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Abstract—This paper investigates new detection methods for
low data-rate Machine Type Communication. Special attention
is paid to uplink communication in networks where nodes are
only active occasionally, which requires a joint activity and data
detection at the receiver. This paper shows that a modified version
of Successive Interference Cancellation is a viable approach
for the detection of these low data-rate multi-user signals. The
analysis is in the context of a hardware implementation, which we
address particularly as we investigate the algorithmic complexity
of the introduced algorithms.

I. INTRODUCTION

Machine Type Communication (MTC) is a fast growing
field and recently gained considerable attention [1]. Appli-
cations such as smart metering, medical systems or logistics
constantly raise new demands on existing communication
systems such as LTE [2]. Integrating these mostly low-data
rate services into existing infrastructures is a major concern.
Various MTC applications require only low data rate which
makes extensive signaling overhead and complex scheduling
impracticable. A potential physical layer approach towards
reduced signaling is to avoid activity signaling. This requires
activity detection of the nodes by the receiver itself. The
detection of sporadic MTC was initially adressed in [3]. Here
inactive nodes are modeled as transmitting zero symbols and
the detector utilizes an augmented modulation alphabet for
detection. This approach has been extended further in [4],
[5], [6] where the authors investigated the performance of
sphere decoding for sparse communication signals in a multi-
user framework, which models an uplink Machine to Machine
(M2M) scenario.

However, with focus on implementation methods, sphere
detection is very costly and various suboptimal methods can
nearly approach same performance with decreased complexity.
It is well known that Successive Interference Cancellation
(SIC) with proper pre-processing such as sorting [7] is a viable
candidate for a suboptimal approach.
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Aiming at a future hardware implementation, this paper
investigates the recovery of sparse communication signals
under practical side conditions with a low-complexity SIC. As
a major contribution we show that in a sparse communication
system SIC nearly approaches the performance of Maximum a
posteriori (MAP) detection by utilizing efficient pre-processing
algorithms prior to detection. In particular we investigate the
application of the well known Sorted QR Decomposition
(SQRD) [7] which guarantees that nodes with a high post
detection SNR are detected first while aiming at decreased
error propagation. Additionally, we introduce a data dependent
sorting algorithm, which combines SQRD with the knowledge
of sparse source signals. Motivated by ideas from Compresses
Sensing [8], this approach outperforms the simple application
of SQRD at the cost of additional algorithmic complexity.

Aiming at practical implementations of SIC, we investigate
the impact of various side constrains on the performance.
We show the impact of quantization to a fixed-point number
representation limits the performance of the detector, and
we address the minimal necessary quantization word length
required for sufficient performance.

The remainder of this paper is organized as follows: Sec-
tion II describes a general multi-user uplink system model
which forms the basis for further investigations. In Section III
we introduce the Sparsity-Aware SIC (SA-SIC) as suboptimal
detector and investigate the algorithmic complexity. Section IV
introduces potential pre-processing steps before SIC detection
for increased performance. We also investigate the algorithmic
complexity of the introduced pre-processing strategies. In Sec-
tion V a Code Division Multiple Access (CDMA) multi-user
system is introduced to test the performance of the algorithms.
We examine the performance under fixed point operations as
a step towards a hardware realization in Section VI which
we also investigate in detail in Monte-Carlo simulations in
Section VII. Section VIII finally concludes the paper.

II. SYSTEM MODEL

The main contributions of this work are of general nature
and can be applied to a variety of communication systems. We



,however, restrict ourself to the multi-user uplink case where
a set of K nodes transmit data to a central aggregation node
for further processing. This uplink model is summarized as
follows

y = Tx + wn. (1)

Here y ∈ CK is the vector of observations and T ∈ CK×K
summarizes the channels between the nodes and the aggrega-
tion node. We assume superposition of additive white Gaussian
noise with zero mean and variance σ2

n. The source vector
contains the modulation symbols from the nodes and the kth
entry corresponds to the modulation symbol of node k.

In this setup we employ a simple activity model for the
nodes which is parametrized by the per node activity proba-
bility pa that we assume equal for all nodes in the system.
Each node is active with pa and transmits symbols from
the modulation alphabet A. Inactive nodes do not transmit
anything and are modeled as transmitting a zero symbol. The
application of this model makes Pr (xk = 0) = 1 − pa and
Pr (xk ∈ A) = pa. If pa is sufficiently small, the source vector
x ∈ AK0 is a sparse vector containing a considerable number
of zero symbols. The main idea is to detect x with respect to
the augmented symbol alphabet A0 = A∪ {0}, which can be
interpreted as a joint activity and data estimation.

III. SPARSITY-AWARE SUCCESSIVE INTERFERENCE
CANCELLATION (SA-SIC)

This section provides the formulation of the Sparsity-Aware
Maximum a Posteriori (S-MAP) detector for the problem
in (1). However, aiming at efficient hardware implementations,
we restrict ourselves to suboptimal strategies and take the S-
MAP performance as benchmark. In particular, we introduce
the Sparsity-Aware SIC (SA-SIC) which we investigate with
different types of pre-processing to nearly achieve S-MAP
performance.

A. S-MAP Detector

In [3] the authors derived the S-MAP detector for the above
described system model which solves

x̂ = arg min
x∈AK

0

‖y −Tx‖22 + λ

K∑
k=0

1A (xk) . (2)

The penalty term

λ = 2σ2
n log

(
1− pa
pa/|A|

)
(3)

reflects the a priori statistics of the data vector and scales with
the noise power σ2

n [4], [6]. 1A (·) is the indicator function
which takes the value one if the argument is contained in the
set A and zero otherwise. Problem (2) can efficiently be solved
by sphere decoding [9].

1: function SA-SIC( ỹ, R̃, σn, pa )
2: λ← 2σ2

n log((1− pa)/(pa/|A|))
3: for k ← K, ..., 1 do
4: z ←

∑K
j=k+1 rkj x̂j . residual

5: for all x ∈ A0 do . symbol hypotheses
6: dx ← (ỹk − r̃kkx− z)2 + λ|x| . metric
7: end for
8: x̂k ← arg min∀x∈A0

dx . decision
9: end for

10: return x̂
11: end function

Fig. 1. Pseudocode of the SA-SIC detection algorithm for real-valued, zero-
augmented modulation schemes.

B. Sparsity-Aware SIC (SA-SIC) Detection

To approximately solve the S-MAP problem (2), we intro-
duce SA-SIC as a suboptimal but far less complex solution in
this paper. All variables are real-valued, as we focus on Binary
Phase-Shift Keying (BPSK) modulation.

We use the well known QR decomposition (QRD), applied
to the system matrix T for decomposing T = QR, where Q
is column orthonormal and R is upper triangular [10]. With
the help of this, we can rewrite (2) as

x̂ = arg min
x∈AK

0

‖ỹ −Rx‖22 + λ

K∑
k=0

1A (xk) , (4)

where ỹ = QHy. For practical implementations, (4) has to
be reformulated with scalar quantities. Thus, x̂ will be the
detection result of

x̂ = arg min
x∈AK

0

 K∑
k=1

ỹk − K∑
j=k

rkjxj

2

+ λ1A (xk)

 . (5)

The sum in front of the of the indicator function could be
combined with the sum of the l2-norm definition.

The application of QRD enables an successive detec-
tion approach, which is well-known SIC detection, a back-
substitution algorithm. Since (5) demands a minimization of a
sum over all k, each summand can be minimized separately.
Thus, the problem can be divided into K smaller, partial
problems

x̂k = arg min
x∈A0

(ỹk − rkkxj −
K∑

j=k+1

rkj x̂j)
2 + λ1A(x)


︸ ︷︷ ︸

dx

.

(6)
Note, that the minimization is dependent on symbols x̂j , j >
k. Therefore, the detection process must begin with the highest
index, k := K, to detect x̂K . Eq. (6) can be evaluated for
every possible symbol xk ∈ A0, which leads to “symbol
hypotheses” (xi, dxi

), i = 1, ..., |A0|, i.e. each symbol is
associated with a metric. S-MAP detection rules that the
hypothesis with least cost is the most probable one. Hence,



the SA-SIC algorithm decides for the corresponding symbol
as detection result. Thereupon, the index will be decreased by
one, k := K − 1. SA-SIC detection continues until all x̂i,
i = K, ..., 1 are detected.

Fig. 1 lists the SA-SIC algorithm in pseudocode notation.
First of all, the S-MAP weight λ is precomputed. Then
detection starts with the Kth user symbol and descends suc-
cessively. The metric for each symbol hypothesis is regularized
by the sparsity promoting extension λ|x|, with | · | being the
indicator function 1A(·) for BPSK. Note, that the sum within
the squared round brackets of eq. (5) (see also line 6 in
Fig. 1) can be decomposed into r̃kkxk+

∑K
j=k+1 r̃kjxj , where

the first summand is only dependent on the current transmit
hypothesis xk and the second summand only on previously
decided symbols. The latter part, named z in the pseudocode,
constitutes a residual. The last step of the SA-SIC is a hard
decision for the hypothesis with the least cost. After K steps
the algorithm terminates and returns the result vector x̂ ∈ AK0 .

C. Complexity Comparison with Sparsity Aware Sphere De-
tection

The execution of the SA-SIC algorithm takes K steps, and
in each iteration it computes the partial metric

d = (ỹk − r̃kkxk − z)2 + λ|xk| (7)

for each possible symbol of the modulation alphabet (see line 6
in Fig. 1).

To evaluate (7) once, two subtractions, a partial vector
multiplication for the residual z, and a multiplication for the
square are needed. For nonzero symbols one more addition
has to be considered to add the S-MAP weight λ. Note, that
r̃kkxk and λ|xk| are not genuine multiplications since xk is
a constant factor from the very limited set A0. The sign bit
of xk determines whether these mathematical expressions are
added or subtracted and are thus just a simple conversion of
the sign bit of r̃kk or λ respectively.

The partial vector multiplication for the residual takes
[K − (k + 1)] multiplications and [K − k] additions. For the
same reasons these are not genuine multiplications as well,
and we can approximate the necessary operations as

Cz ≈
K∑
k=1

(K − k)CAdd =
K2 +K

2
CAdd , (8)

where CAdd denotes the cost of one addition (or subtraction).
The cost to compute a whole SA-SIC is therefore propor-

tional to

CSA-SIC ∝ K|A0| (CMul + Cz + 2CAdd) , (9)

where CAdd denotes the cost of one multiplication. This makes
CSIC = O(K2) due to the partial vector multiplication.

Because the number of users and the modulation alphabet
are both fixed quantities in a system setup, the algorithmic
complexity and the runtime of the SA-SIC is constant. In
contrast to this, this is not true for optimal S-MAP detection by
a Sphere Decoder (SD). Sphere detection is closely related to

5 10 15 20
101

102

103

Average Eb/N0 in dB

A
ve

ra
ge

N
um

be
r

of
Pr

oc
es

se
d

N
od

es
n̄

SD SDw,s K = 20

SDw,s K = 16

SICw,s K = 20

SICw,s K = 16

Fig. 2. Sphere decoder complexity in terms of processed nodes nSD. The
solid line represents an overdetermined system, whereas the dashed line a
fully-loaded system (see section VII).

SA-SIC, because it operates on the very same problem formu-
lation of eq. (5). The only difference to SA-SIC detection is,
that previously made symbol decisions can be dismissed later
for an overall better solution. This seemingly minor variation
makes the SD result on the one hand optimal, but on the other
hand the runtime is not deterministic and varies. A measure of
runtime of a SD is the number of processed nodes in the search
tree, here denoted as nSD. Fig. 2 shows, that nSD becomes
huge for low to medium SNR ranges and exhibits a strong
exponential behavior. In distinction to eq. (9), the complexity
of SD is

CSD ∝
n̄SD(Eb/N0)

K
· CSA-SIC . (10)

The detection result (SER) of SD is invariant of sorted or
unsorted pre-processing, but of course sorting would decrease
nSD in comparison to unsorted QRD. Therefore, Fig. 2 plots
the curves for SD with SQRD as pre-processing. Hence, a
fair comparison between the complexities of the detectors can
be drawn. We will show, that suboptimal SA-SIC detection
leads to a drastically reduced algorithmic complexity at small
detection performance loss only.

IV. SORTING STRATEGIES

A. Sorted QR Decomposition

In this section two different pre-processing algorithms are
designed which significantly enhance the SA-SIC perfor-
mance. As the focus of this paper is the recovery of sparse
source vectors, we exploit this knowledge for enhanced pre-
processing. Additionally, we investigate the performance of the
well known post detection SNR dependent sorting algorithm
based on the application of the Sorted QR Decomposition
(SQRD) which we use in both pre-processing algorithms. The
Major key point of the SQRD is to decompose the system
matrix such that

TΘ = QR⇔ T = QRΘT (11)



Here Θ denotes a binary square orthonormal permutation
matrix [10] which simply determines the ordering of the
detection later on. The major advantage is that detection or-
dering is optimized such that nodes with a high post detection
SNR are detected first [7]. This strategy aims to minimize
the probability of error propagation during the successive
detection process. Additionally, it is sufficient to re-calculate
the SQRD only if T changes which shows the independence
of the sorting scheme from the currently transmitted data. In
contrast, we subsequently introduce a data dependent sorting
scheme, where the instantaneous vector of observations y
influences the pre-processing.

B. Data-Dependent Sorting and Regularization

In the following we formulate a Data-Dependent Sorting
and Regularization (DDS) algorithm which is inspired by
Compressed Sensing. We begin with the system description (1)
and recall the S-MAP detector stated in (2). The a-priori
statistics of the source data x is reflected by the penalty
term λ added to the optimization problem for each element
xi ∈ A. In the following we restrict ourself to constant
modulus data |xi| = 1. Our goal is to adaptively weight the
sparsity parameter λ for each element xi which is derived
from the instantaneous received signal y. We thus rewrite the
penalty term of (2) as

λ

K∑
k=0

1A (xi) = λ‖x‖22 =
∥∥∥diag

(√
λ
)

x
∥∥∥2
2
. (12)

In (12) we utilize the definition of the l2 norm for regular-
ization, moreover, we replace the scalar λ by the vector λ,
where the elements λi = λ have the same value. The diag (·)
builds a matrix with the vector on the main diagonal and zero
off diagonals. λi reflects the a-priori statistics of the source
data and is equal for all elements xi. Our goal is to re-
scale λi based on the instantaneous activity pattern which we
subsequently estimate from the observation y. For getting a
rough estimate about the current activity pattern we employ
parts of an Orthogonal Matching Pursuit (OMP) [11]. The
OMP is a greedy CS algorithm that iteratively estimates the
set of active elements and the corresponding values in a CS
problem. The OMP uses the correlation between the received
signal y and the columns of the system matrix T as a measure
for the likelihood which columns of T are contained in y. This
can be expressed as

c = TH
n y . (13)

The subscript Tn indicates that the columns of T are normal-
ized to unit vectors prior to the correlation [12]. The magnitude
of the ith element in c gives an indication whether the ith
column of T is contained in y or not. If so, it is much likely
that the magnitude of ci is large. Therefore, we sort c in a
descending order, which can be summarized as cs = Ψc,
where Ψ is the corresponding permutation matrix.

In the following we utilize the sorting obtained by correla-
tion to influence the a-priori assumption contained in λ. This
approach aims to increase λi if ci is low and to decrease λi

1: function DATA-DEPENDENT SORTING( yw,Tn, σn, pa )
2: λ← 2σ2

n log((1− pa)/(pa/|A|))
3: c← TH

n yw . correlation
4: IndexSet← sort (c, ’descending’)
5: λ′ ← linspace (0, 2λ,K)
6: λ′s ← λ′ (IndexSet) . permutation
7: y0 ← [y; zeros (K, 1))]

8: Tλ′
s
←
[
T; diag

(√
λ′s

)]
. augment system matrix

9: Q,R,Θ← sqrd
(
Tλ′

s

)
10: return y0,Q,R,Θ
11: end function

Fig. 3. Matlab-like pseudocode of the Data Dependent Sorting and Regu-
larization (DDS) pre-processing

if ci is high. This heuristic approach ensures that the penalty
term is not solely determined by a-priori assumption but also
contains information about the instantaneous activity pattern.

Subsequently, we introduce λ′ which contains linearly
scaled elements and has the form λ′ = [0 · · · 2λ]

T . We further
permute the elements such that λ′s = Ψλ′. As mentioned
previously, this guarantees that λi is small if the probability
that xi is active is sufficiently high. Additionally, λi is high
if the activity probability of xi is low. Note that the scaling
and the application of the correlative measure are based on
heuristics and do not really reflect a-posteriori probabilities.

We now utilize the sorted vector λ′s to regularize the the
S-MAP problem and obtain

x̂ = arg min
x∈AK

0

∥∥∥∥∥
[

y

0K

]
−

[
T

diag
(√

λ′s

)]x

∥∥∥∥∥
2

2

(14)

= arg min
x∈AK

0

‖y0 −Tλ′
s
x‖22 . (15)

Furthermore, we apply SQRD on the augmented system
matrix, Tλ′

s
Θ = QR, which leads to a triangular system

description yielding

x̂ = arg min
x∈AK

0

‖ỹ0 −RΘHx‖22 . (16)

By this approach, post detector SNR dependent sorting is
improved by the estimation of the current data pattern. This
type of pre-processing first collects information about the
instantaneous activity pattern and promotes sparsity only at
elements in xi which are most likely inactive according to a
correlative measure.

The algorithmic structure of this kind of pre-processing is
also listed as Matlab-like pseudocode in Fig. 3. This pre-
processing strategy requires to perform sorting and regulariza-
tion each time a new vector of observations y is received and
the algorithmic complexity is higher compared to the scheme
introduced in section IV-A. Moreover, this scheme restricts to
constant modulus signals.

C. Complexity Comparison of the Sorting Algorithms

The overall detection scheme of pre-processing and SA-SIC
can be examined independently of each other. Section III-C



compared the algorithmic complexity of the detection algo-
rithms, whereas in this section we will offer a comparison
between the discussed pre-processing strategies.

In [13], the author compares QRD and SQRD of a matrix
(here adopted for a square matrix of dimensions K ×K) and
states their algorithmic complexity as

CF,QRD = 4K3 − 2K2 +K , and (17)

CF,SQRD = 4K3 − 5

4
K2 +

1

4
K , (18)

where F denotes a complex floating-point operation (flop),
as defined in the cited work. The difference in terms of
complexity is therefore with

CF,SQRD − CF,QRD =
3

4
K(K − 1) (19)

only marginally – both algorithms exhibit the same order of
complexity, O(K3).

According to the pseudocode in Fig. 3, a single SQRD is
necessary for DDS as well. Most of the lines describe algorith-
mically simple operations, like augmentation or permutation,
which are neglectable. Line 5 describes in fact the definition of
some constants only, which can already incorporate the later
occurring square root,

√
λ′s. Thus, only the correlation TH

n yw
and the following sorting add additional complexity for the
DDS. TH

n yw constitutes a full matrix-vector multiplication
(MVM), which takes

CMWM = n(mCMul + (m− 1)CAdd) (20)

≈ K2(CMul + CAdd) , (21)

operations, which is equivalent to CF,MWM = 2K2 flops.
Advanced sorting algorithms, e.g. odd-even mergesort, feature
an algorithmic complexity of O(n log(n)2) [14]. Therefore,
we can approximate the additionally necessary complexity for
DDS as

CF,DDS − CF,SQRD ≈ γ1K2 + γ2K log(K)2 (22)

with some constants γ1, γ2. This leads to the conclusion that
the introduced pre-processing steps by DDS are asymptotically
marginal as well, since CDDS = O(K3) stays the same.
A drawback of DDS is that this pre-processing step has to
be executed for each received data vector, since it is data-
dependent, but for fast varying channels this disadvantage
diminishes.

V. VERIFICATION WITH A CDMA SYSTEM

This section proves the feasibility of the introduced schemes
at a Code Division Multiple Access (CDMA) multi-user
uplink network. Here K nodes transmit data sporadically to a
central aggregation node. With CDMA, each node spreads its
modulation symbol to a chip sequence of length N . Those are
transmitted to a central aggregation node via a frequency selec-
tive Rayleigh fading channel with impulse response length Lh
The detector filters the multi-user signal via a matched filter
and detects at symbol rate. The node specific spreading and
convolution with the underlying channel is summarized in the

matrix A which eases the formulation of the matched filter by
simply defining AH as the corresponding filter that converts
the chip rate signal back to symbol rate. The input-output
relation of our multi-user CDMA system can be summarized
as

y = AHAx + AHwn . (23)

Note that the CDMA system model (23) and the abstract
system (1) are identical except the circumstance of correlated
noise in (23). Thus, we introduce a low complex pre-whitening
scheme which we efficiently combine with SQRD for keeping
the detection ordering optimized at low additional overhead
for pre-whitening.

A. Efficiently Combined Pre-Whitening and Sorting

Within this subsection we combine two pre-processing
strategies for SA-SIC detection. Considering (23) obviously
shows that the matched filter correlates the noise at symbol
rate as the noise itself is filtered. It is therefore obvious that
the noise has to be de-correlated prior to any further processing
or detection. We show how to apply the SQRD [7] for joint
pre-whitening and sorting. Additionally we perform sorting
and pre-whitening by calculating only a single SQRD which
is efficient in terms of algorithmic complexity. The description
starts by investigating the symbol rate noise covariance matrix

Φwnwn = E
(
AHwnwH

n A
)

(24)

= σ2
nAHA . (25)

To de-correlate the noise, we introduce the pre-whitening filter
matrix P, which is applied to the symbol rate model (23)
yielding

yw = PAHAx + PAHwn︸ ︷︷ ︸
w̃n

. (26)

The task of the pre-whitening filter is twofold. First, the filter
de-correlates the noise prior to the application of a detector.
Second, filtering with P leads to a sorted triangular system
description which allows for optimized successive detection.
Using SQRD as defined in (11), i.e.,

AΘ = QR , (27)

we obtain
P = R−HΘH . (28)

The pre-whitening filter diagonalizes the symbol-clock noise
covariance matrix at the output of the filter as

Φw̃nw̃n
= σ2

nPAHAPH

= σ2
nR−HΘH

(
QRΘH

)H
QRΘHΘR−1

= σ2
nR−HΘHΘRHQHQRΘHΘR−1

= σ2
nIK . (29)

Moreover, the application of (28) to the system description
in (26) shows that P even leads to a triangular system



description

yw = PAHAx + w̃n

= R−HΘH
(
QRΘH

)H
QRΘHx + w̃n

= R−HΘHΘRHQHQRΘHx + w̃n

= RΘHx + w̃n . (30)

Here, w̃n is a vector containing white uncorrelated Gaussian
noise samples with variance σ2

n and R is the sorted upper
triangular system matrix ensuring optimized successive detec-
tion of the permuted source vector ΘHx. Additionally, the
matrix inversion in (28) can efficiently be implemented since
R is an upper triangular matrix which can be inverted easily.
Another advantage here is that QR and Θ only have to be
updated when the underlying channel matrix A changes which
is quite suitable for a hardware realization.

VI. FIXED-POINT OPERATION

Hardware implementations require due to their limited re-
sources the use of fixed-point (FXP) arithmetics. This gen-
erally saves area and energy and is thus usually faster com-
pared to floating-point operations, though finite word length
effects can lower the accuracy of the calculations. Especially
for communications hardware stringent timing requirements
apply, which makes the use of a FXP number representation
necessary.

We examined the SA-SIC algorithm under finite word length
constraints using the Matlab Fixed-Point Toolbox. The input
data of the SA-SIC was quantized to the well-known Qn
format where each number consists of a sign bit and n
fractional bits [15]. Then, the set of representable numbers
is a finite ring and is limited to the interval [−1, 1) with a
quantization step of 2−n. This number format was chosen,
because it is well suited for signal processing applications,
since it offers the advantage that number overflows may occur
during multiplication without affecting the end result.

Therefore, binary scaling has to be applied to fit the in-
coming data into the representable number range. The system
model, e.g. as given in eq. (30) with the shorthand R̃ = RΘH ,
can be multiplied on both sides with a scaling factor f as

fy = f
(
R̃x + wn

)
= fR̃x + fwn . (31)

Quantizing fy, fR̃ and fσn leads to input data for the SA-
SIC that can be successfully represented by the fractional Qn
format. The appropriate sizing of the scaling factor f can
be derived from the known statistics of the Gaussian noise,
Rayleigh channel and modulation alphabet to avoid underflows
and overflows. In practical implementations an automatic gain
control would ensure the correct scaling.

Fig. 4 shows the measured input statistics of the pre-
whitened yk’s. Unsurprisingly, the distribution resembles a
Gauss curve, which is in fact a superposition of several normal
distributions, according to

pYk
(yk) =

∑
∀x∈A0

Pr(x)N (µ = x, σn) , (32)
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in logarithmic scale with respect to the binary fixed-point representation.
Values to the left of the dash-dotted line are outside the number range of the
fractional Qn format. For higher SNR, the dynamic range becomes larger,
which in turn makes greater bit widths necessary.

when we assume perfect Channel State Information (CSI). To
fit yk with high probability into a Qn representation, the data
has to be scaled at least with f = 1/2 or better f = 1/4,
which is algorithmically nothing else than an efficient bit shift
to the right by one respectively two bit locations.

One problem is to fit the magnitudes of the input data into
the Qn format, but another to consider the dynamic range
to avoid number underflows. This means, significant signal
changes have to be greater than the quantization error, which
asks for a sufficient bit width n. Fig. 5 shows the input
statistics for the (unscaled) magnitude of the elements of y
over a log2 scale. Each bin of the histogram corresponds to
one bit position of a binary number. On the left are the most
significant bits (MSB) and on the right the least significant
ones (LSB). All magnitudes to the right of the dash-dotted line
are representable by the fractional Qn binary number format.
After sufficient scaling, i.e. bit shifts to the right by at least one
or two bit positions, the dynamic range of the input data fits
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Fig. 6. Gross Symbol Error rate of SA-SIC detection with and without
pre-whitening and sorted QR decomposition in comparison to S-MAP sphere
decoding.

with high probability into 16 bits width binary numbers, which
enables almost lossless FXP arithmetics. We did not restrict
ourselves only to Q15 numbers, but explored the influence
of smaller bit widths as well. Especially the Q7 format is of
interest, when SA-SIC detection shall be employed on small
8 bit DSP architectures. The results will be discussed in the
next section.

As further FXP parameters of the simulation setup we used
round to the nearest as rounding method, saturated arithmetics
if over- or underflows should occur and we kept the most
significant bits after products and sums due to the fractional
format.

VII. SIMULATIVE RESULTS

We simulated the in section V described system model for
two scenarios. The first setup is an overdetermined system
with K = 20 transmitting nodes or users and with a CDMA
spreading sequence length of Ns = 32. The second setup is a
fully loaded CDMA system with K = Ns = 16. We evaluated
the gross symbol error rate (GSER) over the augmented
symbol alphabet A0 and examined different combinations of
pre-processing methods and quantization effects.

Both simulation scenarios share the remaining properties.
The per-node activity probability is homogeneously pa = 0.2.
BPSK modulation is used and random Bernoulli sequences are
employed as spreading codes. The channel is described by a
normalized 4-tap Rayleigh fading impulse response.

A. Overdetermined System

Fig. 6 plots the GSER over the channel quality expressed
in Eb/N0. The relationship between Eb/N0 and SNR is given
(in linear scale) by

Eb/N0 =
SNR

pa log2(|A|)
. (33)

Optimal performance is achieved by a sparsity-aware sphere
decoder with pre-whitening filter (SDw). A performance with
nearly constant degradation is achieved by the SA-SIC without
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Fig. 7. Performance of fixed-point SIC detection, K = 20

sorting but with pre-whitening denoted as SA-SICw. SA-
SIC with pre-whitening and sorting SA-SICw,s according to
section V-A converges with the performance of S-MAP de-
tection at high SNR. Note that the application of sorted pre-
processing makes no difference for the GSER result of the SD,
since it always finds the S-MAP solution. In our simulations
both algorithms operated on exactly the same (sorted) input
data, which makes the runtime of the SD, nSD as plotted in
Fig. 2, comparable to the runtime of the SA-SIC, which is
independently of the SNR nSA-SIC = K.

A comparison of the detection loss between SDw and SA-
SICw,s with the difference in runtime as shown in Fig. 2
underlines that SA-SIC is a very efficient means for the
detection of sparse multi-user signals. For high SNR values the
performance of the SA-SIC even converges with the SD. The
reason for this behaviour lies in the rather quick termination
of the SD, which terminates then in average after almost the
minimum number of processed nodes, which equates to SA-
SIC detection.

Furthermore, we performed simulations for SA-SIC with
FXP arithmetics in Q3, Q5, Q7 and larger formats. The
GSER curves for Q11 and Q15 are excluded for the sake of
clarity, since these bit widths are sufficient to accommodate
the dynamic range of the input data, so that the performance
is exactly identical to the floating-point simulation SA-SICw,s

for the range of the shown symbol error rates. Finite word
length effects of Q5 and especially Q3 are too dominant to
allow for successful symbol detection. But quantizing with
8 bits results in minor performance degradations at high SNR
only, which allows for an 8 bit implementation on small DSP
architectures. These degradations are due to overflows and
underflows, which underlines the fact that the dynamic range
of the data must fit into the chosen Qn format, as discussed
earlier on Fig. 5 in the previous section.

B. Fully Loaded System

As mentioned above, the second simulation scenario as-
sumed a fully-loaded CDMA system where the number of
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Fig. 9. Performance of fixed-point SA-SIC detection, K = 16

users equals the number of available spreading codes. Fig. 8
shows the detection performance of SA-SIC, which is worse
than for the overdetermined system. The plot additionally
features a SA-SIC with data-dependent pre-sorting as we
introduced it in section IV-B, here denoted as SA-SICw,dds.
It performs exceptionally well for this loaded case, thus only
shown in this plot, and closes the gap between optimal S-MAP
detection and suboptimal SA-SIC detection further. We can
therefore conclude that the newly introduced data-depending
pre-sorting strategy correctly tunes the S-MAP factor vector
λ and reduces therewith the probability of SA-SIC error
propagation.

In terms of algorithm runtime efficiency, the SA-SIC fares
even better in this loaded case. As Fig. 2 shows, the SD has to
search longer in this K = 16 scenario, whereby the iteration
count of the SA-SIC stays naturally constant.

Fig. 9 displays the GSER curves with regard to FXP
arithmetics. For high SNR values the FXP SA-SIC runs into
an error floor. Notably, the GSER does not really improve for
larger bit widths than Q9 at the same scaling factor 1/2. SA-
SICw,s Q11+ denotes an additional simulation with a scaling
factor of 1/4 and clearly improved GSER, which emphasizes

the necessity of a sufficiently dimensioned scaling as long as
the dynamic range of the data allows for it. The error floor of
all FXP simulations, hence, must be caused mainly by number
range overflows. The plot also shows that 8 bit quantization
is a feasible low-complexity choice, with GSER better than
10−3 for high SNR, which could be further improved with
channel coding techniques.

VIII. CONCLUSION

We have shown that the Sparsity Aware Successive In-
terference Cancellation (SA-SIC) can nearly approach the
performance of a S-MAP detector with drastically decreased
complexity. This gain is made possible by the employment of
pre-processing techniques which are in parts inspired by the
field of Compressed Sensing. Aiming at practical hardware
realizations, we have shown that 8 bit quantization can already
be sufficient to preserve the efficiency boost the algorithm
introduced, and 16 bit quantization performs ideally. There-
fore, this paper substantiates the claim that Sparsity-Aware
SIC detection is an excellent alternative to optimal S-MAP
detection for sparse multi-user signals.
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