \mathbf{y} = \mathbf{G} \cdot (\mathbf{H}\mathbf{x} + \mathbf{n})$$

$$\hat{x}_i = Q\{\tilde{x}_i\}$$

- Derivation of the filter matrix G
 - General form of the filter output signal $\tilde{\mathbf{x}} = \mathrm{dg}\{\mathbf{GH}\} \cdot \mathbf{x} + \overline{\mathrm{dg}}\{\mathbf{GH}\} \cdot \mathbf{x} + \mathbf{Gn}$
- Signal-to-Interference-and-Noise-Ratio (SINR)

$$SINR_{i} = \frac{P_{S,i}}{P_{I,i} + P_{N,i}} = \frac{P_{S,i}}{P_{T,i} - P_{S,i}} = \frac{P_{S,i}/P_{T,i}}{1 - P_{S,i}/P_{T,i}}$$

$$\begin{split} P_{S,i} &= \mathrm{E}\{|\left[\mathrm{dg}\{\mathbf{GH}\}\cdot\mathbf{x}\right]_{i}|^{2}\}\\ P_{I,i} &= \mathrm{E}\{|\left[\overline{\mathrm{dg}}\{\mathbf{GH}\}\cdot\mathbf{x}\right]_{i}|^{2}\}\\ P_{N,i} &= \mathrm{E}\{|\left[\mathbf{G}\cdot\mathbf{n}\right]_{i}|^{2}\} \end{split}$$

$$P_{T,i} = P_{S,i} +$$

$$p_i = P_{S,i} + P_{I,i} + P_{N,i}$$

Universität Bremen

Linear Equalizer by Inversion

- Inversion of receive signal
- Estimation of transmitted symbol

$$ilde{\mathbf{x}} = \mathbf{H}^{-1} \cdot \mathbf{y}$$

 $\hat{x}_i = Q\{\tilde{x}_i\}$

 Signal space diagrams Receive signal y

Filter output signal $\, \tilde{x} \,$

0

2

-2

-2

0

2

Linear Zero-Forcing Equalizer

- Zero-Forcing Criterion → "Least Square Solution"
 - Minimize the Euclidian distance $\|\mathbf{y} \mathbf{H}\tilde{\mathbf{x}}\|^2$
 - G is given by Pseudo-Inverse of channel matrix $\mathbf{G}_{\mathrm{ZF}} = \mathbf{H}^+ = (\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H$
 - Projection of the received signal y onto the N_T -dim. subspace spanned by **H** within the N_R -dimensional receive space

- Perfectly suppresses mutual interference → Problem: Noise enhancement!
 x̃ = G_{ZF} · y = H⁺Hx + H⁺n = x + ñ
- Error covariance matrix

$$\mathbf{\Phi}_{\mathbf{ee},\mathrm{ZF}} = \mathrm{E}\{\tilde{\mathbf{n}}\tilde{\mathbf{n}}^H\} = \sigma_n^2 \mathbf{G}_{\mathrm{ZF}} \mathbf{G}_{\mathrm{ZF}}^H = \sigma_n^2 \mathbf{H}^+ \mathbf{H}^{+H} = \sigma_n^2 (\mathbf{H}^H \mathbf{H})^{-1}$$

• SNR
$$\operatorname{SNR}_{\operatorname{ZF},i} = \frac{P_{S,i}}{P_{N,i}} = \frac{1}{\left[\boldsymbol{\Phi}_{ee,\operatorname{ZF}}\right]_{i,i}} = \frac{1}{\sigma_n^2 \|\mathbf{g}_{\operatorname{ZF}}^{(i)}\|^2}$$

Universität Bremen

versität Bremen

Linear MMSE Equalizer (1)

- Minimum-Mean-Square-Error Criterion (MMSE)
 - Minimization of the mean error at the filter output
 - By introducing the receive covariance matrix $\Phi_{yy} = E\{yy^H\} = HH^H + \Phi_{nn}$ the error covariance matrix can be rewritten in quadratic form

$$\begin{split} \Phi_{\mathbf{e}\mathbf{e}} &= \mathrm{E}\{(\mathbf{G}\mathbf{y} - \mathbf{x})(\mathbf{G}\mathbf{y} - \mathbf{x})^{H}\} = \mathrm{E}\{\mathbf{G}\mathbf{y}\mathbf{y}^{H}\mathbf{G}^{H} - \mathbf{G}\mathbf{y}\mathbf{x}^{H} - \mathbf{x}\mathbf{y}^{H}\mathbf{G}^{H} + \mathbf{x}\mathbf{x})^{H}\} \\ &= \mathbf{G}\Phi_{\mathbf{y}\mathbf{y}}\mathbf{G}^{H} - \mathbf{G}\mathbf{H} - \mathbf{H}^{H}\mathbf{G}^{H} + \mathbf{I}_{N_{\mathrm{T}}} \\ &= \left(\mathbf{G}\Phi_{\mathbf{y}\mathbf{y}} - \mathbf{H}^{H}\right)\Phi_{\mathbf{y}\mathbf{y}}^{-1}\left(\mathbf{G}\Phi_{\mathbf{y}\mathbf{y}} - \mathbf{H}^{H}\right)^{H} - \mathbf{H}^{H}\Phi_{\mathbf{y}\mathbf{y}}^{-1}\mathbf{H} + \mathbf{I}_{N_{\mathrm{T}}} \end{split}$$

- Φ_{yy} is non-negative definite \rightarrow trace of first term can not be negative
- Minimum for $\mathbf{G} \Phi_{\mathbf{y}\mathbf{y}} \mathbf{H}^H = \mathbf{0}_{N_{\mathrm{T}},N_{\mathrm{T}}}$ $\Phi_{\mathbf{nn}} = \sigma_n^2 \mathbf{I}_{N_{\mathrm{R}}}$
- Solution for the filter matrix $\mathbf{G} = \mathbf{H}^{H} \cdot \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} = \mathbf{H}^{H} (\mathbf{H}\mathbf{H}^{H} + \sigma_{n}^{2}\mathbf{I}_{N_{\mathrm{R}}})^{-1} = (\mathbf{H}^{H}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}_{N_{\mathrm{T}}})^{-1}\mathbf{H}^{H}$
- Error covariance matrix $\Phi_{ee,MMSE} = \mathbf{I}_{N_T} \mathbf{H}^H \Phi_{yy}^{-1} \mathbf{H} = \sigma_n^2 (\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_T})^{-1}$

Linear MMSE Equalizer (2)

- MMSE Filter output signal (biased estimator) $\tilde{\mathbf{x}}_{\text{MMSE}} = \mathbf{H}^{H} \mathbf{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} = \mathbf{H}^{H} (\mathbf{H}\mathbf{H}^{H} + \sigma_{n}^{2} \mathbf{I}_{N_{\text{R}}})^{-1} \mathbf{y}$ $\frac{\mathbf{H}_{\overline{i}} = \begin{bmatrix} \mathbf{h}_{1} & \cdots & \mathbf{h}_{i-1} & \mathbf{h}_{i+1} & \cdots & \mathbf{h}_{N_{\text{T}}} \end{bmatrix}}{\mathbf{x}_{\overline{i}} = \begin{bmatrix} x_{1} & \cdots & x_{i-1} & x_{i+1} & \cdots & x_{N_{\text{T}}} \end{bmatrix}^{T}}$
- *i*-th filter output signal $\tilde{\mathbf{x}}_{i} = \mathbf{h}_{i}^{H} \boldsymbol{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{y} = \mathbf{h}_{i}^{H} \boldsymbol{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} (\mathbf{H}\mathbf{x} + \mathbf{n}) = \mathbf{h}_{i}^{H} \boldsymbol{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{h}_{i} \mathbf{x}_{i} + \mathbf{h}_{i}^{H} \boldsymbol{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{H}_{\overline{i}} \mathbf{x}_{\overline{i}} + \mathbf{h}_{i}^{H} \boldsymbol{\Phi}_{\mathbf{y}\mathbf{y}}^{-1} \mathbf{n}$
- SINR

$$\operatorname{SINR}_{\mathrm{MMSE},i} = \frac{P_{S,i}}{P_{I,i} + P_{N,i}} = \frac{\mathbf{h}_i^H \mathbf{\Phi}_{\mathbf{yy}}^{-1} \mathbf{h}_i}{1 - \mathbf{h}_i^H \mathbf{\Phi}_{\mathbf{yy}}^{-1} \mathbf{h}_i} = \frac{1 - [\mathbf{\Phi}_{\mathbf{ee},\mathrm{MMSE}}]_{i,i}}{[\mathbf{\Phi}_{\mathbf{ee},\mathrm{MMSE}}]_{i,i}} = \frac{1}{[\mathbf{\Phi}_{\mathbf{ee},\mathrm{MMSE}}]_{i,i}} - 1$$

Unbiased estimator

- Assume channel matrix with orthogonal columns $|\tilde{\mathbf{x}} = (1 + \sigma_n^2)^{-1}\mathbf{x} + \tilde{\mathbf{n}}| \rightarrow$ biased
- Bias leads to amplitude scaling → important for QAM
- Solutions:
 - Adopt filter $\mathbf{G}_{\text{UB-MMSE}} = (\mathrm{dg}\{\mathbf{G}_{\text{MMSE}}\mathbf{H}\})^{-1}\mathbf{G}_{\text{MMSE}}$
 - Consider scaling within the demodulator

Linear MMSE Equalizer (3)

- Relation of MMSE to zero-forcing
 - Definition of extended channel matrix and extended receive vector

$$\underline{\mathbf{H}} = \begin{bmatrix} \mathbf{H} \\ \sigma_n \mathbf{I}_{N_{\mathrm{T}}} \end{bmatrix} \Rightarrow \underline{\mathbf{H}}^H \underline{\mathbf{H}} = \mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}} \qquad \qquad \underline{\mathbf{y}} = \begin{bmatrix} \mathbf{y} \\ \mathbf{0}_{N_{\mathrm{T}} \times 1} \end{bmatrix}$$

- Applying zero-forcing approach to $\underline{\mathbf{H}}$ leads to MMSE solution with \mathbf{H}
 - Filter output expressed with <u>H</u> and <u>y</u>

$$\tilde{\mathbf{x}}_{\text{MMSE}} = \left(\mathbf{H}^{H}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}_{N_{\text{T}}}\right)\mathbf{H}^{H}\mathbf{y} = \left(\begin{bmatrix}\mathbf{H}^{H} & \sigma_{n}\mathbf{I}_{N_{\text{T}}}\end{bmatrix} \begin{bmatrix}\mathbf{H} \\ \sigma_{n}\mathbf{I}_{N_{\text{T}}}\end{bmatrix}\right)^{-1}\begin{bmatrix}\mathbf{H}^{H} & \sigma_{n}\mathbf{I}_{N_{\text{T}}}\end{bmatrix} \begin{bmatrix}\mathbf{y} \\ \mathbf{0}_{N_{\text{T}},1}\end{bmatrix}$$
$$= (\underline{\mathbf{H}}^{H}\underline{\mathbf{H}})^{-1}\underline{\mathbf{H}}^{H}\underline{\mathbf{y}} = \underline{\mathbf{H}}^{+}\underline{\mathbf{y}}$$

Error covariance matrix expressed with <u>H</u>

$$\Phi_{\text{MMSE}} = \sigma_n^2 (\underline{\mathbf{H}}^H \underline{\mathbf{H}})^{-1} = \sigma_n^2 \cdot \underline{\mathbf{H}}^+ \underline{\mathbf{H}}^{+H}$$

MMSE solution corresponds to zero-forcing for extended system

Universität Bremen

Bit Error Rate for Linear Equalization

ersität Bremen

- Simulation parameters
 - $N_{\rm T} = 4, 4$ -QAM

Results

- Linear Equalization leads to strong performance drawback in comparison to ML
- MMSE outperforms ZF
- With increased N_R the slope of BER increases (receive diversity) and gap between linear and ML becomes smaller

Successive Interference Cancellation

- Basic principle of Successive Interference Cancellation (SIC)
 - Cancel estimated interference of already detected layer and linearly suppress the interference of remaining layer
 - Optimization of detection sequence to reduce error propagation
- V-BLAST Algorithm
 - Based on linear ZF or MMSE equalization
 - In each step only the layer with maximum SNR / SINR is detected

V-BLAST Detection Algorithm (2)

General procedure

versität Bremen

- Apply zero forcing only for one layer (nulling interfering users)
- Detect best layer and subtract estimated interference
- Continue with next layer until all layers have been processed
- Order of detection is crucial \rightarrow sorting criterion is necessary
 - Error covariance matrix: diagonal elements determine layer-specific errors

$$\Phi_{\rm ZF} = \mathrm{E}\{(\tilde{\mathbf{x}}_{\rm ZF} - \mathbf{x})(\tilde{\mathbf{x}}_{\rm ZF} - \mathbf{x})^H\}$$

= $\mathrm{E}\{(\mathbf{x} + \mathbf{G}_{\rm ZF}\mathbf{n} - \mathbf{x})(\mathbf{x} + \mathbf{G}_{\rm ZF}\mathbf{n} - \mathbf{x})^H\}$
= $\sigma_n^2 \cdot \mathbf{G}_{\rm ZF} \cdot \mathbf{G}_{\rm ZF}^H = \sigma_n^2 \cdot (\mathbf{H}^H \mathbf{H})^{-1}$ $\mathbf{P}_{\rm ZF}^{(i)} = \sigma_n^2 \cdot \|\mathbf{g}_{\rm ZF}^{(i)}\|^2$

- Layer corresponding to smallest diagonal element in $\mathbf{\Phi}_{ZF}$ has smallest error
- \rightarrow Row $\underline{g}_{ZF}^{(i)}$ of \mathbf{G}_{ZF} with smallest squared norm corresponds to minimum diagonal element in $\mathbf{\Phi}_{ZF}$
- \rightarrow Smallest noise amplification \rightarrow best SNR

V-BLAST Detection Algorithm (3)

Detailed procedure:

versität Bremen

- Determine layer with smallest noise amplification (best SNR)
- Apply linear filtering to layer k_i

$$\tilde{x}_{k_i} = \underline{\mathbf{g}}_{\mathrm{ZF}}^{(k_i)} \cdot \mathbf{y} = x_{k_i} + \underline{\mathbf{g}}_{\mathrm{ZF}}^{(k_i)} \mathbf{n} = x_{k_i} + \left[(\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H \right]_{k_i} \mathbf{n}$$

- Detect layer after filtering, i.e. find estimate \hat{x}_{k_i} for x_{k_i} by quantization of \tilde{x}_{k_i}
- Subtract estimated interference from receive signal $\mathbf{y} \leftarrow \mathbf{y} \mathbf{h}_{k_i} \cdot \hat{x}_{k_i}$
- Remove *i*-th column from channel matrix

 Continue with next layer of reduced system until all layers have been detected

SIC with QR Decomposition (1)

- Costly calculation of pseudo inverse should be avoided
- Applying QR decomposition of H

 $\mathbf{H} = \mathbf{Q}\mathbf{R}$

- **Q** is a $N_R \times N_T$ matrix with orthogonal columns of unit length
- **R** is a $N_T \times N_T$ upper triangular matrix
- Multiplication of y with Q^H delivers starting point for successive interference cancellation without any further linear filtering

 $\tilde{\mathbf{x}} = \mathbf{Q}^{H}\mathbf{y} = \mathbf{Q}^{H}\mathbf{Q}\mathbf{R}\mathbf{x} + \mathbf{Q}^{H}\mathbf{n} = \mathbf{R}\mathbf{x} + \boldsymbol{\eta}$

- Only 1 QR decomposition instead of calculating $N_T 1$ pseudo inverses
- However, sorting is still an open problem

SIC with QR Decomposition (2)

Linear filtering of y with \mathbf{Q}^{H} yields

Layer k experiences only interference from layers $k + 1, ..., N_{T}$

$$ilde{x} = r_{k,k} \cdot x_k + \sum_{i=k+1}^{N_{\mathrm{T}}} r_{k,i} \cdot x_i + \eta_k$$

- Signal $\ddot{x}_{N_{\rm T}}$ is free of interference and can be directly decided
- Subtract estimated interference from other layers and continue detection with $\tilde{x}_{N_{\rm T}-1}$ until first layer \tilde{x}_1 has been decided
- SNR in layer $N_{\rm T}$: $\text{SNR}_{N_{\rm T}} = \sigma_n^{-2} |r_{N_{\rm T},N_{\rm T}}|^2$

SIC with QR Decomposition (3)

Interference cancellation

$$\tilde{x}_k^{IC} = \tilde{x}_k - \sum_{i=k+1}^{N_{\mathrm{T}}} r_{k,i} \cdot \hat{x}_i = r_{k,k} \cdot x_k + \eta_k$$

 \blacktriangleright Example for $N_{\rm T} = 4$

Detection

$$\hat{x}_k = \mathcal{Q}\{\tilde{x}_k^{IC}/r_{k,k}\} \implies \text{SNR}_i = \sigma_n^{-2}|r_{i,i}|^2$$

Universität Bremen

SIC-Detection with real MIMO-Transmission

- Parameter
 - MASI: Multiple Antenna System for ISM-Band Transmission
 - Transmission between two offices in 2.4 GHz ISM-Band
 - $N_{\rm T} = N_{\rm R} = 4$, 4-QAM, λ /2-ULA

QR Decomposition with Modified Gram-Schmidt Algorithm

- QR decomposition of channel matrix $\mathbf{H} = \mathbf{QR}$
- Gram-Schmidt

 $\begin{bmatrix} \mathbf{h}_{1} & \mathbf{h}_{2} & \mathbf{h}_{3} & \cdots & \mathbf{h}_{N_{\mathrm{T}}} \end{bmatrix} = \begin{bmatrix} \mathbf{q}_{1} & \mathbf{q}_{2} & \mathbf{q}_{3} & \cdots & \mathbf{q}_{N_{\mathrm{T}}} \end{bmatrix} \cdot \begin{bmatrix} r_{1,1} & r_{1,2} & r_{1,3} & \cdots & r_{1,n_{\mathrm{T}}} \\ & r_{2,2} & r_{2,3} & \cdots & r_{2,n_{\mathrm{T}}} \\ & & & r_{3,3} & \cdots & r_{3,n_{\mathrm{T}}} \end{bmatrix}$

- Example: Decomposition of h₃
 - Columns (q₁,q₂) form an orthonormal basis of the vector space (h₁,h₂)
 - $r_{1,3}$ and $r_{2,3}$ describe the component of \mathbf{h}_3 in the direction of \mathbf{q}_1 and \mathbf{q}_2
 - \mathbf{q}_3 denotes the direction of \mathbf{h}_3 perpendicular to the base ($\mathbf{q}_1, \mathbf{q}_2$)
 - $r_{3,3}$ describes the component of \mathbf{h}_3 in the direction of $\mathbf{q}_3 \rightarrow \mathbf{h}_3 = \mathbf{q}_1 \cdot r_{1,3} + \mathbf{q}_2 \cdot r_{2,3} + \mathbf{q}_3 \cdot r_{3,3}$

Diagonal element $r_{k,k}$ denotes component of \mathbf{h}_k perpendicular to base $(\mathbf{q}_1, \dots, \mathbf{q}_{k-1})$

QR Decompositions of Permutated Channel Matrices

- Given channel matrix
 - $\mathbf{H} = \begin{bmatrix} 0.0828 & 0.3269 & 0.5548 \\ 0.7662 & 0.8633 & 1.0016 \\ 2.2368 & 0.6794 & 1.2594 \end{bmatrix}$
- QR decomposition of permutated channel matrices H(p) (permutat. vector p)

$\mathbf{R}_{[123]} = \begin{bmatrix} 2.3659\\ 0\\ 0 \end{bmatrix}$	$0.9334 \\ 0.6653 \\ 0$	$ \begin{array}{c} 1.5345 \\ 0.7056 \\ 0.2108 \end{array} $	$\mathbf{R}_{[312]} = \begin{bmatrix} 1.7021\\0\\0 \end{bmatrix}$	$2.1329 \\ 1.0237 \\ 0$	$\begin{array}{c} 1.1173 \\ -0.1708 \\ 0.1905 \end{array} \right]$
$\mathbf{R}_{[213]} = \begin{bmatrix} 1.1462\\0\\0 \end{bmatrix}$	$1.9266 \\ 1.3732 \\ 0$	$\begin{array}{c} 1.6591 \\ 0.3160 \\ 0.2108 \end{array}$	$\mathbf{R}_{[231]} = egin{bmatrix} 1.1462 \\ 0 \\ 0 \end{bmatrix}$	$1.6591 \\ 0.3799 \\ 0$	$\begin{array}{c} 1.9266 \\ 1.1423 \\ 0.7622 \end{array}$
$\mathbf{R}_{[132]} = \begin{bmatrix} 2.3659\\ 0\\ 0 \end{bmatrix}$	$1.5345 \\ 0.7365 \\ 0$	$\begin{array}{c} 0.9334 \\ 0.6374 \\ 0.1905 \end{array}$	$\mathbf{R}_{[321]} = \begin{bmatrix} 1.7021 \\ 0 \\ 0 \end{bmatrix}$	$1.1173 \\ 0.2558 \\ 0$	$\begin{array}{c} 2.1329 \\ -0.6834 \\ 0.7622 \end{array} \right]$

Which permutation leads to best SNR in each detection step?

Adaptation of the Detection Order

- Optimization of the detection order to reduce problem of error propagation
 - Adaptation by exchanging the columns of $\mathbf{H} \rightarrow$ different QR decompositions
 - SNR_i is given by diagonal element $r_{i,i}$

→ Exchange the columns of **H** in order to maximize the elements $r_{i,i}$ with respect to the detection sequence

Sorted QR Decomposition (SQRD)

$$\sqrt{\det\left(\mathbf{H}^T\mathbf{H}\right)} = \prod_{i=1}^{N_{\mathrm{T}}} |r_{i,i}|$$

- Optimizes the sequence within one QR Decomposition
- Lattice determinant is independent of column sorting
- Product of diagonal elements is constant

Exchange columns within the QR decomposition of **H** so that the diagonal elements $r_{i,i}$ are **minimized** in the sequence $r_{1,1}, r_{2,2}, ...!$

- Small elements $r_{1,1}, r_{2,2}, \cdots$ lead to large elements $\cdots, r_{N_{2T}-1, N_{2T}-1}, r_{N_{2T}, N_{2T}}$
- Only very small computational effort in contrast to unsorted QRD, but does not always lead to the optimal detection sequence → Post-Sorting-Algorithm

Sorted QR Decomposition (SQRD)

- Modification of Gram-Schmidt algorithm by inserting a reordering in each decomposition step
 - \rightarrow Permutation vector p
- Decomposition step i
 - First *i*-1 elements of p and q₁,...,q_{i-1} are fixed, but order of remaining columns is variable
 - Sorting rule selects column q_{ki} of remaining columns with minimum norm
 - Exchange columns of Q, R and p
 - Proceed with Gram-Schmidt decomposition

$$\mathbf{R} = \mathbf{0}, \mathbf{Q} = \mathbf{H}, \mathbf{p} = (1, \dots, N_{\mathrm{T}})$$

for $i = 1, \dots, N_{\mathrm{T}}$
$$k_i = \arg \min_{l=i,\dots,N_{\mathrm{T}}} ||\mathbf{q}_l||^2$$

exchange col. i and k_i in \mathbf{Q}, \mathbf{R} and \mathbf{p}
$$r_{i,i} = ||\mathbf{q}_i||$$

$$\mathbf{q}_i = \mathbf{q}_i/r_{i,i}$$

for $l = i + 1, \dots, N_{\mathrm{T}}$
$$r_{i,l} = \mathbf{q}_i^H \cdot \mathbf{q}_l$$

$$\mathbf{q}_l = \mathbf{q}_l - r_{i,l} \cdot \mathbf{q}_i$$

end
end

Only one decomposition, but *optimum* sorting is not assured!

Why is heuristic sorting rule not optimal?

- Example with $N_T = 3$
 - Optimal order

 Large part of h₃ perpendicular to h₁ and h₂ leads to large coefficient r_{3,3}

- Suboptimal order q_3 h_1 q_2 h_2 $r_{3,3}$ h_1 q_2 h_2
- \mathbf{h}_2 and \mathbf{h}_3 have a large norm but similar direction, which leads to a small perpendicular component $r_{3,3} \rightarrow \text{small SNR}_3$

Post Sorting Algorithm

Relation between error covariance matrix and QR decomposition

 $\boldsymbol{\Phi}_{\mathrm{ZF}} = \sigma_n^2 \cdot (\mathbf{H}^H \mathbf{H})^{-1} = \sigma_n^2 \cdot (\mathbf{R}^H \mathbf{Q}^H \mathbf{Q} \mathbf{R})^{-1} = \sigma_n^2 \cdot (\mathbf{R}^H \mathbf{R})^{-1} = \sigma_n^2 \cdot \mathbf{R}^{-1} \mathbf{R}^{-H}$

• $[\mathbf{\Phi}_{ZF}]_{i,i}$ is proportional to the norm of the *i*-th row of \mathbf{R}^{-1}

- Due to detection order, last row of R⁻¹ must have minimum norm of all rows
- If this condition is fulfilled, the last row of the upper left (N_T-1)x(N_T-1) submatrix of R⁻¹ must have minimum norm of all rows in this submatrix, ...
- Now assume, that this condition is not fulfilled for R⁻¹
 - Exchange row with minimum norm & last row → left multiplication with P
 → destroys triangular structure
 - Block triangular structure is achieved by multiplication with unitary Housholder matrix Θ

 $\rightarrow \mathbf{R}^{-1} := \mathbf{R}^{-1} \mathbf{\Theta}$ and $\mathbf{Q} := \mathbf{Q} \mathbf{\Theta}$

versität Bremen

 Iterate this ordering and reflection steps for upper left (N_T-1)x(N_T-1) submatrix of R⁻¹, ...

Example: Efficient Sorting Algorithm for 4 Layers

 $\mathbf{R}_{\mathrm{opt}}^{-1} = \mathbf{P}_3 \mathbf{P}_2 \mathbf{P}_1 \mathbf{R}^{-1} \mathbf{\Theta}_1 \mathbf{\Theta}_2 \mathbf{\Theta}_3 \quad \mathbf{R}_{\mathrm{opt}} = \mathbf{\Theta}_3^H \mathbf{\Theta}_2^H \mathbf{\Theta}_1^H \mathbf{R} \mathbf{P}_1^H \mathbf{P}_2^H \mathbf{P}_3^H \quad \mathbf{Q}_{\mathrm{opt}} = \mathbf{Q} \mathbf{\Theta}_1 \mathbf{\Theta}_2 \mathbf{\Theta}_3$

Universität Bremen

Extension of V-BLAST to MMSE Detection (1)

MMSE filter matrix

$$\mathbf{G}_{\mathrm{MMSE}} = (\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}})^{-1} \mathbf{H}^H$$

- Output of the MMSE filter $\tilde{\mathbf{x}}_{\text{MMSE}} = \mathbf{G}_{\text{MMSE}} \mathbf{y} = (\mathbf{H}^{H}\mathbf{H} + \sigma_{n}^{2}\mathbf{I}_{N_{\text{T}}})^{-1}\mathbf{H}^{H}\mathbf{y}$
- Error covariance matrix

 $\mathbf{\Phi}_{\text{MMSE}} = \sigma_n^2 (\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\text{T}}})^{-1}$

- Note: row norm of **G**_{MMSE} does not lead to optimum sorting criterion!
- Reason: diagonal elements of Φ_{MMSE} are not squared row norms of G_{MMSE}

 $\begin{aligned} \mathbf{\Phi}_{\mathrm{MMSE}i,i} &= \sigma_n^2 \{ (\mathbf{H}^H \mathbf{H} \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}})^{-1} \}_{i,i} \\ &\neq \sigma_n^2 \{ (\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}})^{-1} \mathbf{H}^H \mathbf{H} (\mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}})^{-1} \}_{i,i} \end{aligned}$

• Compare ZF: $\Phi_{\text{ZF}i,i} = \{(\mathbf{H}^H \mathbf{H})^{-1}\}_{i,i} \stackrel{!}{=} \{(\mathbf{H}^H \mathbf{H})^{-1} \mathbf{H}^H \mathbf{H} (\mathbf{H}^H \mathbf{H})^{-1}\}_{i,i} = \{(\mathbf{H}^H \mathbf{H})^{-1}\}_{i,i}$

Universität Bremen

 $\underline{\mathbf{y}} = \left| \begin{array}{c} \mathbf{y} \\ \mathbf{0}_{N_{\mathrm{T}} \times 1} \end{array} \right|$

Extension of V-BLAST to MMSE Detection (2)

- Relation of MMSE to zero-forcing
 - Definition of extended channel matrix and extended receive vector

$$\underline{\mathbf{H}} = \begin{bmatrix} \mathbf{H} \\ \sigma_n \mathbf{I}_{N_{\mathrm{T}}} \end{bmatrix} \Rightarrow \underline{\mathbf{H}}^H \underline{\mathbf{H}} = \mathbf{H}^H \mathbf{H} + \sigma_n^2 \mathbf{I}_{N_{\mathrm{T}}}$$

- Applying zero-forcing approach to <u>H</u> leads to MMSE solution w.r.t. H
 - Filter output expressed with $\underline{\mathbf{H}}$ and $\underline{\mathbf{y}}$

 $\tilde{\mathbf{x}}_{\text{MMSE}} = (\underline{\mathbf{H}}^H \underline{\mathbf{H}})^{-1} \underline{\mathbf{H}}^H \underline{\mathbf{y}} = \underline{\mathbf{H}}^+ \underline{\mathbf{y}}$

Error covariance matrix expressed with <u>H</u> and <u>y</u>

$$\Phi_{\text{MMSE}} = \sigma_n^2 (\underline{\mathbf{H}}^H \underline{\mathbf{H}})^{-1} = \sigma_n^2 \cdot \underline{\mathbf{H}}^+ \underline{\mathbf{H}}^{+H}$$

MMSE solution corresponds to zero-forcing for extended system

MMSE-BLAST with QR Decomposition (1)

- Algorithms for ZF V-BLAST can be readily applied to MMSE V-BLAST
 - QR decomposition of extended channel matrix

$$\underline{\mathbf{H}} = \begin{bmatrix} \mathbf{H} \\ \sigma_n \mathbf{I}_{N_{\mathrm{T}}} \end{bmatrix} = \underline{\mathbf{Q}} \underline{\mathbf{R}} = \begin{bmatrix} \mathbf{Q}_1 \\ \mathbf{Q}_2 \end{bmatrix} \underline{\mathbf{R}} = \begin{bmatrix} \mathbf{Q}_1 \underline{\mathbf{R}} \\ \mathbf{Q}_2 \underline{\mathbf{R}} \end{bmatrix} \text{ with } \underline{\mathbf{Q}} = \begin{bmatrix} \mathbf{Q}_1 \\ \mathbf{Q}_2 \end{bmatrix} \begin{bmatrix} \mathbf{Q}_1 : N_{\mathrm{R}} \times N_{\mathrm{T}} \\ \mathbf{Q}_2 : N_{\mathrm{T}} \times N_{\mathrm{T}} \end{bmatrix} \mathbf{Q}_1 = \begin{bmatrix} \mathbf{Q}_1 \\ \mathbf{Q}_2 \end{bmatrix} \mathbf{Q}_2 = \begin{bmatrix} \mathbf{Q}$$

- Attention: Q₁ and Q₂ are not unitary since they contain only column parts of Q!
- No matrix inversion for efficient optimum sorting algorithm required $\sigma_n \mathbf{I}_{N_{\mathrm{T}}} = \mathbf{Q}_2 \mathbf{\underline{R}} \Rightarrow \mathbf{\underline{R}}^{-1} = \sigma_n^{-1} \mathbf{Q}_2$
 - Compensates for higher computational effort of QR decomposition
- Filtered receive signal

$$\tilde{\mathbf{x}} = \underline{\mathbf{Q}}^{H} \underline{\mathbf{y}} = \begin{bmatrix} \mathbf{Q}_{1}^{H} & \mathbf{Q}_{2}^{H} \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{0} \end{bmatrix} = \mathbf{Q}_{1}^{H} \mathbf{y} = \mathbf{Q}_{1}^{H} (\mathbf{H}\mathbf{x} + \mathbf{n}) = \mathbf{Q}_{1}^{H} \mathbf{H}\mathbf{x} + \mathbf{Q}_{1}^{H} \mathbf{n}$$

• Analyzing $\mathbf{Q}_1^H \mathbf{H}$

$$\underline{\mathbf{Q}}^{H}\underline{\mathbf{H}} = \underline{\mathbf{R}} = \begin{bmatrix} \mathbf{Q}_{1}^{H} & \mathbf{Q}_{2}^{H} \end{bmatrix} \underline{\mathbf{H}} = \mathbf{Q}_{1}^{H}\mathbf{H} + \sigma_{n}\mathbf{Q}_{2}^{H}$$

Universität Bremen

MMSE-BLAST with QR Decomposition

Extracting <u>R</u>

$$\underline{\mathbf{Q}}^{H}\underline{\mathbf{H}} = \underline{\mathbf{R}} = \begin{bmatrix} \mathbf{Q}_{1}^{H} & \mathbf{Q}_{2}^{H} \end{bmatrix} \underline{\mathbf{H}} = \mathbf{Q}_{1}^{H}\mathbf{H} + \sigma_{n}\mathbf{Q}_{2}^{H}$$

$$\mathbf{Q}_1^H \mathbf{H} = \underline{\mathbf{R}} - \sigma_n \mathbf{Q}_2^H = \underline{\mathbf{R}} - \sigma_n (\sigma_n \underline{\mathbf{R}}^{-1})^H = \underline{\mathbf{R}} - \sigma_n^2 \underline{\mathbf{R}}^{-H}$$

Inserting above result into filtered receive signal

$$ilde{\mathbf{x}} = \mathbf{Q}_1^H \mathbf{H} \mathbf{x} + \mathbf{Q}_1^H \mathbf{n} = \mathbf{\underline{R}} \mathbf{x} - \sigma_n^2 \mathbf{\underline{R}}^{-H} \mathbf{x} + \mathbf{Q}_1^H \mathbf{n}$$

perform successive interference cancellation like before second term represents remaining interference

Universität Bremen

 \mathbf{n}_i

Extension for Quadrature Amplitude Modulation

- QAM symbols \rightarrow real and imaginary parts are independent of each other
 - Real-valued system model

$$= \mathbf{H}\mathbf{x} + \mathbf{n} \qquad \Longrightarrow \qquad \begin{bmatrix} \mathbf{y}_r \\ \mathbf{y}_i \end{bmatrix} = \begin{bmatrix} \mathbf{H}_r & -\mathbf{H}_i \\ \mathbf{H}_i & \mathbf{H}_r \end{bmatrix} \begin{bmatrix} \mathbf{x}_r \\ \mathbf{x}_i \end{bmatrix} + \begin{bmatrix} \mathbf{n}_r \\ \mathbf{n}_i \end{bmatrix}$$

- Real system with doubled number of transmit and receive antennas
 - One QAM symbol does not need to be detected completely
 - Increased degrees of freedom for finding the optimum detection order
 - Leads to additional performance gain
- All algorithms described before can be used without modification
 - Only real-valued operations necessary

versität Bremen

Nevertheless, slightly increased computational complexity due to larger matrices

Bit Error Rates for V-BLAST Systems

- Simulation parameters: $N_{\rm T} = N_{\rm R} = 4$, QPSK \rightarrow 8 bits per time instant
- Enormous performance gain by sorting → SQRD close to optimum for ZF For MMSE SQRD is near optimum only for low SNR

Universität Bremen

- Simulation parameters
 - 4 transmit antennas
 - 4 receive antennas
 - Flat Rayleigh fading
 - Uncorrelated channels
 - QPSK modulation
 - Uncoded data streams

Result

- Small performance gain without sorting
- Up to 2dB gain with optimum ordering

Analysis of Error Propagation

- Uncoded system with $N_{\rm T} = N_{\rm R} = 4$ antennas
- For genie detection the diversity of layer *i* is given by $N_{\rm R}$ -*i*+1

Decision Regions of the Detection Schemes ($N_T = 2$)

- Maximum-Likelihood (ML): Voronoi regions (nearest neighbor)
- Linear Detection (LD): parallelogram in direction of h₁ and h₂
- Successive Interference Cancellation (SIC): rectangle in direction of q_2 and q_1
 - QR decomposition $\begin{bmatrix} \mathbf{h}_1 & \mathbf{h}_2 \end{bmatrix} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix} \cdot \begin{bmatrix} r_{1,1} & r_{1,2} \\ & r_{2,2} \end{bmatrix}$

Basic Principle of Sphere Detection (1)

Equivalent real-valued

system model is assumed

in the sequel!

- Maximum-Likelihood Criterion: $\hat{\mathbf{x}}_{\mathrm{ML}} = \operatorname{argmin} \|\mathbf{y} - \mathbf{H}\mathbf{x}'\|^2$ x′∈S
- Basic idea of Sphere Detection (SD):
 - Restrict the search to hypothesis \mathbf{x}' within ball of radius $d_{r'}^2$ around $\mathbf{y} \rightarrow easy?$ with $\mathbf{H} = \overline{\mathbf{Q}} \, \overline{\mathbf{R}} = [\mathbf{Q} \, \mathbf{Q}_{\perp}] \begin{vmatrix} \mathbf{R} \\ \mathbf{O} \end{vmatrix}$

$$d_{r'}^2 \ge \|\mathbf{y} - \mathbf{H}\mathbf{x}'\|^2 = \|\mathbf{y} - \overline{\mathbf{Q}}\ \overline{\mathbf{R}}\mathbf{x}'\|^2$$

- Multiplication with $\overline{\mathbf{Q}}^T$ (orthogonal matrix) does not change distance $d_{r'}^2 \ge \|\overline{\mathbf{Q}}^T \mathbf{y} - \overline{\mathbf{Q}}^T \overline{\mathbf{Q}} \overline{\mathbf{R}} \mathbf{x}'\|^2 = \|\mathbf{Q}^T \mathbf{y} - \mathbf{R} \mathbf{x}'\|^2 + \|\mathbf{Q}_{\perp} \mathbf{y}\|^2 = \|\tilde{\mathbf{x}} - \mathbf{R} \mathbf{x}'\|^2 + \|\mathbf{Q}_{\perp} \mathbf{y}\|^2$
- Last term is independent of the hypothesis \rightarrow define radius $d_r^2 = d_{r'}^2 \|\mathbf{Q}_{\perp}\mathbf{y}\|^2$

 $d_r^2 \ge \|\tilde{\mathbf{x}} - \mathbf{R}\mathbf{x}'\|^2 = \sum_{i=1}^{N_{2T}} \left(\tilde{x}_i - \sum_{\nu=i}^{N_{2T}} r_{i,\nu} x'_{\nu} \right)^2$

All terms in the sum are non-negative!

Upper triangular form of $\mathbf{R} \rightarrow$ successive testing of hypothesis (compare SIC)

Basic Principle of Sphere Detection (2)

• 1. Step
• Simplify constraint
$$d_r^2 \ge \left(\tilde{x}_{N_{2\mathrm{T}}} - r_{N_{2\mathrm{T}},N_{2\mathrm{T}}} x'_{N_{2\mathrm{T}}}\right)^2 + \sum_{i=1}^{N_{2\mathrm{T}}-1} \left(\tilde{x}_i - \sum_{\nu=i}^{N_{2\mathrm{T}}} r_{i,\nu} x'_{\nu}\right)^2$$

- Choose hypothesis $\hat{x}'_{N_{2T}}$ that fulfills $d_r^2 = \Delta_{N_{2T}}^2 \ge \left(\tilde{x}_{N_{2T}} r_{N_{2T},N_{2T}} \hat{x}'_{N_{2T}} \right)^2$
- Update the constraint for the remaining layers $\Delta_{N_{2\mathrm{T}}-1}^2 = \Delta_{N_{2\mathrm{T}}} - \delta_{N_{2\mathrm{T}}}^2 \quad \text{with} \quad \delta_{N_{2\mathrm{T}}}^2 = \left(\tilde{x}_{N_{2\mathrm{T}}} - r_{N_{2\mathrm{T}},N_{2\mathrm{T}}}\hat{x}'_{N_{2\mathrm{T}}}\right)^2$
- 2. Step

Partial Euclidian Distance (PED)

- Choose hypothesis $\hat{x}'_{N_{2\mathrm{T}}-1}$ that fulfills

$$\Delta_{N_{2\mathrm{T}}-1}^2 \ge \left(\tilde{x}_{N_{2\mathrm{T}}-1} - r_{N_{2\mathrm{T}}-1,N_{2\mathrm{T}}-1}\hat{x}'_{N_{2\mathrm{T}}-1} + r_{N_{2\mathrm{T}}-1,N_{2\mathrm{T}}}\hat{x}'_{N_{2\mathrm{T}}}\right)^2$$

Update the constraint for the remaining layers

Search Strategies within each layer

- Fincke-Pohst (FP-SD)
 - Determine the range of allowed values for
 - Choose symbols in ascending order

Originally used to count all points within a distinct radius

- Radius d_r must be initialized appropriately
- After a valid estimation is found, d_r is reduced and new search is started from root
- Schnorr-Euchner (SE-SD)

Consider symbols close to the interference reduced signal first

- Initialization $d_r = \infty \rightarrow$ first point found corresponds to SIC result (Babai-Point)!
- Update radius if a new point is found and continue search in layer 2, 3, ...

Searching Tree of Schnorr-Euchner for N_{2T} =4, 2-ASK per real layer

Some Aspects of Implementation

- Computational complexity is determined by number of visited nodes
- Optimization of the detection order
 - Due to the tree structure, a good estimation of hypothesis in first steps is desired
 → efficient search if the first point is as close to ML as possible
 - By application of SQRD an optimized sorting is achieved
- Choice of initial radius
 - SE-SD selects in each layer the nearest hypothesis \rightarrow for $d_r = \infty \rightarrow \hat{\mathbf{x}} = \hat{\mathbf{x}}_{SIC}$ Nevertheless, an adequate choice of d_r leads to an advance of speeding
 - FP-SD requires a suitable choice of $d_r \rightarrow \text{arrange } d_r$ due to noise, e.g. Hassibi: $\|\mathbf{y} - \mathbf{H}\hat{\mathbf{x}}_{\mathrm{ML}}\|^2 = \|\mathbf{n}\|^2 \sim \chi^2_{N_{2\mathrm{R}}}$ $\longrightarrow P_{\mathrm{FP}} = \frac{1}{\Gamma(N_{\mathrm{R}})}\gamma(N_{\mathrm{R}}, \alpha N_{\mathrm{R}}) = 1 - \epsilon$
- Extension to MMSE criterion
 - For SIC the MMSE-extension leads to an improved estimate → speeding up
 - Solution is not necessary ML-solution due to the ignored interference

Complexity Evaluation

- Impact of initial radius and sorting for $N_T = N_R = 4$, 16-QAM (\rightarrow 65536 points) to the average number of visited nodes (Hassibi with $P_{FP}=0.99$)
- SQRD and MMSE lead to strong decrease in complexity for both schemes
- SE-SD is first choice of ML-Implementation (notice $d_r = 1000$!)

Performance of MMSE Sphere Detection

- Simulation parameters
 - $N_{\rm T} = N_{\rm R} = 4$, 16-QAM

Results

- Small performance loss of MMSE-extension due to ignored interference term
- Complexity is significantly reduced by MMSEextension
 → first choice of implementation

Hardware Implementation

 Real-time implementation of SQRD & Co. at ETH Zürich: http://www.cc.ethz.ch/media/picturelibrary/archiv/mimotechnik/index

Universität Bremen

Selected References for V-BLAST Systems

- Paper
 - P.W. Wolniansky, G.J. Foschini, G.D. Golden and R.A. Valenzuela: V-BLAST: An Architecture for Realizing Very High Data Rates Over the Rich-Scattering Wireless Channel, Proc. International Symposium on Signals, Systems, and Electronics (ISSSE), Pisa, Italy, Sept. 1998
 - G.D. Golden, G.J. Foschini, P.W. Wolniansky and R.A. Valenzuela: V-BLAST: A High Capacity Space-Time Architecture for the Rich-Scattering Wireless Channel, Proc. Int'l Symposium on Advanced Radio Technologies, Boulder, Colorado, USA, Sept. 1998
 - D. Wübben, R. Böhnke, J. Rinas, V. Kühn and K.D. Kammeyer: Efficient algorithm for decoding layered space-time codes, IEE Electronic Letters, Vol. 37, No. 22, October 2001
 - D. Wübben, J. Rinas, R. Böhnke, V. Kühn and K.D. Kammeyer: Efficient Algorithm for Detecting Layered Space-Time Codes, International ITG Conference on Source and Channel Coding, Berlin, Germany, January 28-30, 2002,
 - D. Wübben, R. Böhnke, V. Kühn and K.D. Kammeyer: MMSE Extension of V-BLAST based on Sorted QR Decomposition, IEEE Semiannual VTC2003-Fall, Orlando, Florida, USA, October 6-9, 2003
 - R. Böhnke, D. Wübben, V. Kühn and K.D. Kammeyer: Reduced Complexity MMSE Detection for BLAST Architectures, Globecom'2003, San Francisco, California, USA, December 1-5, 2003
- Books
 - D. Wübben: Effiziente Detektionsverfahren für Multilayer-MIMO-Systeme, PhD Thesis, University of Bremen, 2005
 - V. Kühn: Wireless Communications over MIMO Channels, Wiley, 2006

Universität Bremen