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Abstract—One challenging future application in digital com- each user uses a fixed transmission resource and the user
munications is the wireless uplink transmission in sensor @- activity has to be detected at the receiver. If we assume that
works. This application is characterized by sporadic transnis- the inactivity of a user is modeled as “transmitting” zero

sions by a large number of sensors over a random multiple . .
access channel. To reduce control signaling overhead, wegpose symbols, then the vector containing the transmitted symbbl

that sensors do not transmit their activity states; insteadsensor all users is sparse, due to the low activity probability ofrea
activity is detected at the receiver. As sensors have low agty user. In general, sparse signals can be detected by applying
probabilities, the njulti-user.vector is in general sparse.Th.is. Compressive Sensing (CS) theory [2], [3]. CS detectorslenab
enables Compressive Sensing (CS) detectors to perform jdin join: getection of both user activity and transmitted data i

Multi-User Detection (MUD) of activity and data, by exploiting . .
the sparsity. Since sensors are either active or inactive rfseveral CDMA systems, which are overloaded in regard to the total

symbol durations, block-wise CS detection can be applied to number of users [4].

improve the activity detection. In this paper, we introduceblock- The concept of sparse MUD for CDMA transmission [1,

wise greedy CS MUD, compare it to symbol-wise greedy CS Chap. 1] using CS detectors has been introduced in [5].
MUD, and show that statistically independent channels for ach The authors of [5] introduced CS MUD detectors that are

symbol further improve the activity detection for block-wise CS b d timizati i di
detection. Herein, we use Code Division Multiple Access (QDA) ased on convex oplimization, usirig-norm andiz-norm

as a multiple access scheme. minimization, and further extended the ideas to sparsersphe
decoding. Aiming to reduce the complexity, [4] introduced
. INTRODUCTION CS MUD using greedy CS algorithms. In [4] we have shown

A future challenge in digital communications is designinthat efficient greedy CS algorithms can reliably detect both
efficient wireless sensor networks, where sensors trariemit activity and data in a CDMA transmission. The results in [4]
single aggregation node for data fusion. In general, sertor indicate that the Orthogonal Least Squares (OLS) algorithm
not continuously transmit data, but rather infrequentyamit [6] is reliable for sparse MUD even in overloaded CDMA
updates, whenever a measured value changes. Thereforesygtems. However, it was shown in [4] that the symbol errors
can characterize the scenario as a sporadic transmissionobthe OLS are mainly caused by incorrect activity detection
multiple sensors over a random multiple access chann€his indicates that a feasible approach to improve the divera
Ideally, the sensors should only use a small amount of enefggrformance is to improve the activity detection.
for transmissions. One possibility to achieve this is toiévo In this paper, we introduce Block-wise Orthogonal Least
the exchange of control signals, whenever a sensor changegsiares (BOLS) detection as sparse MUD for sporadic com-
its activity state. This reduces both the signal processingunication using CDMA. We verify the performance of joint
complexity and the required transmit energy at the sensoastivity and data detection and compare block-wise greedy
However, the activity state of each sensor is then no long#gtection with symbol-wise greedy detection (OLS). Aduiti
known at the receiver and has to be estimated. Thus, ey, we show that statistically independent channels farhe
tradeoff is additional complexity at the receiver, as it bas transmitted symbol significantly improve the performanée o
detect both the activity state of each sensor and the tratesini block-wise greedy detection.
data of the active sensors. In the following, we will use the
more general term “users” instead of “sensors”.

To detect transmitted data over a random multiple accesConsider a sporadic wireless uplink transmission fram
channel, Multi-User Detection (MUD) is commonly appliedisers, e.g., sensors, to a single aggregation node, as shown
[1]. Existing MUD algorithms detect data of active usersyonl Figure 1. For this scenario, we assume that the transmigsion
Therefore, the activity states of the users need to be knoerganized in time frames, such that whenever a user trassmit
at the receiver. In order to achieve this, a user usuallyasggndata, it transmits data for the duration of an entire frantes T
a transmission request to the aggregation node, which thaeans that the users can change their activity state on a per
needs to acknowledge this request and specify which resoufame basis. Due to sporadic transmissions, each user dves n
the user may use, e.g., spreading sequence for Code Dividiansmit continuously, but rather each user is active onlyng
Multiple Access (CDMA). If control signaling is avoided,a few frames. We assume that on average each user is active

Il. SYSTEM MODEL



’ Here, n € CF is additve white Gaussian noise, i.e.,
>t Ne(0,02). Each column of matrixA € CF'*M contains
@ : ® the spreading sequengg convolved with the current channel
impulse responsh,, of the k™ user [8].
For simplicity, we assume perfect channel state infornmatio
. . . at the receiver, and thus perfect knowledge of the marix
Sy e Unless noted otherwise, we assume that the channels for all
users are time invariant for the duration of a frame, i.e., we
A <—'_m—>t' have block fading channels. Additionally, we assume i.i.d.
aggregation node channels across both_us_ers and_ frames_. _
q A r For CDMA transmissions using a fixed bandwidth, the
: transmitted symbol-rate is determined by the spreadintpifac
[N I Ni. If N, = NVEkandN < K, we term the CDMA system
to be overloaded with regard to the number of total ugérs
. ; or, from a CS perspective, state that the linear equaticesys
@ st @ (1) is under-determined.

) [1l. BLOCK SPARSEDETECTION WITH

COMPRESSIVESENSING

Fig. 1. Sporadic transmission froff users to a single aggregation node. . . .
Each time step corresponds to an entire frame duration. Eanbmission is ~ 1h€ main question for our system model is how the block

received with a relative delay af. sparsity ofx can be efficiently exploited in joint detection of
activity and data. To answer this question we will first look
at how generic sparsity can be efficiently exploited in such a

with a probability of p, < 1, and that the activity of userstransmission.

is i.i.d. across both users and frames. Thus, we assume thah a nutshell, CS enables reliable detection of sparse lsigna

the number of active useis, for a frame follows a discrete even in under-determined equation systems [2], [3]. The CS

binomial distributionB(K’, pa). detection problem can be written in the form of (1), where

We define, that vectat contains the transmitted symbols ofthe matrix A and the received chipg are given. Herein,

all K users during a frame. Additionally, we set the symboléie sparsity ofx is determined by the number of non-zero

for inactive users to zero and assume that all symbols ofectelements

users are taken from the discrete modulatpn alphabdius, Se =%l = {7 : zj # 0}|. 2)

the elements ofx are elements of the discrete augmented

alphabetd, = {AU0}. Consequentially, vectox is sparse, as In general, the detector knows neither the amount nor the

the symbols of each user are either all zero, or, with prdityabi Position of the non-zero elements in the sparse vectdrhe

pa < 1, all taken from the modulation alphabet As the CS theory defines different detectors that are able to reécove

activity is defined per user, the symbols of th& user are the sparse solution of (1) even in underdetermined cages, i.

either all zero or all non-zero. Therefore, all zero and gere F' < M. _Th_ese_ detect(_)rs malnly fall into two categories:

elements of appear in blocks of fixed length only. Thus, théonvex optimization and iterative greedy algorithms. @ty

vectorx is not only sparse but also block sparse [7]. proaches like the Iterative Hard Thresholding (IHT) algun

In this scenario, we apply CDMA [1, Chap. 1] as a channéf] exist, but are not discussed here.

access method for the uplink transmission. For this acces$>S detectors using convex optimization are based,en

method, we assume that all frames have a fixed length R#rm andl,-norm minimization. The most commonly in-

F chips. We defineL;, as the number of symbols, whichvestigated detectors are Basis Pursuit De-Noising (BPDN)

the k" user transmits during a frame. For th&® user, Ly, [10] and Least Absolute Shrinkage and Selection Operator

is determined by the spreading factdf,, i.e., the length (LASSO) [11]. Additionally, other variants exist [12], [13

of the spreading sequence, withy,(N;) = |F/N;|. Due CS detectors using convex optimization have in common that

to a channel impulse respon#g, with a length of¢(hy) the optimization is performed on the continuous alph&bét

chips, and a (relative) delay of, chips for the k™ user, However, as previously stated in this transmission scenari

the F transmitted chips are received d§ chips, where Vectorx contains elements from the discrete augmented alpha-

F’ = F+maxy, [((h;) — 1 + 7,]. The total number of symbols bet A, = { AU 0}. For discrete alphabetd,, [5] introduces
M is given by M = ZkK:I L. a LASSO based CS-MAP detector, which can be efficiently
For the received chipg € CF and the previously defined implemented with sphere decoding. However, the detectors |

vectorx € AM, the input-output relationship in the asyn{5] are only sparsity aware and not sparsity exploiting feyt
chronous chip-rate model is given by: are not designed for the under-determined case of (1).

Greedy CS detectors are primarily variants of the Matching
y =Ax+n. (1) Pursuit (MP) algorithm [14]. The best known greedy CS



Algorithm 1 Orthogonal Least Squares (OLS) Algorithm 2 Block-wise Orthogonal Least Squares (BOLS)

repeat repeat
I=1+1 =141
imin = argIrliinHy - ApéAlt;y||2 with T! =Tt Ui imin = argminHy - Ap(gg)ATF(B;)YHQ
I =T Uimin with B! = Bl Ty
%L, = Al,y and x, =0 Bl Bl-1 u imin
ra ol _
until | = Sy (Bl) = AF(Bl)y and XF(EZ) =0
until [ = K,

algorithm is the Orthogonal Matching Pursuit (OMP) [15],
with variants introduced in [6], [16]-[18]. The main diftarce
to convex optimization is that greedy algorithms iterdgivae-
termine the position of the non-zero elementsiand perform
data estimation for those non-zero elements. Moreoveedyre
CS algorithms are in general less computationally expensi i o ) )
compgred to convex g0pt|m|zat|on [16]p with theydraF\)Nbac Sx s a stopping criterion f_or the OLS. This ?‘SS””_‘F’“_O”
of being less sampling efficient, i.e., greedy CS algorithnf$TVeS @s a best case assumption for other stopping crisria
in general require a larger transmission overhead forbkehathey can never be better than the ideal stopping criterion.
signal reconstruction [16].

To explain greedy CS algorithms, we use the followinf: Block-wise Orthogonal Least Squares
notation:T is a set of indices for columns in matrix, andT For block-wise detection we expand our notation: Bebe
is the complementary set containing all valid indices ndfin a set of indices of blocks and |8 be the complementary
Furthermore Ar specifies the sub-matrix that only containget. Further, lef”(B) specify the indices of those columns
those columns with indices in, and likewisexr contains only contained in the blocks indexed 3. Using this notation, the
those elements of with indices inT. Additionally, x', A’ BOLS is given in Algorithm 2.
andI" specify the respective variable during theiteration.  while the selection of non-zero elements for the OLS is
Herein, AT is the Moore-Penrose pseudoinverse&f and pased on symbol-wise activity, the non-zero elements in
A" the Hermitian matrix ofA. are given by block-wise activity in this transmission saéma
Thus, the OLS does not exploit the additional informaticat th
the user activity is constant for the duration of a frame, and

First, we will discuss symbol-wise greedy CS detection, akus the activity for all symbols of a user is the same. In
block-wise detection is based on symbol-wise algorithni T order to exploit the block sparsity, the BOLS [20] algorithm
Orthogonal Least Squares (OLS) algorithm [6], as given turing each iteration, selects a block of columns, instefaal o
Algorithm 1, iteratively determines the supportxfi.e., the single column. Thus, the BOLS selects all colunii€3;,,,)
position of the non-zero elementssn by iteratively choosing corresponding to the blockn, that yields the residuat!
columns of matrixA. During each iteration and for eachwith the smallest Euclidean norm. As the BOLS only performs
possible choice Of a columiy OLS performs the orthogonalone iteration for each block of non-zero elements, i.e.heac
projection A Arzy of y into the sub-spacé\: given by active user, the ideal stopping criterionlis= K,. Thus, for
all previous ch0|ce51“l 1 and columni. Afterwards, OLS our simulations we assume that the number of active usgrs
calculates the resulting residugl for each choice, and then is known, and use it for the ideal stopping criterion.
chooses the columiy,n, which yields the residuaigrnin with As the BOLS jointly detects the activity state fay, sym-
the smallest Euclidian norm. bols of thek™" user during each iteration, it is less computation-

Greedy CS algorithms in general perform a joint detectigilly expensive than the OLS. First, for a given sparsiy the
of activity and transmitted data. The OLS, as a contraBOLS only computedy, iterations to determing, non-zero
actually performs this detection in two stages. This is due elements, while the OLS computék iterations. Secondly,
the fact that subsequent iterations only depend on theqarevi during each iteration the OLS computé$ — [ + 1 different
column choices™~!, but not the previous estimated vectokeast Squares (LS) estimations, while during each itematio
x!~1 or the previous residuaf—!. Thus, activity detection in the BOLS only compute& — [ + 1 different LS estimations.
later iterations is solely dependent on the activity désecof Assume that for columns of matrixA LS(n) operations are

previous iterations, but not on the data estimations ofiptess required to compute the LS estimation. Further, assume that
iterations. the total number of operations is mainly determined by the

Ideally, the OLS executes exacty iterations, asS, non- LS estimations. Then the number of operations of the OLS is
zero elements are estimated after these iterations. Howe@ven byz; 1( —1+1)LS(l), whereas for the BOLS it is
the sparsityS, of vector x is in general not known at the given byz :1 (M/L — 14+ 1)LS(l- L) for Ly = L Vk.

receiver, and therefore a different stopping criterion tas

be used instead. Various stopping criteria exist, such @seth

discussed for the OMP in [19]. For the simulations, we assume
erfect knowledge ofS, at the receiver. Therefore, we use

A. Orthogonal Least Squares



The BOLS chooses all columns within bI?i:Ibased on the 10
results of the orthogonal prOJECtIO[#SF(Bf)AF(Bé)y. There-

fore, the decision is more accurate for orthogonal sub-oesr 10° -~ N - e R A S R R
Ar(p). For a CDMA transmission, orthogonal sub-matrices
Ar(p) are more likely for independent channel realization: s
per symbol, i.e., the channels are time-variant. Therefor
we expect more accurate activity detection for statidiical
independent channels for each symbol.

o
w 10*

IV. SIMULATION RESULTS 5

10 N N
In this section, simulation results for the symbol erroerat

(SER) are provided and evaluated. The SER is measur

over the entire vectox and contains both support errors, | o

i.e., incorrect activity detection, and bit errors, i.e¢érrect ~” BOLS, with independent channely

-7

data detection for correctly detected activity. The folilogy 107, 5 10
simulation setup was used: A set &f = 128 users is given, Es/No in dB
where each user is active with a probability @f = 0.015. ) ]
Each user transmits a frameE f= 256 chips Whe“_ever active. z:?d. pza :S()I.E(I]:\’l;.msuljzlgngonr ;(teztlijgt?c;ﬁ ;dlezpse’nfgeiffh%njr\lfeg flozrséaﬁ:h:simbo
For each user, Pseudo Noise (PN) sequencesMith- N Vk is shown as a dashed line.
chips are applied. Thud,,(N) = |F/N] = L Vk symbols
can be transmitted per user. The transmitted symbols a 10
Binary Phase Shift Keying (BPSK) modulated data bits. As .
model for the instantaneous channel, six consecutive Reyle
distributed coefficients with an exponentially decayingvpo
profile are used. These channel realizations are constant
an entire frame, except when noted otherwise. It is assum
that the transmitted chips of all users arrive synchronoasl
the receiver, such that, = 0 V k. W0k - e N

Whenever a user is active, this user transmits with a
average energy per symbol éfs = 1. Therefore, the signal-
to-noise ratio at the transmitter i85 /Ny = 1/02, whereo?2
is the variance of the additive white Gaussian noise.

For comparison purposes, we introduce a linear detection f
known activity using LS estimation, i.e., the detector ksow

. . . —»—oracle LS
which users are active for every frame. As this detector he 10 6 : =
perfect knowledge of the position of the non-zero elementi Es/Ny in dB
in x due to an oracle process, we call it “oracle LS". The
oracle LS algorithm performs the LS estimation usingnd Fig. 3. SER simulation results fok' = 128, " = 256, N =32, L = 8

- L andp, = 0.015. SER for statistically independent channels for each symbo

the sub-matrixAr,... Whereloracie @re the indices of the non- i shown as a dashed line.
zero elements of the transmitted vectari.e., Toracle = {0 :
x; # 0}. Additionally, the oracle LS serves as a lower bound
for both OLS and BOLS, since they can never be better thamore reliable. For OLS and oracle LS, the condition number
LS estimation for correctly detected active users. determines the SER, while the block length does not influence

Fig. 2 and 3 show simulation results for two differentheir performance, thus their SER increases slightly. Rer t
values of the spreading facta¥, = 128 (L = 2) and N = 32 BOLS, the influence of larger block lengths outweighs the
(L = 8). These figures show that the BOLS has a lower SERfluence of increased condition numbers, thus the SER is
than the OLS in both cases. This is due to the fact that thaver.
BOLS exploits the block sparsity of. Note that forN = 32 The SER of the BOLS in the case of statistically indepen-
the SER of the BOLS is lower than fd¥ = 128, as opposed dent channels across symbols for all users is shown in Fig. 2
to both OLS and oracle LS, where the SER is slightly higheand 3 as a dashed line. In both cases, independent channels pe
Two different influences are responsible for this effect.tbm symbol significantly improve the block-wise activity detiea.
one hand, the smaller the spreading fackdrthe higher the For N = 32, the SER of the BOLS even reaches the oracle
condition number oA, which makes both the activity and datd_S bound for high SNR. These results demonstrate that in
detection less reliable. On the other hand, a sma@lleesults the case of independent channels per symbol the BOLS rarely
in a larger block sizd., which provides more information for makes incorrect activity decisions for high SNR, so that the
block-wise detection. This makes block-wise activity @déitm  SER is mainly determined by bit errors. F&F = 128, the
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factor even further. This indicates that for a given systetns
there is a certain spreading factor that yields the loweastrer
rate for block-wise greedy detection. We also demonstrated
that the performance of the BOLS improves in the case of
statistically independent channels for each transmityetbsl.

SER

; | (1
| 2l

(3]

40 || —3—OLS
—O—BOLS :
- O- BOLS, with independent channels| |

—»—oracle LS :

10° ‘

10, 15 20
Es/N, in dB [41
Fig. 4. SER simulation results fak' = 128, F' = 256, N = 8, L = 32
andp, = 0.015. SER for statistically independent channels for each symbo
are shown as a dashed line.

(5]

(6]

improvement of the SER of the BOLS is much smaller, as ea

user transmits fewer symbols per frame. However, even f thi
case the SER of the BOLS is much lower with independent
channels for each symbol. (8]

Similar results are derived in [21], where for Gaussian @ois
near oracle performance can be guaranteed for high SNR]
However, the main difference is the assumption of normed
column weights ofA in [21]. Here, the simulations results[1g]
indicate that independent channels suffice for near oracle
performance in this transmission scenario and certainkblo&ll
sizesL.

Fig. 4 shows the SER for an even lower spreading factor
N =8 (L = 32). The SER of all algorithms foflV =8 is
significantly higher than their respective SER fér= 32. The
oracle LS and the OLS in particular are increased much md#él
than for N = 32 and N = 128. This is due to an even larger
increase of the condition number of matx For N = 8, the
BOLS has an error floor behavior around an SNR20dB.
This indicates that the influence of increased block length Mis
longer outweighs the influence of a larger condition number
of matrix A. Thus, for the BOLS there is a certain value of
the spreading factal that yields the lowest SER for a given
Es/Ny.

[14]

[16]

V. CONCLUSION [17]

In this paper, we investigated block-wise greedy CS de-
tection for joint detection of data and activity in CDMAI18]
transmission. We have shown that using block-wise detectio
algorithms greatly improves the joint error rate of activit[19]
and data detection compared to symbol-wise detection. This
improvement is even larger for an overloaded CDMA systerjr{o]
due to increased block lengths. However, this improvement
is limited to certain problem dimensions. It was shown th&!l
for highly overloaded CDMA systems the error rate of block-

This property allows for near optimal activity detectiom, i
certain under-determined cases.
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