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Abstract—With the expected growth of Machine-to-Machine
(M2M) communication, new requirements for future commu-
nication systems have to be considered. Traffic patterns in
M2M communication fundamentally differ from human based
communication. Especially packets in M2M are rather small
and transmitted sporadically only. Moreover, nodes for M2M
communication are often of reduced functionality which makes
complex control overhead or resource management infeasible for
such devices. Assuming a star-topology with a central aggregation
node that processes all node information one possibility to reduce
control signaling is to shift the activity detection fully to the
central aggregation node. The methodology of a joint activity
and data detection differs strongly from common communication
scenarios since errors during the activity detection are funda-
mentally different from errors made at data detection. In this
paper we introduce a non-linear joint activity and data detector
for M2M communication. The performance regarding data and
activity errors is assessed and compared to a scenario where node
activity is known by the aggregation node.

I. INTRODUCTION

Machine-to-Machine (M2M) communication is expected
to grow tremendously in the next years [1], thereby posing
new challenges for both existing communication systems,
designed with human communication in mind, and for existing
M2M solutions alike. On the one hand, standards like LTE
have to be extended to cope with the requirements of M2M
communication, which are often differing strongly from re-
quirements for speech communication and human data access.
For example, management overhead like mobility management
or sophisticated resource allocation is not well suited for low-
rate communication of sensor nodes that are only transmitting
sporadically. In the current frame structure of LTE-A, at most
a few tens of M2M devices can be supported with control
channel elements (CCEs) allocated within a subframe [2]. This
is far below the target number of M2M devices envisioned for
the future. On the other hand, a growing number of nodes
will be challenging for existing M2M standards like the IEEE
standards 802.15.4 and 802.15.1. Both are based on Carrier
Sense Multiple Access with Collision Avoidance (CSMA/CA)
and spread spectrum techniques. A thorough overview of
current activities in different standardization bodies like ETSI
and 3GPP can be found in [1]. Furthermore, detailed require-
ments on future M2M systems and an assessment of current
technologies can be found in the deliverable D2.1 of the
European project EXALTED [3].

In order to efficiently cope with a high number of sensor
nodes, which are expected to only sporadically transmit small
packets with low data rates, new approaches on the physical
layer are required. Major concerns are low control signal
overhead and improved power efficiency, for long battery life
of low-cost sensors.

Within this work, we focus on physical layer aspects of
M2M. We state that signaling overhead can significantly
be reduced by avoiding any control signaling regarding the
activity of sensor nodes prior to transmission. A promising
approach is to extend the receivers with the capability to
detect activity of the nodes. In consequence, the receiver has
to perform joint activity and data detection.

To point out the main idea, we consider a star topology,
where sensors desire to transmit data to a central aggregation
node as done in industrial applications such as smart factories,
medical applications or logistics [4]. We further assume a
random channel access facilitated by Code Division Multiple
Access (CDMA) which is very attractive for M2M scenarios,
due to its adaptive and flexible support of different data rates,
as well as Qualities of Service, and flexible and scalable
number of supported devices. The existence of a central
aggregation node allows for high processing power and
sophisticated Multi-User detection. Due to the assumption of
sporadic transmission, only a small number of sensors are
active at any given time. Therefore, the Multi-User signal
composed of signals from all sensors in the network is sparse,
i.e., the information is contained in a few signal components
only.
Knowledge about the node activity can be exploited by
the detector which we call Sparsity Aware detection.
Consequently, control signaling concerning node activity
can be lessoned by moving the activity detection problem
fully to the central aggregation node which performs joint
activity and data detection for the nodes. In this paper we
focus on non-linear Sparsity Aware Multi-User detection
facilitated by the application of a Maximum a Posteriori
detector. We consider the detection at symbol rate which
requires the application of a pre-whitening filter to ensure
decorrelated white Gaussian noise at the input of our detector.
Moreover, the framework of a joint activity and data detection
necessitates different error handling compared to systems
where only data detection is performed. Beside the wrong
detection of symbols at the data detection, the activity of a



Fig. 1. Sensor network - star topology

node can be estimated wrongly as well. This class of error is
fundamentally different from those made at symbol detection.
For example, if an active node is estimated as inactive, the
data of this node is lost. Contrary, inactive nodes that are
wrongly estimated to be active can possibly be identified by
higher layer error handling applications such as check codes
that identify invalid pieces of information like invalid frames.
To capture the performance of the detector appropriately,
we introduce new error classes on symbol and frame basis
that allow to asses the performance of the detector regarding
joint activity and data detection. To this end, we consider the
application of a Sparsity Aware Multi User-Detector which
we apply to the symbol rate model of the Multi-User-CDMA
(MU-CDMA) system for the joint activity and data detection
and evaluate the performance according to the aforementioned
error classes. We therefore investigate the occurrence of the
error events on symbol level and on frame level.

II. SYSTEM MODEL

A. Machine-to-Machine Scenario

In this paper, we consider a M2M scenario, where K sensor
nodes communicate with a central aggregation node, as shown
in Fig. 1, typically denoted as a star topology. All sensor nodes
are devices of low complexity, while the central node allows
for advanced signal processing, such as sophisticated detection
and message aggregation for forwarding. In principle, the
sensor nodes are active on occasion only, i.e., measurements
have to be transmitted event driven, which leads to sporadic
communication. In contrast, the aggregation node is active all
the time to process incoming messages. To model sensor node
activity, we adopt a statistical approach, where each sensor
node is active for a short time period, with a given activity
probability pa. This activity probability, which we assume to
be identical for all sensor nodes, determines the number of
active nodes in a statistical sense. In the following, the base
assumption is that out of the K sensor nodes in the network
the majority are silent, i.e., the activity probability is rather
small, with pa � 1.

To facilitate sporadic and simultaneous medium access,
CDMA with Pseudo random Noise (PN) sequences is used

instead of the CSMA/CA scheme employed in IEEE standards.
Here, we choose PN sequences due to their well known corre-
lation properties for uplink communication [5]. CDMA offers
a number of attractive properties for M2M communication
as noted before. It allows for a very flexible non-orthogonal
medium access with some degree of asynchronicity on the
chip level between sensor nodes.

B. CDMA Symbol-rate System Model
We assume that a node k, 1 ≤ k ≤ K is active with

probability pa and transmits a frame containing Lk symbols
from the modulation alphabet A. With CDMA, these symbols
are spread to chips by a node specific spreading sequence
of length N . After spreading the active nodes transmit the
chips over a frequency selective Rayleigh fading channel with
impulse response length of Lh,k chips where the channel
coefficients hk,n, 1 ≤ n ≤ Lh,k obey the same uncorrelated
Rayleigh fading statistics with zero mean and variance 1/Lh,k.
Without loss of generality, we assume that Lk = L ∀k and
Lh,k = Lh ∀k. This assumption allows to model the node
specific spreading and convolution with the underlying channel
by the matrix A ∈ RN+Lh−1×K . This consideration simplifies
the formulation of a matched-filter that we assume to be
applied at the aggregation node in order to go from chip rate
back to symbol rate. Moreover, we assume Lh < N such
that inter-symbol interference can be ignored and multi-user
interference becomes the main performance limiting factor of
the CDMA system [6][5]. Thus, we capture the symbol clock
input output relation of our system as

yi = ATAxi + ATw. (1)

The vector xi, 1 ≤ i ≤ L contains the symbols from all K
nodes at the time instance i. To incorporate node inactivity,
we model an inactive node to transmit only the zero symbol
and we have xk = 0 for inactive nodes and xk ∈ A for
active nodes. The Modulation alphabet A can be any real
valued alphabet such as Amplitude Shift Keying (ASK) or
Binary Phase Shift Keying (BPSK). The assumption of a
real valued alphabet is not a general restriction. The methods
applied in this paper can be used for any complex system
using the equivalent real valued description. The elements of
the source vector xi, consequently, belong to the augmented
symbol alphabet A0 = A ∪ 0. With this model and a node
activity probability of pa, the kth element of xi contains a
zero with probability 1− pa. We further model node activity
on a frame basis, i.e., the node k is either active and transmits
a frame containing L symbols from A or the node is silent and
is modeled to transmit a whole frame containing only zeros.
At the aggregation node, matched filtering is done by simply
collecting N+Lh−1 chips which are filtered by AT . The chip
rate noise vector w contains uncorrelated white Gaussian noise
samples with covariance matrix E

(
wwT

)
= σ2

nIN+Lh−1.
Equation (1) clearly shows that the noise is filtered by the
matched filter leading to correlated noise at symbol rate with
covariance matrix

Φ̃ = E
(
ATwwTA

)
= σ2

nATA. (2)



Additionally, we assume that the number of nodes is lower
than the length of the spreading sequence K ≤ N which
corresponds to a CDMA system load of β = K/N ≤ 1.

C. Noise Pre-Whitening

We apply non-linear detection for the Multi-User system
described by (1). These detector assumes the noise to be un-
correlated, we therefore introduce two pre-whitening schemes
that can be applied to decorrelate the noise. The goal of a
pre-whitening filter P is to diagonalize the noise covariance
matrix at symbol rate (2). Consequently, we have to find P
such that

Φ = PΦ̃PT !
= σ2

nIK (3)

is fulfilled, with IK being the identity matrix of dimension K.
Within this work we consider two different concepts for the
formulation of the pre-whitening filter.

1) Eigenvalue Based Pre-Whitening: Given the noise co-
variance matrix at symbol rate from (2), leads after Eigen
Value Decomposition (EVD) of the matrix Φ̃ to

Φ̃ = σ2
nVΣVT (4)

With (3) we have

Φ = σ2
nPVΣVTPT , (5)

and if P = Σ−1/2VT , (5) is reduced to

Φ = σ2
nΣ−1/2VTVΣVTVΣ−1/2

= σ2
nIK . (6)

This technique is strongly connected to the Karhunen-Loève
Transformation and sometimes denoted as Discrete Karhunen-
Loève Transform (D-KLT) [7].

2) Cholesky Decomposition: Another possibility for diago-
nalizing the noise covariance matrix (2) is to apply the skinny
QR decomposition of the matrix A [8, p. 217] which leads
to A = QR with Q ∈ RN+Lh−1×K and R ∈ RK×K

and Q is column orthonormal such that QTQ = IK holds.
Consequently, (2) can be decomposed to

Φ̃ = σ2
nRTQTQR

= σ2
nRTR, (7)

where RT is the lower triangular Cholesky factor of the pos-
itive definite matrix product ATA. The covariance matrix (3)
simplifies by choosing P = R−H to

Φ̃ = σ2
nR−HRTRR−1

= σ2
nIK . (8)

As the matrix RT and its inverse are both lower triangular,
this methodology is preferable for implementation since the
filtering with P is not as costly compared to the multiplication
with a non upper triangular matrix as for the D-KLT [9].
We further note that the input-output relation for both pre-
whitening filter concepts is bijective which concludes that both
pre-whitening filters do not lead to an information loss after
filtering.

III. SPARSITY AWARE SPHERE DETECTOR (SA-SD)

The main task of our detector is to recover the symbols of
all nodes from the Multi-User signal described by (1). With
the application of a pre-whitening filter we reformulate the
input output relation of our system to

yi = PATAxi + PATw

= Txi + w̃. (9)

Here the matrix T ∈ RK×K corresponds to effective channel
matrix incorporating spreading, convolution with the channel,
de-spreading and pre-whitening. The vector w̃ represents the
white and uncorrelated noise at the output of the pre-whitening
filter. With (9), we see that the goal is to recover a vector
that contains with high probability more zeros than elements
from A. A vector with only a few element that are non-zero is
called a sparse vector. The sparsity of a vector is defined as the
number of elements that are non-zero and is mathematically
expressed by the zero-pseudo norm Sx = ‖x‖0. In our case
we assume that the aggregation node has knowledge about pa
but neither about the particular sparsity of xi nor the position
of unequal zero symbols. All in all, the aggregation node has
statistical knowledge about the sparsity of xi.

In [10] the authors showed that the Maximum a Posteriori
(MAP) detector for the detection of a sparse vector that is
corrupted by white Gaussian noise reads

x̂ = min
xi∈A0

‖yi −Txi‖22 + 2σ2
n‖xi‖0ln

(
1− pa

(pa/ |A|)

)
. (10)

Here |A| is the cardinality of the modulation alphabet used
for data transmission. The optimization problem formulated
in (10) can be interpreted as a least-squares problem that is
regularized by a term reflecting the a priori probability of xi.
The application of the zero-pseudo norm leads to costs that
are increased by exactly 2σ2

nln
(

1−pa

pa/|A|

)
for each element

from the symbol alphabet A contained in the vector xi.
Therefore, the regularization term forces the detector to prefer
sparse solutions for xi and scales with the noise power σ2

n

making non-zero symbol detection in a low Signal-to-Noise
(SNR) range costly.

The optimization problem stated in (10) is discrete over
the augmented alphabet A0 and can efficiently be solved by
a Sparsity Aware Sphere Detector (SA-SD). We reformulate
the optimization problem by writing T = QR with Q being
an unitary matrix, i.e., QTQ = QQT = IK and R. We can
rewrite (10) to

x̂ = min
xi∈A0

‖yi −QRxi‖22 + 2σ2
n‖xi‖0ln

(
1− pa
(pa/|A|)

)
x̂ = min

xi∈A0

‖QTyi −QTQRxi‖22 + 2σ2
n‖xi‖0ln

(
1− pa
(pa/|A|)

)
x̂ = min

xi∈A0

‖ỹi −Rxi‖22 + 2σ2
n‖xi‖0ln

(
1− pa
(pa/|A|)

)
(11)

Note that the regularization term in (11) is monotonically
increasing in the number of symbols from A contained in



xi which allows for efficient implementation by a Sphere
Detector [10][11].
Calculating the QR decomposition of T can be omitted by
the application of the Cholesky Decomposition based pre-
whitening filter. In this case we can rewrite the matrix T by
the application of the skinny QR decomposition. With (9) and
P = R−H we have

T = PATA

= P (QR)
T

QR

= R−HRTQTQR

= R. (12)

This simplification does not hold for the concept of EVD
based pre-whitening and makes the Cholesky decomposition
based pre-whitening preferable for the application of a Sphere-
Detector.

A. Connection to Compressed Sensing

The detection of a sparse vector from a noise corrupted
measurement is strongly related to the field of Compressed
Sensing (CS) [12][13]. In CS, a sparse vector of dimension n
can be recovered with high success rate even if the number
of measurements m is smaller than n, which requires to
solve an under-determined set of equations. Even though
the scenarios considered within this work are fully or even
over-determined, CS theory was shown to be a promising
technique in overloaded CDMA systems where the number of
nodes exceeds the number of spreading sequences [14][15].
One approach to solve this system is the application of the
Least Absolute Shrinkage and Selection Operator (LASSO)
which is a convex relaxation of the problem stated in (10) to
continuous alphabets. For further details the reader is referred
to [16]. Other works have proved the feasibility of CS in
the M2M context by investigating the delays which occur in
CS detection based system where nodes access the channel
simultaneously via CDMA [17].

IV. NUMERICAL EVALUATION

A. Classification of Symbol Error Events

Performing a joint data and activity detection necessitates to
distinguish between activity errors and data-symbol errors. So
we have to extend the class of errors from simple data errors
by considering activity errors, which broadens up classical de-
tection. Estimating an active node to be non-active is generally
more severe than the opposite, i.e. estimating a non-active node
as active. In the latter case, wrong frames can be detected by
error detection mechanisms such as Cyclic Redundancy Check
Codes (CRC) which, in contrast, increases the processing cost
at higher layers. To distinguish the different error events, we
define the following classes for symbol errors:
• Net Symbol errors (NSE)
• False Active errors (FA)
• False Inactive errors (FI)
• Gross Symbol errors (GSE)

We consider the case where a node transmits a data symbol
from A that is detected wrongly as a Net Symbol Error
(NSE), additionally, the wrong detection of a symbol from
the augmented alphabet A0 is denoted as Gross Symbol Error
(GSE). Activity errors are counted when an active node is
wrongly estimated to be inactive FI and non-active nodes
which are wrongly estimated to be active FA.
Remark: Having the introduced error events in mind, we state
that the estimate x̂i for the problem given in (10) is the MAP
estimator on the augmented alphabet A0 which is reflected
by the GSE error class. In summary, the MAP detector given
in (10) is the optimal detector for minimizing the GSE error
event.

B. Classification of Frame Error Events

For frame wise transmission, we assume the nodes to be
active or inactive for the duration of a whole frame containing
L symbols. To recover a frame, the detector estimates L con-
secutive vectors x̂i with 1 ≤ i ≤ L. The frame transmitted by
node k is recovered by collecting the kth element in the vectors
x̂i leading to the column vector x̂T

k = [xk,1, xk,2, ..., xk,L].
The formulation of different error classes on a frame basis
requires the definition of a criterion which indicates if a frame
is considered to be active or inactive.

x̂T
k ∈

{
A1×K if criterion is fulfilled
01×K if criterion is not fulfilled

(13)

For (13), we point out that an active node can be interpreted
as repeating L times the symbol alphabet A and xk takes the
form

x̂T
k =

{
[A,A, ...,A] ∈ A1×L if node is active
[0, 0, ..., 0] ∈ 01×L if node is non-active

(14)

With (14) we apply a majority criterion and consider an
estimated frame as active if ≥ 50 % of the estimated symbols
belong to A. Contrary, if > 50 % of the symbols are 0, the
frame is considered to be inactive. Moreover, we define the
following three error events on a frame basis:
• Net Frame errors (NFE)
• False Active Frame errors (FA-F)
• False Inactive Frame errors (FI-F)

The Net Frame errors are analogous to NSE, i.e. a frame
transmitted by a node containing data symbols from A that is
corrupted after estimation. We consider a frame to be corrupted
if at least a single data-symbol is wrong after estimation. False
Active Frame errors occur if an inactive node is wrongly
estimated to be active on a frame basis and False Inactive
Frame errors occur if an active node is wrongly estimated to
be inactive on a frame basis. Activity detection on a frame
basis is facilitated via the aforementioned majority criterion.

C. Evaluation of Symbol Errors

In the following we will discuss the numerical results for the
SA-SD. In particular, we investigate the impact of the activity
estimation on the overall error rate. To assess the impact of



Simulation Parameters
Number of Nodes K = 10

Spreading Gain N = 16
Length of Channel Impulse Resp. Lh = 4 chips

Channel Type Real valued Block Rayleigh Fading
Activity Probability pa = 0.2

Frame Length L = 50 Symbols
Modulation Type BPSK

Pre-Whitening Cholesky Decomposition

TABLE I
SIMULATION PARAMETER

the joint activity and data detection, we compare our results
to a detector that knows which nodes are active and which are
not, denoted as Oracle Sphere-Detector. The Oracle Sphere-
Detector will consequently not produce any errors during the
activity detection. We first consider the symbol error rates for
the scenario summarized in Table I. For pre-whitening we
applied the Cholesky Decomposition as derived in Section
II-C2. Cholesky Decomposition and Eigenvalue based pre-
whitening showed absolutely identical performance and we
therefore show the results with the application of a Cholesky
decomposition based pre-whitening filter only.

Fig. 2 shows the performance of the SA-SD on a symbol
basis. As mentioned previously, the regularization term in (10)
scales with the noise power which makes the detection of data-
symbols from A costly for low SNR. Consequently, the GSE
converge to pa = 0.2 in the low SNR region. This behavior
is obvious since the detector estimates all symbols to zero.
The mean number of data symbols from A contained in xi

is pa and if these symbols are estimated to be zero, pa errors
are done on average. This directly influences the NSE which
counts data symbols that are estimated wrongly. Obviously,
at low SNR all data symbols are mapped to zero resulting in
100 % NSE.
The best possible performance of the SA-SD is achieved if
the activity of the nodes is estimated correctly. This bound
is shown in Fig. 2 as the Oracle NSE. The Oracle Sphere
Detector has knowledge about active and inactive nodes and
performs data detection only. In a practical setup this perfor-
mance can be achieved by complex control signaling about
node activity. The performance of the Oracle Sphere Detector
is below the NSE rate of the SA-SD revealing that errors
during activity detection strongly decrease the NSE rate of
the SA-SD.

The error rates for activity detection on a symbol basis
are shown on Fig. 3. Considering the FI rate performance
clearly shows that especially in the low SNR range the FI rate
converges to 100 %, i.e. all active nodes are estimated to be
non-active. This is again a consequence of the regularization
term in (10) which makes symbol detection in a low SNR
range costly. In contrast, the FA error rate is very low in a low
SNR range, increases to a maximum value of approximately
3 · 10−2 and decreases again for higher SNR. This behavior
results as all nodes are estimated to be non-active at low SNR,
consequently, inactive nodes are never estimated to be active.
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Fig. 2. Net Symbol Errors (NSE) and Gross Symbol Errors (GSE) for
Sparsity Aware Sphere Detector compared to an Oracle Sphere Detector

Increasing the SNR, decreases the scaling of the regularization
term in (10) due to a lower noise power and some inactive
nodes are wrongly estimated to be active. At higher SNR, the
corruption of the observation due to noise is decreased and
the FA error rate decreases as the SNR increases.
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Fig. 3. False Active errors (FA) and False Inactive errors (FI) for the Sparsity
Aware Sphere Detector

Figure 4 shows the error rate performance on a frame
basis consisting of L = 50 information symbols. The rate
of frames containing information which is corrupted after
detection, denoted as NFE, converges to 100 % in the low SNR
range and decreases with increasing SNR. This behavior is
analogous to the NFE since the detector estimates all symbols
to zero for low SNR. Comparing NFE to the NFE errors for



the Oracle Sphere Detector proves that activity errors again
strongly contribute to the NFE error events. Similar to the
symbol error events, active nodes are detected by the majority
criterion to be non-active on a frame basis. This event is
captured by the FI-F curve. Again this curve converges to
100 % at the low SNR range since all symbols are estimated
to be zero. As the SNR increases, the FI-F error rate decreases
in a similar fashion as the FI error rate decreases on symbol
level. During our simulation we were not able to capture a
representative rate for the FA-F error rate.
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Fig. 4. Net frame errors (NFE) False Inactive Frame errors (FI-F) for Sparsity
Aware Sphere Detector compared to an Oracle Sphere Detector

This performance evaluation shows that even though the
SA-SD is optimal in the sense of GSE, optimal estimation of
node activity is still questionable. As mentioned previously, FA
errors can to some extend be identified by higher layers that
perform error detection codes such as CRC codes. Whereas FI
errors always result in loss of information. This consideration
reveals that an optimal detector should also involve higher
layer processing capabilities for weighting between the FI
and FA errors. This consideration motivates future research on
optimal activity and data estimation. Which involves a cross
layer design between the physical layer and higher layers.

V. CONCLUSION

In this paper we introduced the application of a Sparsity
Aware Multi-User detector on the symbol clock model of a
Multi-User CDMA system. We thereby investigated the per-
formance of a Maximum a Posteriori detector to detect node
activity and data at symbol rate jointly. We showed that the
application of a Cholesky decomposition based pre-whitening
filter is efficient in combination with the implementation as
Sparsity Aware Sphere Detector. Our investigation revealed
that for joint activity and data detection different error classes
have to be regarded. We showed that the impact of errors
at activity detection are fundamentally different than errors

at symbol detection. This consideration motivates to enhance
joint activity and data detection by considering cross-layer
design approaches.
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