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Abstract—A possible future application in communications which user is active, leading to a large control signal ogach
is the wireless uplink transmission in sensor networks. Tl The challenge is to design MUD algorithms that exploit user

application is mainly characterized by sporadic transmisn inactivity, while not requiring control information aboetich
over a random access channel. Since each sensor has a low

activity probability, the signal for Multi-User Detection (MUD) user's activity state. .
is sparse. Compressive Sensing (CS) theory introduces deters In [7] the authors have introduced CS detectors for MUD

that are able to recover sparse signals reliably. When apphid in order to exploit the inactivity of users. These detectmes
to MUD, CS detectors perform a joint detection of both data pased on convex optimization and are well known in regres-
and user activity. This allows for less control signaling, mce sion problems [8], [9]. Additionally the authors introdata

information about the activity state of each user no longer eed it fi h d der. H th lqasth
to be signaled. Additionally, CS detectors are able to relialy Sparsity-promoting sphere decoader. However, the algos

detect sparse signals even in under-determined systems. the in [7] are designed for a fully loaded CDMA systems, i.e.
context of transmission with Code Division Multiple Access the length of the spreading sequences is equal to the total

(CDMA) this property can be exploited by reducing the length  nhumber of users. Therefore they do not exploit the potenfial
of spreading sequences, which increases the symbol-raterfa ~g theory to reliably solve under-determined linear equati

given bandwidth, and making the CDMA system overloaded. In .- . .
this paper we introduce the application of greedy CS detectin systems by utilizing the knowledge that the signal is sparse

algorithms to detect CDMA spread multi-user data. We can classify the MUD algorithms in [7] as sparsity aware,
but not sparsity exploiting.
. INTRODUCTION Besides convex optimization, [8], [9], CS also offers sjigrs

Reconstruction of sparse signals has become the topicesploiting greedy algorithms, [10], [11]. The main advayga
much research recently, especially after Compressiveii@n=f these greedy algorithms is that they are less complex
(CS) theory, [1], [2], gained a lot of attention in the fieldeompared to convex optimization, [12]. However, it is still
of applied mathematics and image processing. CS theanyknown how CS greedy algorithms perform for MUD for
shows that reliable signal reconstruction far below theiNsty CDMA transmission. The contribution of this paper is to
sampling rate is possible provided that the signal is spanse investigate greedy CS detection algorithms for joint deédec
communications, CS theory has been applied for instancedpactivity and transmitted data. In particular the algumis
system parameter estimation [3] and channel estimatian [4Drthogonal Matching Pursuit (OMP) [10] and Orthogonal

Another application of CS in communications is motivateteast Squares (OLS) [11] will be investigated.
by the future challenge of designing efficient wireless sen-
sor networks, where the sensor nodes transmit to a single
aggregation node for data collection. Such a transmissionConsider a wireless uplink transmission fraf users to
scenario is characterized by the sporadic communication afsingle aggregation node using CDMA [5, Chap. 1], as
a large amount of sensors, i.e. each sensor has a low actigitywn in Figure 1. Herein, we assume that the transmission
probability. In order to avoid control signaling each sensas structured in frames, each of a length bfchips, such
transmits whenever it has new data without first sendirigat whenever a user transmits data it transmits an entire
control signals, i.e. the activity state of each sensor is nfwpame. Therefore, the activity of a user is defined for anrenti
known at the receiver and has to be detected. From a detecfi@me. Furthermore, we assume that the number of active user
perspective, the overall system has a large dimension,riut oK, follows a discrete binomial distributio8( X, p,), where
few sensors or users transmit at any given time. pa < 1is the probability that thé™ user is currently active.

Multi-User Detection (MUD) is a powerful technique toThis means that the activity of users is statistically irefegent
overcome the multi-access interference present in Code Diacross both users and frames. We further assume that the
sion Multiple Access (CDMA) systems, e.g. [5], and has alsactivity states of all users arneot signaled to the receiver,
been intensely investigated in the past for other commierciather they have to be detected by the receiver.
communication systems such as UMTS [6]. MUD algorithms The spreading factor, i.e. the length of the spreading se-
simultaneously detect the transmitted symbols of all actiquence, for thek™ user is denoted by, and thek™ user
users. However, these algorithms require knowledge abdnsmits |L/N,| symbols during a frame of chips. In

Il. SYSTEM MODEL AND PROBLEM STATEMENT
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S I N A sy For illustration purposes, (2) shows matrin the case of
@ > G @  two synchronous users and a frame lengt et 6 chips. The
aggregation node spreading factors for both users alg = N, = 2 and both
A N user transmit|L/Ny| = 3 symbols. The channels for both

. users have an impulse response of lengjily = Ly = 2
I and the relative delays arg = 7» = 0, and thusl’ = 7. Here
... denotes the™ chip of the received sequence of tHe
; symbol of thek™ user.
.” >t il “. For CDMA transmission using a given bandwidth the trans-
: t mitted symbol-rate is determined by the spreading fachss
If N, = NVkandN < K we term the CDMA system to
@ be overloaded with regard to the number of total ug€rsor
Fig. 1. Sporadic transmission frof{ users to a single aggregation node.from a CS perspective say the linear equation system (1) is

Each time step corresponds to an entire frame duration. Easkmission is uUnder-determined.

received with a relative delay af,.
Il. MuLTI-USERDETECTION WITH COMPRESSIVE

SENSING

. . CS enables the reliable detection of sparse signals even
our signal model the symbol vectsr contains the symbols . . : .
. ; .~ in under-determined systems [1], [2]. This section shallyon
of all users for a given frame, regardless of their activit

states, and has a length of, with M — ZK \L/Ni| Erovideabrief overview of those topics relevant to the eant
: ' ' . k=1 k- ﬂ]‘l this paper. For a thorough overview of CS see e.g. [13].
Since the symbols of each user are either all zero or wi h d . bl b . in the f f
probability p, < 1 all non-zero, the vectox is sparse. Due The CS etectlon_ problem can be written in the form o
e o | (1), where the matrixA and the noisy measurememptare
to a channel impulse response with a lengthZofy. chips given. The receiver in general knows neither the amount nor
for the k™ user and a relative delay of, chips for thekt! '

. . . . the position of the non-zero elements in the sparse vector
user, thelL transmitted chips are received &S chips, where . .
, The sparsity ofx is measured by the number of non-zero
L'=L+ m]?x(Lh,k -1+ Tk).

elements
For the symbol vectox € CM*! of any given frame, the Sk = [Ixllg = [{j : @; # 0}]. )
received vectoly containingZ’ chips is given by the input-

output relationship in the chip-rate model Different CS detectors have been proposed that mainly fall

into two categories: either convex optimization, or greedy
algorithms. In CS theory (1) is commonly solved by means of
y =Ax+n, (1) convex optimization, e.g. Basis Pursuit De-Noising (BPDN)
[8] or Least Absolute Shrinkage and Selection Operator
, (LASSO) [9]. While the convex optimization is performed
wheren € C* *! is additive white Gaussian noise (AWGN),over CM, the values ofx in our system model are from
.e. N(0,07), andA € C**M is a matrix representing thethe augmented alphabet, = {A U 0}, where A is the
influence of the spreading sequences and the instantanegiggiulation alphabet, e.gd = {-1, 1} for Binary Phase
channels for the current frame on the transmitted symbols.shift Keying (BPSK). Therefore, a discrete version of the
We assume perfect channel state information, so that th&SSO optimization problem has been proposed in [7]. This
matrix A is perfectly known at the receiver. The channel fooptimization problem is given by
each user has a multi-tap power delay profile and is time R 1 )
invariant within the duration of a frame, i.e. block fading Xiasso = arg min o [Ax —yl5 +Alxll, ,  (4)
channel. In addition we assume that the instantaneous efgann ‘
are independent across users. In this transmission soenarfere|x|; = Zi]\i1|$i|- The correct value of the regulariza-
each column ofA contains the spreading sequenge of tion parameten is explained in detail in [7]. The optimization
the k" user convolved with the instantaneous channel impulpeoblem (4) can for example be solved with the method of
responseén,, of the k™ user [6]. sphere decoding.



Algorithm 1 Orthogonal Matching Pursuit (OMP) Algorithm 2 Orthogonal Least Squares (OLS)

=y, I'"=0,1=0 ’°=0p,1=0

repeat repeat
. . =l= . . . .
fmax = arg max ‘AlHrlfl‘ forieT " fmin = argmin ‘y — AFiAlT“ngQ with Tt =Tt Ui
It =T Uimax I =T Ui
%L, = Al,y and %, =0 %L, = Al,y and %, =0
T ol 1 ol
r'=y—Ax r=y-—Ax

until =S, or |[AfrY!|| <& until =Sy or |Afr!|| <«

Apart from convex optimization, several greedy algorithmigstead
exist in CS theory [10], [11] that can be used for out detectio AT <e (5)
concept to jointly detect user activity and transmittechdahe iately ch 17
advantage of these algorithms is that they are less compfg( appropriately chosea [17].
compared to convex optimization, e.g. [12], but have thg Orthogonal Least Squares

drawback of error propagation, since previous choicesger u . . . .
Instead of using correlations to determine the support, i.e

activity are not re-evaluated. As these algorithms perfdata ; | ts afor th . the Orth |
estimation onC» we must perform a subsequent symbolf1e ntog-zero eeOmLeSn SI O'rth € ac |viusetr2 € rLSogontg
decision on the augmented alphabkt. In the following two east Squares ( ) algorithm uses Least Square (LS) estima

- - : ; ; tion of sub-spaces [11], [18], as given in Algorithm 2. Duin
dy CS algorith b I d in detail.
greedy aigoritnms wifl be explained in detal each iteration and for each possible choice of a colurtire

OLS performs the orthogonal projectioﬁnriA}l_y of y into
the sub-space\: given by the previous choiceE~! and
The basic concepts of greedy CS algorithms are introducg@ additional columni. Then OLS calculates the resulting
by the Orthogonal Matching Pursuit (OMP) algorithm [10]yesidualr} for each choicei and chooses the columigin
[14]. Several other greedy algorithms exist that are basg@gth the minimal Euclidian norm of the residual. Note that LS
on the OMP, such as Compressive Sampling MP (CoSaMRgtimation, i.e. orthogonal projection, in the selectiditecion
Stagewise OMP (StOMP) and Probabilistic OMP (PrOMRgads to the minimal residual for each colurn
[12], [15], [16]. We herein use the OMP algorithm, since it is Note that both OMP and OLS are structurally similar
commonly used as a comparison. to Successive Interference Cancellation (SIC) [5, pp. 344]
For the algorithms the following notation is usddis a set However, both OMP and OLS perform a joint detection of both
of indices for columns in matriA andI' is the complementary user activity and transmitted data, while the SIC iterdgive
set containing all valid indices not iir. FurthermoreAr detects transmitted symbols only. Another difference te th
specifies the sub-matrix that only contains those columiis WSIC [5, pp. 344] is that both OMP and OLS return results over
indices inT", and likewisexr the vector containing only the the continuous alphab&t for the transmitted data according
elements ofx with indices inT. Additionally x!, A’ andT! to the LS estimation, while the SIC returns discrete symbols
specify the respective variable during tHe iteration. Here, from A. For the OLS the final result’ is estimated in the
AT is the Moore-Penrose pseudoinversefdfand A the |last iteration/ and previous estimations do not directly affect
Hermitian matrix ofA. With this notation the OMP algorithm the detection of the support &f i.e. the activity of the users.
is given by Algorithm 1. Thus, we can state that the OLS is a two stage detector, which
During each iteration, the OMP algorithm chooses thst detects the support of and then performs LS estimation
column of A that has the highest correlation to the previousf the transmitted data, as the choice of coluipg is not
residualr’~! = y — AX'~!. Then the orthogonal projectiondependent on eithek!~! or r'~!. For the OMP these two
into the sub-space not dependent on any of the columi instages are executed in alternating order, since previotzs da
is performed and the current residuthis calculated. The next estimationsk'~! influence the detection of the support, due to
iteration continues with residual. As the subsequent iterationdependency on the last residuét .
depends on the previous residuat!, the performance of the
OMP is highly influenced by both linear dependencies between IV. SIMULATION RESULTS
columns of A and the additive noisa. In these simulations Pseudo Noise (PN) sequences with
The OMP performs these iterations until a stopping criteriaV, = N V k chips are used for each user, and the data bits
is met. Ideally the algorithm is terminated after a number @re modulated with Binary Phase Shift Keying (BPSK). As
iterations equal to a known sparsifi, i.e.! = Sx. However, a model for the multi-path channel six consecutive Rayleigh
since the sparsity is in general not known at the receiverdastributed coefficients with exponentially decaying powe
stopping criterion based on the current residualis used profile are used. The symbol-error-rate (SER) simulatiors a

A. Orthogonal Matching Pursuit
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Fig. 2. SER simulation results fak = 128, L = 256, N = 128 and Fig. 3. SER simulation results fok = 128, L = 256, N = 32 and
pa = 0.015. pa = 0.015.

active with a probability ofp, = 0.015, so that for example COmPplexity. During iteratiori, the OLS has to perform/ —

with a probability of P{K, < 6} = 0.9967 at most six users | + 1 different LS estimates using different sub-matrices as

are active. The SER is measured over the entire vecamd OPPosed to the same amount of vector products for the OMP.
contains both support errors, i.e. incorrect activity détm, ~ Fig. 3 illustrates that especially the OLS has a low SER

and bit errors, i.e. incorrect data detection. In these kitians for @ spreading factor much smaller than the number of users,

it is assumed that the frames of all users arrive synchrdpous€: V < K. In principle, this shows that the OLS is able to
at the receiver, such that the relative delay for all users f@COVer sparse data even in overloaded CDMA systems. When

T =0VEk. comparing the results fof- = 1 (Fig. 2) and% = 1 (Fig. 3),
Here, the greedy algorithms terminate after S iter- the SER o_nly increases slightly for the OLS when reducing
ations. In genera, is unknown at the receiver and needfe spreading factoN. _ o
to be signaled or estimated. For these simulations, we assum!n the figures we also included the results for Minimum
perfect knowledge of,, as the simulation results for perfectlyM&an Square Error (MMSE) estimation [5, pp. 291] of (1)
known Sy serve as a best case performance for other stoppfgy @ benchmark. At the output of the MMSE estimation a
criteria, such as (5). MAP symbol detector over the_ tr_mary alphabtt is apphed._ _
Herein, whenever a user is active that user transmits with §"®: for the MAP detector it is assumed that the a-priori
average energy per symbol &f; — 1. Therefore, the signal- probabilities of all symbols in alphabeti, are the same.

to-noise ratio at the transmitter s /Ny = 1/02, whereo? However, since fop, < 0.5 on average more elements of
is the variance of the additive noise term. x are zero than non-zero, the a-priori probabilities haveeo b

For a known sparsity,, both OMP and OLS return exactIyChangecl according tp,.

Sx hon-zero elements. Therefore, at mdsb, support errors As shown in Fi.g. 2, _the MMSE has a higher SER than

can occur and the SER for both OMP and OLS is uppé9_oth greedy algorithms in the fully loaded case for the range

bounded by2:5x, assuming2 - S, < M. As the sparsity is of Es/Ny shown here. For the overloaded CDMA system in
M X = .

not constant in these simulations but determined by a dtscrgig' 3 the MMSE has a better SER performance than both

binomial distribution, an upper bound can be give zk%sx}, greedy algorithms for the lowEs /N, regime. This is due to

where E{S,} = E{K,}- | L/N| is the expected value of thethe fact that the MMSE is aware of the noise and therefore is
sparsityS. “Therefore. WIthE{ KK, } = K -p,, an upper bound 2Ple to better adapt to it. However, as the MMSE is not aware

: f the sparsity inx it has a high error floor.
f the SER ° ; .
orthe 'S To determine a lower bound for the SER, we introduce
2. E{K,}- |L/N] an oracle Matching Pursuit (MP) algorithm that has perfect
SER< K- [L/N] =2pa- (6) knowledge of the position of the non-zero elements,idue to

an oracle process. Thus, the oracle MP algorithm performs th
Fig. 2 and 3 show simulation results for two values of theS estimation using and the submatriAr,,.... wherel'oracie
spreading factorN = 128 and N = 32. In both figures the are the indices of the non-zero elements of the transmitted
OLS has a much lower SER compared to the OMP. This is duectorx, i.e. Toractle = {7 : 2; # 0}.
to a better selection criterion, i.e. the minimal norm rasid  Both Fig. 2 and 3 illustrate that the results for both OMP
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Fig. 4. SER simulation results using OLS fAf = 128, L = 256, N = 32

and values ob, from 0.01 to 0.1.
Pa 0.0 0 (1]

and OLS are significantly above the lower bound given by tH&]
oracle MP algorithm. As the oracle MP always uses the correct
support for the LS estimation, the only errors occurringtfer [13]
oracle MP are bit errors. This shows that the errors ocagirrin
for both OMP and OLS are primarily support errors and th?ﬁ
bit errors are only a small portion of the total symbol errors
for both OLS and OMP.

Finally fig. 4 shows SER results for the OLS in théls]
overloaded case for different valuesgf. These results show
that the concepts presented here are not only limited tol sr&f!
values ofp,, but rather that a low, improves the SER results.
While a highp, decreases the SER performance for the OL8y]
it will likely improve the performance for a MMSE, as the[18]
signal is less sparse on average.

V. CONCLUSION

In this paper we studied CS-MUD which jointly detects
transmitted data and user activity. As CS detectors we egpli
the greedy algorithms OMP and OLS. The proposed solution
can be applied for sporadic communication, e.g. sensor net-
works. The main results are that the OLS has a lower symbol-
error-rate than the OMP in all simulations, and that the OLS
is suitable for overloaded CDMA systems. However, the main
weakness of these algorithms is in finding the correct suppor
of the multi-user vector. This motivates further researth.
should be noted that these results are not limited to CDMA
transmission only. Sparse signal detection can also béeappl
to other technologies, such as multi-layer MIMO transnoissi
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