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Abstract—A possible future application in communications
is the wireless uplink transmission in sensor networks. This
application is mainly characterized by sporadic transmission
over a random access channel. Since each sensor has a low
activity probability, the signal for Multi-User Detection (MUD)
is sparse. Compressive Sensing (CS) theory introduces detectors
that are able to recover sparse signals reliably. When applied
to MUD, CS detectors perform a joint detection of both data
and user activity. This allows for less control signaling, since
information about the activity state of each user no longer need
to be signaled. Additionally, CS detectors are able to reliably
detect sparse signals even in under-determined systems. Inthe
context of transmission with Code Division Multiple Access
(CDMA) this property can be exploited by reducing the length
of spreading sequences, which increases the symbol-rate for a
given bandwidth, and making the CDMA system overloaded. In
this paper we introduce the application of greedy CS detection
algorithms to detect CDMA spread multi-user data.

I. I NTRODUCTION

Reconstruction of sparse signals has become the topic of
much research recently, especially after Compressive Sensing
(CS) theory, [1], [2], gained a lot of attention in the fields
of applied mathematics and image processing. CS theory
shows that reliable signal reconstruction far below the Nyquist
sampling rate is possible provided that the signal is sparse. In
communications, CS theory has been applied for instance to
system parameter estimation [3] and channel estimation [4].

Another application of CS in communications is motivated
by the future challenge of designing efficient wireless sen-
sor networks, where the sensor nodes transmit to a single
aggregation node for data collection. Such a transmission
scenario is characterized by the sporadic communication of
a large amount of sensors, i.e. each sensor has a low activity
probability. In order to avoid control signaling each sensor
transmits whenever it has new data without first sending
control signals, i.e. the activity state of each sensor is not
known at the receiver and has to be detected. From a detection
perspective, the overall system has a large dimension, but only
few sensors or users transmit at any given time.

Multi-User Detection (MUD) is a powerful technique to
overcome the multi-access interference present in Code Divi-
sion Multiple Access (CDMA) systems, e.g. [5], and has also
been intensely investigated in the past for other commercial
communication systems such as UMTS [6]. MUD algorithms
simultaneously detect the transmitted symbols of all active
users. However, these algorithms require knowledge about

which user is active, leading to a large control signal overhead.
The challenge is to design MUD algorithms that exploit user
inactivity, while not requiring control information abouteach
user’s activity state.

In [7] the authors have introduced CS detectors for MUD
in order to exploit the inactivity of users. These detectorsare
based on convex optimization and are well known in regres-
sion problems [8], [9]. Additionally the authors introduced a
sparsity-promoting sphere decoder. However, the algorithms
in [7] are designed for a fully loaded CDMA systems, i.e.
the length of the spreading sequences is equal to the total
number of users. Therefore they do not exploit the potentialof
CS theory to reliably solve under-determined linear equation
systems by utilizing the knowledge that the signal is sparse.
We can classify the MUD algorithms in [7] as sparsity aware,
but not sparsity exploiting.

Besides convex optimization, [8], [9], CS also offers sparsity
exploiting greedy algorithms, [10], [11]. The main advantage
of these greedy algorithms is that they are less complex
compared to convex optimization, [12]. However, it is still
unknown how CS greedy algorithms perform for MUD for
CDMA transmission. The contribution of this paper is to
investigate greedy CS detection algorithms for joint detection
of activity and transmitted data. In particular the algorithms
Orthogonal Matching Pursuit (OMP) [10] and Orthogonal
Least Squares (OLS) [11] will be investigated.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a wireless uplink transmission fromK users to
a single aggregation node using CDMA [5, Chap. 1], as
shown in Figure 1. Herein, we assume that the transmission
is structured in frames, each of a length ofL chips, such
that whenever a user transmits data it transmits an entire
frame. Therefore, the activity of a user is defined for an entire
frame. Furthermore, we assume that the number of active users
Ka follows a discrete binomial distributionB(K, pa), where
pa ≪ 1 is the probability that thekth user is currently active.
This means that the activity of users is statistically independent
across both users and frames. We further assume that the
activity states of all users arenot signaled to the receiver,
rather they have to be detected by the receiver.

The spreading factor, i.e. the length of the spreading se-
quence, for thekth user is denoted byNk and thekth user
transmits⌊L/Nk⌋ symbols during a frame ofL chips. In
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Fig. 1. Sporadic transmission fromK users to a single aggregation node.
Each time step corresponds to an entire frame duration. Eachtransmission is
received with a relative delay ofτk.

our signal model the symbol vectorx contains the symbols
of all users for a given frame, regardless of their activity
states, and has a length ofM , with M =

∑K

k=1
⌊L/Nk⌋.

Since the symbols of each user are either all zero or with
probability pa ≪ 1 all non-zero, the vectorx is sparse. Due
to a channel impulse response with a length ofLh,k chips
for the kth user and a relative delay ofτk chips for thekth

user, theL transmitted chips are received asL′ chips, where
L′ = L+max

k
(Lh,k − 1 + τk).

For the symbol vectorx ∈ C
M×1 of any given frame, the

received vectory containingL′ chips is given by the input-
output relationship in the chip-rate model

y = Ax+ n , (1)

wheren ∈ CL′×1 is additive white Gaussian noise (AWGN),
i.e. N (0, σ2

n
), andA ∈ CL′×M is a matrix representing the

influence of the spreading sequences and the instantaneous
channels for the current frame on the transmitted symbols.

We assume perfect channel state information, so that the
matrix A is perfectly known at the receiver. The channel for
each user has a multi-tap power delay profile and is time
invariant within the duration of a frame, i.e. block fading
channel. In addition we assume that the instantaneous channels
are independent across users. In this transmission scenario
each column ofA contains the spreading sequencesk of
thekth user convolved with the instantaneous channel impulse
responsehk of the kth user [6].

A =





















r1,1,1 0 0 r2,1,1 0 0
r1,1,2 0 0 r2,1,2 0 0
r1,1,3 r1,2,1 0 r2,1,3 r2,2,1 0
0 r1,2,2 0 0 r2,2,2 0
0 r1,2,3 r1,3,1 0 r2,2,3 r2,3,1
0 0 r1,3,2 0 0 r2,3,2
0 0 r1,3,3 0 0 r2,3,3





















(2)

For illustration purposes, (2) shows matrixA in the case of
two synchronous users and a frame length ofL = 6 chips. The
spreading factors for both users areN1 = N2 = 2 and both
user transmit⌊L/Nk⌋ = 3 symbols. The channels for both
users have an impulse response of lengthLh,1 = Lh,2 = 2
and the relative delays areτ1 = τ2 = 0, and thusL′ = 7. Here
rk,l,i denotes theith chip of the received sequence of thelth

symbol of thekth user.
For CDMA transmission using a given bandwidth the trans-

mitted symbol-rate is determined by the spreading factorsNk.
If Nk = N ∀ k andN < K we term the CDMA system to
be overloaded with regard to the number of total usersK, or
from a CS perspective say the linear equation system (1) is
under-determined.

III. M ULTI -USERDETECTION WITH COMPRESSIVE

SENSING

CS enables the reliable detection of sparse signals even
in under-determined systems [1], [2]. This section shall only
provide a brief overview of those topics relevant to the content
of this paper. For a thorough overview of CS see e.g. [13].

The CS detection problem can be written in the form of
(1), where the matrixA and the noisy measurementy are
given. The receiver in general knows neither the amount nor
the position of the non-zero elements in the sparse vectorx.
The sparsity ofx is measured by the number of non-zero
elements

Sx = ‖x‖
0
= |{j : xj 6= 0}| . (3)

Different CS detectors have been proposed that mainly fall
into two categories: either convex optimization, or greedy
algorithms. In CS theory (1) is commonly solved by means of
convex optimization, e.g. Basis Pursuit De-Noising (BPDN)
[8] or Least Absolute Shrinkage and Selection Operator
(LASSO) [9]. While the convex optimization is performed
over CM , the values ofx in our system model are from
the augmented alphabetAa = {A ∪ 0}, where A is the
modulation alphabet, e.g.A = {−1, 1} for Binary Phase
Shift Keying (BPSK). Therefore, a discrete version of the
LASSO optimization problem has been proposed in [7]. This
optimization problem is given by

x̂LASSO = arg min
x∈AL

a

1

2
‖Ax− y‖2

2
+ λ ‖x‖

1
, (4)

where‖x‖1 =
∑M

i=1
|xi|. The correct value of the regulariza-

tion parameterλ is explained in detail in [7]. The optimization
problem (4) can for example be solved with the method of
sphere decoding.



Algorithm 1 Orthogonal Matching Pursuit (OMP)

r0 = y, Γ0 = ∅, l = 0
repeat
l = l + 1
imax = argmax

i

∣

∣AH
i rl−1

∣

∣ for i ∈ Γ
l−1

Γl = Γl−1 ∪ imax

x̂l
Γl = A

†
Γly and x̂l

Γ
l = 0

rl = y −Ax̂l

until l = Sx or
∥

∥AHrl
∥

∥

∞
< ε

Apart from convex optimization, several greedy algorithms
exist in CS theory [10], [11] that can be used for out detection
concept to jointly detect user activity and transmitted data. The
advantage of these algorithms is that they are less complex
compared to convex optimization, e.g. [12], but have the
drawback of error propagation, since previous choices for user
activity are not re-evaluated. As these algorithms performdata
estimation onCM we must perform a subsequent symbol
decision on the augmented alphabetAa. In the following two
greedy CS algorithms will be explained in detail.

A. Orthogonal Matching Pursuit

The basic concepts of greedy CS algorithms are introduced
by the Orthogonal Matching Pursuit (OMP) algorithm [10],
[14]. Several other greedy algorithms exist that are based
on the OMP, such as Compressive Sampling MP (CoSaMP),
Stagewise OMP (StOMP) and Probabilistic OMP (PrOMP)
[12], [15], [16]. We herein use the OMP algorithm, since it is
commonly used as a comparison.

For the algorithms the following notation is used:Γ is a set
of indices for columns in matrixA andΓ is the complementary
set containing all valid indices not inΓ. FurthermoreAΓ

specifies the sub-matrix that only contains those columns with
indices inΓ, and likewisexΓ the vector containing only the
elements ofx with indices inΓ. Additionally xl, Al andΓl

specify the respective variable during thelth iteration. Here,
A† is the Moore-Penrose pseudoinverse ofA and AH the
Hermitian matrix ofA. With this notation the OMP algorithm
is given by Algorithm 1.

During each iteration, the OMP algorithm chooses the
column ofA that has the highest correlation to the previous
residualrl−1 = y − Ax̂l−1. Then the orthogonal projection
into the sub-space not dependent on any of the columns inΓl

is performed and the current residualrl is calculated. The next
iteration continues with residualrl. As the subsequent iteration
depends on the previous residualrl−1, the performance of the
OMP is highly influenced by both linear dependencies between
columns ofA and the additive noisen.

The OMP performs these iterations until a stopping criterion
is met. Ideally the algorithm is terminated after a number of
iterations equal to a known sparsitySx, i.e. l = Sx. However,
since the sparsity is in general not known at the receiver, a
stopping criterion based on the current residualrl is used

Algorithm 2 Orthogonal Least Squares (OLS)

Γ0 = ∅, l = 0
repeat
l = l + 1
imin = argmin

i

∥

∥

∥y −AΓl

i

A
†

Γl

i

y

∥

∥

∥

2

with Γl
i = Γl−1 ∪ i

Γl = Γl−1 ∪ imin

x̂l
Γl = A

†
Γly and x̂l

Γ
l = 0

rl = y −Ax̂l

until l = Sx or
∥

∥AHrl
∥

∥

∞
< ε

instead
∥

∥AHrl
∥

∥

∞
< ε (5)

for appropriately chosenε [17].

B. Orthogonal Least Squares

Instead of using correlations to determine the support, i.e.
the non-zero elements ofx or the active users, the Orthogonal
Least Squares (OLS) algorithm uses Least Square (LS) estima-
tion of sub-spaces [11], [18], as given in Algorithm 2. During
each iteration and for each possible choice of a columni the
OLS performs the orthogonal projectionAΓl

i

A
†

Γl

i

y of y into

the sub-spaceAΓl

i

given by the previous choicesΓl−1 and
the additional columni. Then OLS calculates the resulting
residual rli for each choicei and chooses the columnimin

with the minimal Euclidian norm of the residual. Note that LS
estimation, i.e. orthogonal projection, in the selection criterion
leads to the minimal residual for each columni.

Note that both OMP and OLS are structurally similar
to Successive Interference Cancellation (SIC) [5, pp. 344].
However, both OMP and OLS perform a joint detection of both
user activity and transmitted data, while the SIC iteratively
detects transmitted symbols only. Another difference to the
SIC [5, pp. 344] is that both OMP and OLS return results over
the continuous alphabetCM for the transmitted data according
to the LS estimation, while the SIC returns discrete symbols
from A. For the OLS the final result̂xl is estimated in the
last iterationl and previous estimations do not directly affect
the detection of the support ofx, i.e. the activity of the users.
Thus, we can state that the OLS is a two stage detector, which
first detects the support ofx and then performs LS estimation
of the transmitted data, as the choice of columnimin is not
dependent on either̂xl−1 or rl−1. For the OMP these two
stages are executed in alternating order, since previous data
estimationŝxl−1 influence the detection of the support, due to
dependency on the last residualrl−1.

IV. SIMULATION RESULTS

In these simulations Pseudo Noise (PN) sequences with
Nk = N ∀ k chips are used for each user, and the data bits
are modulated with Binary Phase Shift Keying (BPSK). As
a model for the multi-path channel six consecutive Rayleigh
distributed coefficients with exponentially decaying power
profile are used. The symbol-error-rate (SER) simulations are
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Fig. 2. SER simulation results forK = 128, L = 256, N = 128 and
pa = 0.015.

performed for a set ofK = 128 users, where each user is
active with a probability ofpa = 0.015, so that for example
with a probability of Pr{Ka ≤ 6} = 0.9967 at most six users
are active. The SER is measured over the entire vectorx and
contains both support errors, i.e. incorrect activity detection,
and bit errors, i.e. incorrect data detection. In these simulations
it is assumed that the frames of all users arrive synchronously
at the receiver, such that the relative delay for all users is
τk = 0 ∀ k.

Here, the greedy algorithms terminate afterl = Sx iter-
ations. In generalSx is unknown at the receiver and needs
to be signaled or estimated. For these simulations, we assume
perfect knowledge ofSx, as the simulation results for perfectly
knownSx serve as a best case performance for other stopping
criteria, such as (5).

Herein, whenever a user is active that user transmits with an
average energy per symbol ofES = 1. Therefore, the signal-
to-noise ratio at the transmitter isES/N0 = 1/σ2

n
, whereσ2

n

is the variance of the additive noise term.
For a known sparsitySx, both OMP and OLS return exactly

Sx non-zero elements. Therefore, at most2 ·Sx support errors
can occur and the SER for both OMP and OLS is upper-
bounded by2·Sx

M
, assuming2 · Sx ≤ M . As the sparsity is

not constant in these simulations but determined by a discrete
binomial distribution, an upper bound can be given by2·E{Sx}

M
,

whereE{Sx} = E{Ka} · ⌊L/N⌋ is the expected value of the
sparsitySx. Therefore, withE{Ka} = K ·pa, an upper bound
of the SER is

SER≤
2 · E{Ka} · ⌊L/N⌋

K · ⌊L/N⌋
= 2 · pa . (6)

Fig. 2 and 3 show simulation results for two values of the
spreading factor,N = 128 andN = 32. In both figures the
OLS has a much lower SER compared to the OMP. This is due
to a better selection criterion, i.e. the minimal norm residual
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Fig. 3. SER simulation results forK = 128, L = 256, N = 32 and
pa = 0.015.

instead of the highest correlation, with the drawback of higher
complexity. During iterationl, the OLS has to performM −
l + 1 different LS estimates using different sub-matrices as
opposed to the same amount of vector products for the OMP.

Fig. 3 illustrates that especially the OLS has a low SER
for a spreading factor much smaller than the number of users,
i.e. N < K. In principle, this shows that the OLS is able to
recover sparse data even in overloaded CDMA systems. When
comparing the results forN

K
= 1 (Fig. 2) andN

K
= 1

4
(Fig. 3),

the SER only increases slightly for the OLS when reducing
the spreading factorN .

In the figures we also included the results for Minimum
Mean Square Error (MMSE) estimation [5, pp. 291] of (1)
as a benchmark. At the output of the MMSE estimation a
MAP symbol detector over the trinary alphabetAa is applied.
Here, for the MAP detector it is assumed that the a-priori
probabilities of all symbols in alphabetAa are the same.
However, since forpa < 0.5 on average more elements of
x are zero than non-zero, the a-priori probabilities have to be
changed according topa.

As shown in Fig. 2, the MMSE has a higher SER than
both greedy algorithms in the fully loaded case for the range
of ES/N0 shown here. For the overloaded CDMA system in
Fig. 3 the MMSE has a better SER performance than both
greedy algorithms for the lowES/N0 regime. This is due to
the fact that the MMSE is aware of the noise and therefore is
able to better adapt to it. However, as the MMSE is not aware
of the sparsity inx it has a high error floor.

To determine a lower bound for the SER, we introduce
an oracle Matching Pursuit (MP) algorithm that has perfect
knowledge of the position of the non-zero elements inx, due to
an oracle process. Thus, the oracle MP algorithm performs the
LS estimation usingy and the submatrixAΓoracle, whereΓoracle

are the indices of the non-zero elements of the transmitted
vectorx, i.e. Γoracle= {i : xi 6= 0}.

Both Fig. 2 and 3 illustrate that the results for both OMP
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Fig. 4. SER simulation results using OLS forK = 128, L = 256, N = 32

and values ofpa from 0.01 to 0.1.

and OLS are significantly above the lower bound given by the
oracle MP algorithm. As the oracle MP always uses the correct
support for the LS estimation, the only errors occurring forthe
oracle MP are bit errors. This shows that the errors occurring
for both OMP and OLS are primarily support errors and that
bit errors are only a small portion of the total symbol errors
for both OLS and OMP.

Finally fig. 4 shows SER results for the OLS in the
overloaded case for different values ofpa. These results show
that the concepts presented here are not only limited to small
values ofpa, but rather that a lowpa improves the SER results.
While a highpa decreases the SER performance for the OLS,
it will likely improve the performance for a MMSE, as the
signal is less sparse on average.

V. CONCLUSION

In this paper we studied CS-MUD which jointly detects
transmitted data and user activity. As CS detectors we applied
the greedy algorithms OMP and OLS. The proposed solution
can be applied for sporadic communication, e.g. sensor net-
works. The main results are that the OLS has a lower symbol-
error-rate than the OMP in all simulations, and that the OLS
is suitable for overloaded CDMA systems. However, the main
weakness of these algorithms is in finding the correct support
of the multi-user vector. This motivates further research.It
should be noted that these results are not limited to CDMA
transmission only. Sparse signal detection can also be applied
to other technologies, such as multi-layer MIMO transmission.
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