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Abstract—One challenging future application in digital com-
munications is the wireless uplink transmission in sensor net-
works. This application is characterized by sporadic transmis-
sions by a large number of sensors over a random multiple
access channel. To reduce control signaling overhead, we propose
that sensors do not transmit their activity states; insteadsensor
activity is detected at the receiver. As sensors have low activity
probabilities, the multi-user vector is in general sparse.This
enables Compressive Sensing (CS) detectors to perform joint
Multi-User Detection (MUD) of activity and data, by exploiting
the sparsity. Since sensors are either active or inactive for several
symbol durations, block-wise CS detection can be applied to
improve the activity detection. In this paper, we introduceblock-
wise greedy CS MUD, compare it to symbol-wise greedy CS
MUD, and show that statistically independent channels for each
symbol further improve the activity detection for block-wi se CS
detection. Herein, we use Code Division Multiple Access (CDMA)
as a multiple access scheme.

I. I NTRODUCTION

A future challenge in digital communications is designing
efficient wireless sensor networks, where sensors transmitto a
single aggregation node for data fusion. In general, sensors do
not continuously transmit data, but rather infrequently transmit
updates, whenever a measured value changes. Therefore, we
can characterize the scenario as a sporadic transmission by
multiple sensors over a random multiple access channel.
Ideally, the sensors should only use a small amount of energy
for transmissions. One possibility to achieve this is to avoid
the exchange of control signals, whenever a sensor changes
its activity state. This reduces both the signal processing
complexity and the required transmit energy at the sensors.
However, the activity state of each sensor is then no longer
known at the receiver and has to be estimated. Thus, the
tradeoff is additional complexity at the receiver, as it hasto
detect both the activity state of each sensor and the transmitted
data of the active sensors. In the following, we will use the
more general term “users” instead of “sensors”.

To detect transmitted data over a random multiple access
channel, Multi-User Detection (MUD) is commonly applied
[1]. Existing MUD algorithms detect data of active users only.
Therefore, the activity states of the users need to be known
at the receiver. In order to achieve this, a user usually signals
a transmission request to the aggregation node, which then
needs to acknowledge this request and specify which resource
the user may use, e.g., spreading sequence for Code Division
Multiple Access (CDMA). If control signaling is avoided,

each user uses a fixed transmission resource and the user
activity has to be detected at the receiver. If we assume that
the inactivity of a user is modeled as “transmitting” zero
symbols, then the vector containing the transmitted symbols of
all users is sparse, due to the low activity probability of each
user. In general, sparse signals can be detected by applying
Compressive Sensing (CS) theory [2], [3]. CS detectors enable
joint detection of both user activity and transmitted data in
CDMA systems, which are overloaded in regard to the total
number of users [4].

The concept of sparse MUD for CDMA transmission [1,
Chap. 1] using CS detectors has been introduced in [5].
The authors of [5] introduced CS MUD detectors that are
based on convex optimization, usingl1-norm and l2-norm
minimization, and further extended the ideas to sparse sphere
decoding. Aiming to reduce the complexity, [4] introduced
CS MUD using greedy CS algorithms. In [4] we have shown
that efficient greedy CS algorithms can reliably detect both
activity and data in a CDMA transmission. The results in [4]
indicate that the Orthogonal Least Squares (OLS) algorithm
[6] is reliable for sparse MUD even in overloaded CDMA
systems. However, it was shown in [4] that the symbol errors
of the OLS are mainly caused by incorrect activity detection.
This indicates that a feasible approach to improve the overall
performance is to improve the activity detection.

In this paper, we introduce Block-wise Orthogonal Least
Squares (BOLS) detection as sparse MUD for sporadic com-
munication using CDMA. We verify the performance of joint
activity and data detection and compare block-wise greedy
detection with symbol-wise greedy detection (OLS). Addition-
ally, we show that statistically independent channels for each
transmitted symbol significantly improve the performance of
block-wise greedy detection.

II. SYSTEM MODEL

Consider a sporadic wireless uplink transmission fromK
users, e.g., sensors, to a single aggregation node, as shownin
Figure 1. For this scenario, we assume that the transmissionis
organized in time frames, such that whenever a user transmits
data, it transmits data for the duration of an entire frame. This
means that the users can change their activity state on a per
frame basis. Due to sporadic transmissions, each user does not
transmit continuously, but rather each user is active only during
a few frames. We assume that on average each user is active
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Fig. 1. Sporadic transmission fromK users to a single aggregation node.
Each time step corresponds to an entire frame duration. Eachtransmission is
received with a relative delay ofτk.

with a probability of pa ≪ 1, and that the activity of users
is i.i.d. across both users and frames. Thus, we assume that
the number of active usersKa for a frame follows a discrete
binomial distributionB(K, pa).

We define, that vectorx contains the transmitted symbols of
all K users during a frame. Additionally, we set the symbols
for inactive users to zero and assume that all symbols of active
users are taken from the discrete modulation alphabetA. Thus,
the elements ofx are elements of the discrete augmented
alphabetAa = {A∪0}. Consequentially, vectorx is sparse, as
the symbols of each user are either all zero, or, with probability
pa ≪ 1, all taken from the modulation alphabetA. As the
activity is defined per user, the symbols of thekth user are
either all zero or all non-zero. Therefore, all zero and non-zero
elements ofx appear in blocks of fixed length only. Thus, the
vectorx is not only sparse but also block sparse [7].

In this scenario, we apply CDMA [1, Chap. 1] as a channel
access method for the uplink transmission. For this access
method, we assume that all frames have a fixed length of
F chips. We defineLk as the number of symbols, which
the kth user transmits during a frame. For thekth user,Lk

is determined by the spreading factorNk, i.e., the length
of the spreading sequence, withLk(Nk) = ⌊F/Nk⌋. Due
to a channel impulse responsehk, with a length ofℓ(hk)
chips, and a (relative) delay ofτk chips for thekth user,
the F transmitted chips are received asF ′ chips, where
F ′ = F+maxk [ℓ(hk)− 1 + τk]. The total number of symbols
M is given byM =

∑K
k=1 Lk.

For the received chipsy ∈ CF and the previously defined
vector x ∈ AM

a , the input-output relationship in the asyn-
chronous chip-rate model is given by:

y = Ax+ n . (1)

Here, n ∈ C
F is additive white Gaussian noise, i.e.,

NC(0, σ
2
n
). Each column of matrixA ∈ CF ′×M contains

the spreading sequencesk convolved with the current channel
impulse responsehk of the kth user [8].

For simplicity, we assume perfect channel state information
at the receiver, and thus perfect knowledge of the matrixA.
Unless noted otherwise, we assume that the channels for all
users are time invariant for the duration of a frame, i.e., we
have block fading channels. Additionally, we assume i.i.d.
channels across both users and frames.

For CDMA transmissions using a fixed bandwidth, the
transmitted symbol-rate is determined by the spreading factor
Nk. If Nk = N ∀ k andN < K, we term the CDMA system
to be overloaded with regard to the number of total usersK,
or, from a CS perspective, state that the linear equation system
(1) is under-determined.

III. B LOCK SPARSEDETECTION WITH

COMPRESSIVESENSING

The main question for our system model is how the block
sparsity ofx can be efficiently exploited in joint detection of
activity and data. To answer this question we will first look
at how generic sparsity can be efficiently exploited in such a
transmission.

In a nutshell, CS enables reliable detection of sparse signals,
even in under-determined equation systems [2], [3]. The CS
detection problem can be written in the form of (1), where
the matrix A and the received chipsy are given. Herein,
the sparsity ofx is determined by the number of non-zero
elements

Sx = ‖x‖0 = |{j : xj 6= 0}| . (2)

In general, the detector knows neither the amount nor the
position of the non-zero elements in the sparse vectorx. The
CS theory defines different detectors that are able to recover
the sparse solution of (1) even in underdetermined cases, i.e.,
F ′ < M . These detectors mainly fall into two categories:
convex optimization and iterative greedy algorithms. Other ap-
proaches like the Iterative Hard Thresholding (IHT) algorithm
[9] exist, but are not discussed here.

CS detectors using convex optimization are based onl1-
norm and l2-norm minimization. The most commonly in-
vestigated detectors are Basis Pursuit De-Noising (BPDN)
[10] and Least Absolute Shrinkage and Selection Operator
(LASSO) [11]. Additionally, other variants exist [12], [13].
CS detectors using convex optimization have in common that
the optimization is performed on the continuous alphabetCM .
However, as previously stated in this transmission scenario
vectorx contains elements from the discrete augmented alpha-
betAa = {A ∪ 0}. For discrete alphabetsAa, [5] introduces
a LASSO based CS-MAP detector, which can be efficiently
implemented with sphere decoding. However, the detectors in
[5] are only sparsity aware and not sparsity exploiting, as they
are not designed for the under-determined case of (1).

Greedy CS detectors are primarily variants of the Matching
Pursuit (MP) algorithm [14]. The best known greedy CS



Algorithm 1 Orthogonal Least Squares (OLS)

Γ0 = ∅, l = 0
repeat
l = l + 1
imin = argmin

i
‖y −AΓl

i

A
†

Γl

i

y‖2 with Γl
i = Γl−1 ∪ i

Γl = Γl−1 ∪ imin

x̂l
Γl = A

†

Γly and x̂l

Γ
l = 0

until l = Sx

algorithm is the Orthogonal Matching Pursuit (OMP) [15],
with variants introduced in [6], [16]–[18]. The main difference
to convex optimization is that greedy algorithms iteratively de-
termine the position of the non-zero elements inx and perform
data estimation for those non-zero elements. Moreover, greedy
CS algorithms are in general less computationally expensive,
compared to convex optimization [16], with the drawback
of being less sampling efficient, i.e., greedy CS algorithms
in general require a larger transmission overhead for reliable
signal reconstruction [16].

To explain greedy CS algorithms, we use the following
notation:Γ is a set of indices for columns in matrixA, andΓ
is the complementary set containing all valid indices not inΓ.
Furthermore,AΓ specifies the sub-matrix that only contains
those columns with indices inΓ, and likewisexΓ contains only
those elements ofx with indices inΓ. Additionally, xl, Al

andΓl specify the respective variable during thelth iteration.
Herein, A† is the Moore-Penrose pseudoinverse ofA, and
AH the Hermitian matrix ofA.

A. Orthogonal Least Squares

First, we will discuss symbol-wise greedy CS detection, as
block-wise detection is based on symbol-wise algorithms. The
Orthogonal Least Squares (OLS) algorithm [6], as given in
Algorithm 1, iteratively determines the support ofx, i.e., the
position of the non-zero elements inx, by iteratively choosing
columns of matrixA. During each iteration and for each
possible choice of a columni, OLS performs the orthogonal
projectionAΓl

i

A
†

Γl

i

y of y into the sub-spaceAΓl

i

given by

all previous choicesΓl−1 and columni. Afterwards, OLS
calculates the resulting residualrli for each choicei, and then
chooses the columnimin, which yields the residualrlimin

with
the smallest Euclidian norm.

Greedy CS algorithms in general perform a joint detection
of activity and transmitted data. The OLS, as a contrast,
actually performs this detection in two stages. This is due to
the fact that subsequent iterations only depend on the previous
column choicesΓl−1, but not the previous estimated vector
x̂l−1 or the previous residualrl−1. Thus, activity detection in
later iterations is solely dependent on the activity detection of
previous iterations, but not on the data estimations of previous
iterations.

Ideally, the OLS executes exactlySx iterations, asSx non-
zero elements are estimated after these iterations. However,
the sparsitySx of vector x is in general not known at the

Algorithm 2 Block-wise Orthogonal Least Squares (BOLS)

B0 = ∅, l = 0
repeat
l = l + 1
imin = argmin

i
‖y −AΓ(Bl

i)
A

†

Γ(Bl

i)
y‖2

with Bl
i = Bl−1 ∪ i

Bl = Bl−1 ∪ imin

x̂l
Γ(Bl) = A

†

Γ(Bl)
y and x̂l

Γ
(

B
l
) = 0

until l = Ka

receiver, and therefore a different stopping criterion hasto
be used instead. Various stopping criteria exist, such as those
discussed for the OMP in [19]. For the simulations, we assume
perfect knowledge ofSx at the receiver. Therefore, we use
l = Sx as a stopping criterion for the OLS. This assumption
serves as a best case assumption for other stopping criteria, as
they can never be better than the ideal stopping criterion.

B. Block-wise Orthogonal Least Squares

For block-wise detection we expand our notation: LetB be
a set of indices of blocks and letB be the complementary
set. Further, letΓ(B) specify the indices of those columns
contained in the blocks indexed byB. Using this notation, the
BOLS is given in Algorithm 2.

While the selection of non-zero elements for the OLS is
based on symbol-wise activity, the non-zero elements inx

are given by block-wise activity in this transmission scenario.
Thus, the OLS does not exploit the additional information that
the user activity is constant for the duration of a frame, and
thus the activity for all symbols of a user is the same. In
order to exploit the block sparsity, the BOLS [20] algorithm,
during each iteration, selects a block of columns, instead of a
single column. Thus, the BOLS selects all columnsΓ(Bimin)
corresponding to the blockimin that yields the residualrlimin

with the smallest Euclidean norm. As the BOLS only performs
one iteration for each block of non-zero elements, i.e., each
active user, the ideal stopping criterion isl = Ka. Thus, for
our simulations we assume that the number of active usersKa

is known, and use it for the ideal stopping criterion.
As the BOLS jointly detects the activity state forLk sym-

bols of thekth user during each iteration, it is less computation-
ally expensive than the OLS. First, for a given sparsitySx, the
BOLS only computesKa iterations to determineSx non-zero
elements, while the OLS computesSx iterations. Secondly,
during each iteration the OLS computesM − l + 1 different
Least Squares (LS) estimations, while during each iteration
the BOLS only computesK − l+1 different LS estimations.
Assume that forn columns of matrixA LS(n) operations are
required to compute the LS estimation. Further, assume that
the total number of operations is mainly determined by the
LS estimations. Then the number of operations of the OLS is
given by

∑Sx

l=1(M − l+1)LS(l), whereas for the BOLS it is
given by

∑Sx/L
l=1 (M/L− l + 1)LS(l · L) for Lk = L ∀k.



The BOLS chooses all columns within blocki based on the
results of the orthogonal projectionsAΓ(Bl

i)
A

†

Γ(Bl

i)
y. There-

fore, the decision is more accurate for orthogonal sub-matrices
AΓ(B). For a CDMA transmission, orthogonal sub-matrices
AΓ(B) are more likely for independent channel realizations
per symbol, i.e., the channels are time-variant. Therefore,
we expect more accurate activity detection for statistically
independent channels for each symbol.

IV. SIMULATION RESULTS

In this section, simulation results for the symbol error rate
(SER) are provided and evaluated. The SER is measured
over the entire vectorx and contains both support errors,
i.e., incorrect activity detection, and bit errors, i.e., incorrect
data detection for correctly detected activity. The following
simulation setup was used: A set ofK = 128 users is given,
where each user is active with a probability ofpa = 0.015.
Each user transmits a frame ofF = 256 chips whenever active.
For each user, Pseudo Noise (PN) sequences withNk = N ∀ k
chips are applied. Thus,Lk(N) = ⌊F/N⌋ = L ∀ k symbols
can be transmitted per user. The transmitted symbols are
Binary Phase Shift Keying (BPSK) modulated data bits. As a
model for the instantaneous channel, six consecutive Rayleigh
distributed coefficients with an exponentially decaying power
profile are used. These channel realizations are constant for
an entire frame, except when noted otherwise. It is assumed
that the transmitted chips of all users arrive synchronously at
the receiver, such thatτk = 0 ∀ k.

Whenever a user is active, this user transmits with an
average energy per symbol ofES = 1. Therefore, the signal-
to-noise ratio at the transmitter isES/N0 = 1/σ2

n
, whereσ2

n

is the variance of the additive white Gaussian noise.
For comparison purposes, we introduce a linear detection for

known activity using LS estimation, i.e., the detector knows
which users are active for every frame. As this detector has
perfect knowledge of the position of the non-zero elements
in x due to an oracle process, we call it “oracle LS”. The
oracle LS algorithm performs the LS estimation usingy and
the sub-matrixAΓoracle, whereΓoracle are the indices of the non-
zero elements of the transmitted vectorx, i.e., Γoracle = {i :
xi 6= 0}. Additionally, the oracle LS serves as a lower bound
for both OLS and BOLS, since they can never be better than
LS estimation for correctly detected active users.

Fig. 2 and 3 show simulation results for two different
values of the spreading factor,N = 128 (L = 2) andN = 32
(L = 8). These figures show that the BOLS has a lower SER
than the OLS in both cases. This is due to the fact that the
BOLS exploits the block sparsity ofx. Note that forN = 32
the SER of the BOLS is lower than forN = 128, as opposed
to both OLS and oracle LS, where the SER is slightly higher.
Two different influences are responsible for this effect. Onthe
one hand, the smaller the spreading factorN , the higher the
condition number ofA, which makes both the activity and data
detection less reliable. On the other hand, a smallerN results
in a larger block sizeL, which provides more information for
block-wise detection. This makes block-wise activity detection
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Fig. 2. SER simulation results forK = 128, F = 256, N = 128, L = 2

andpa = 0.015. SER for statistically independent channels for each symbol
is shown as a dashed line.
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Fig. 3. SER simulation results forK = 128, F = 256, N = 32, L = 8

andpa = 0.015. SER for statistically independent channels for each symbol
is shown as a dashed line.

more reliable. For OLS and oracle LS, the condition number
determines the SER, while the block length does not influence
their performance, thus their SER increases slightly. For the
BOLS, the influence of larger block lengths outweighs the
influence of increased condition numbers, thus the SER is
lower.

The SER of the BOLS in the case of statistically indepen-
dent channels across symbols for all users is shown in Fig. 2
and 3 as a dashed line. In both cases, independent channels per
symbol significantly improve the block-wise activity detection.
For N = 32, the SER of the BOLS even reaches the oracle
LS bound for high SNR. These results demonstrate that in
the case of independent channels per symbol the BOLS rarely
makes incorrect activity decisions for high SNR, so that the
SER is mainly determined by bit errors. ForN = 128, the
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Fig. 4. SER simulation results forK = 128, F = 256, N = 8, L = 32

andpa = 0.015. SER for statistically independent channels for each symbol
are shown as a dashed line.

improvement of the SER of the BOLS is much smaller, as each
user transmits fewer symbols per frame. However, even in this
case the SER of the BOLS is much lower with independent
channels for each symbol.

Similar results are derived in [21], where for Gaussian noise
near oracle performance can be guaranteed for high SNR.
However, the main difference is the assumption of normed
column weights ofA in [21]. Here, the simulations results
indicate that independent channels suffice for near oracle
performance in this transmission scenario and certain block
sizesL.

Fig. 4 shows the SER for an even lower spreading factor
N = 8 (L = 32). The SER of all algorithms forN = 8 is
significantly higher than their respective SER forN = 32. The
oracle LS and the OLS in particular are increased much more
than forN = 32 andN = 128. This is due to an even larger
increase of the condition number of matrixA. ForN = 8, the
BOLS has an error floor behavior around an SNR of20dB.
This indicates that the influence of increased block length no
longer outweighs the influence of a larger condition number
of matrix A. Thus, for the BOLS there is a certain value of
the spreading factorN that yields the lowest SER for a given
ES/N0.

V. CONCLUSION

In this paper, we investigated block-wise greedy CS de-
tection for joint detection of data and activity in CDMA
transmission. We have shown that using block-wise detection
algorithms greatly improves the joint error rate of activity
and data detection compared to symbol-wise detection. This
improvement is even larger for an overloaded CDMA system,
due to increased block lengths. However, this improvement
is limited to certain problem dimensions. It was shown that
for highly overloaded CDMA systems the error rate of block-
wise detection is increased when decreasing the spreading

factor even further. This indicates that for a given system setup
there is a certain spreading factor that yields the lowest error
rate for block-wise greedy detection. We also demonstrated
that the performance of the BOLS improves in the case of
statistically independent channels for each transmitted symbol.
This property allows for near optimal activity detection, in
certain under-determined cases.
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