

Advanced Topics in Digital Communications Spezielle Methoden der digitalen Datenübertragung

Dr.-Ing. Carsten Bockelmann

Institute for Telecommunications and High-Frequency Techniques

Department of Communications Engineering

Room: SPT C3160, Phone: 0421/218-62386

bockelmann@ant.uni-bremen.de

<u>Lecture</u> Thursday, 10:00 – 12:00 in N3130 <u>Exercise</u> Wednesday, 14:00 – 16:00 in N1250 Dates for exercises will be announced during lectures.

<u>Tutor</u>

Tobias Monsees Room: SPT C3220

Phone 218-62407 tmonsees@ant.uni-bremen.de

www.ant.uni-bremen.de/courses/atdc/

Outline

- Part 1: Linear Algebra
 - Eigenvalues and eigenvectors, pseudo inverse
 - Decompositions (QR, unitary matrices, singular value, Cholesky)
- Part 2: Basics and Preliminaries
 - Motivating systems with **M**ultiple Inputs and **M**ultiple **O**utputs (multiple access techniques)
 - General classification and description of MIMO systems (SIMO, MISO, MIMO)
 - Mobile Radio Channel
- Part 3: Information Theory for MIMO Systems
 - Repetition of IT basics, channel capacity for SISO AWGN channel
 - Extension to SISO fading channels
 - Generalization for the MIMO case
- Part 4: Multiple Antenna Systems
 - SIMO: diversity gain, beamforming at receiver
 - MISO: space-time coding, beamforming at transmitter
 - MIMO: BLAST with detection strategies
 - Influence of channel (correlation)
- Part 5: Relaying Systems
 - Basic relaying structures
 - Relaying protocols and exemplary configurations

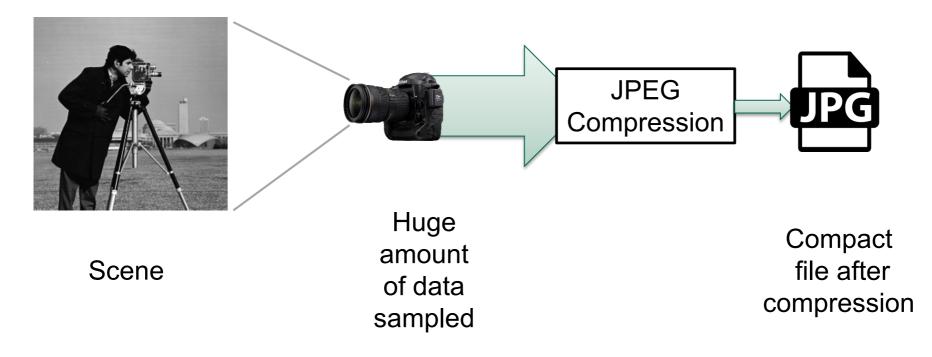
Outline

- Part 6: In Network Processing
 - Basic of distributed processing
 - INP approach
- Part 7: Compressed Sensing
 - Motivating Sampling below Nyquist
 - Reconstruction principles and algorithms
 - Applications

Compressive Sensing

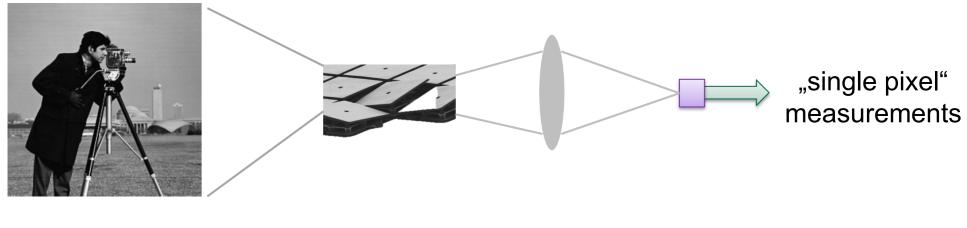
- Motivation
- Basic ideas of Compressed Sensing
 - Undersampling / Underdetermined Systems
 - Sparsity
- Reconstruction principles
 - Basic Optimization task
 - Relaxations and Algorithms
 - Reconstruction Guarantees
- Applications: Sporadic Massive Machine Communications
 - Model and application of CS
 - Differences to standard CS assumptions
 - Adapted and novel CS Multi-User Detection Algorithms

Compressive Sensing Motivation



- Todays signal acquisition systems are often wasteful
 - Huge effort in sampling with high accuracy
 - Removal of redundant information

A First CS Example: The Single Pixel Camera



Lens

Scene

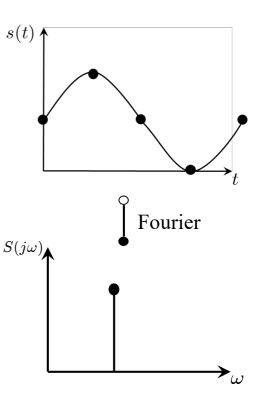
Digital Mirror Device (DMD) Single Pixel

- Idea: Mix scene contents through DMD randomly
 - DMD consists of a high number of tilting micro mirrors
 - Each pixel measurement contains the whole scene

Compressed Sampling

Classic Sampling: Shannon/Nyquist

- Assumption:
 - Bandlimited signals with maximum frequency f_{max}
- Shannon/Nyquist sampling:
 - Sampling frequency $f_s \ge 2f_{\text{max}}$
 - Perfect reconstruction by simple low pass interpolation
- Compressible signals
 - Lower information content than number of samples
 - Signal properties besides band limitation not considered



Exploit side information of sampled signals!

Base Assumption: Compressible / Sparse Signals

• Assume a **compressible** signal **z** of length *N*

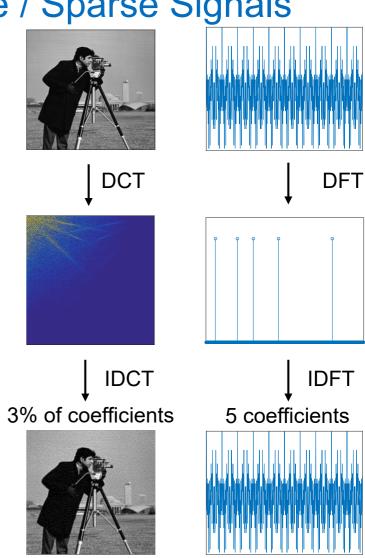
Compressible:

few coefficients in other domain are sufficient

- Discrete Cosine Transform (DCT)
- Discrete Fourier Transform (DFT)
- *K*-sparse representation: $z = \Psi x$
 - Ψ basis in which z is compressible / sparse
 - Only K biggest coefficients are relevant

or

Signal only contains exactly K components



The "compressive" in CS

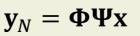
- How to reduce the number of measurements below Nyquist?
 - Image example: sorting and "nulling" of low power coefficients

 $z \approx \Psi \Omega x$

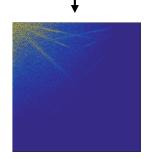
Nyquist sampling of z first

ersität Bremen*

- "Nulling" matrix $\mathbf{\Omega} \in \mathbb{R}^{N \times N}$ after transformation
- \rightarrow no reduction and content dependent
- General subsampling in Compressed Sensing
 - Should be independent of specific signals
 - Should be valid for all K-sparse vectors x independent of Ψ
 - Linear mapping $\Phi : \mathbb{R}^N \to \mathbb{R}^M$ from dense **z** to measurement **y**



DC1



 $\mathbf{y}_N = \mathbf{\Phi} \mathbf{\Psi} \mathbf{x}$

The Compressive Sensing Problem in a Nutshell

• Problem: Recover $\mathbf{x} \in \mathbb{R}^N$ from the M < N measurements in vector

y = Ax + n (underdetermined linear system)

- where $\mathbf{n} \in \mathbb{R}^{M}$ is additive noise and
- $\mathbf{A} \in \mathbb{R}^{M \times N}$ is given by the sparsity basis $\Psi \in \mathbb{R}^{N \times N}$ and measurement matrix $\Phi \in \mathbb{R}^{M \times N}$

$$\mathbf{A} = \boldsymbol{\Phi} \boldsymbol{\Psi}$$

• Notation: dense signal $z = \Psi x$, noise free measurement $y_N = Ax$

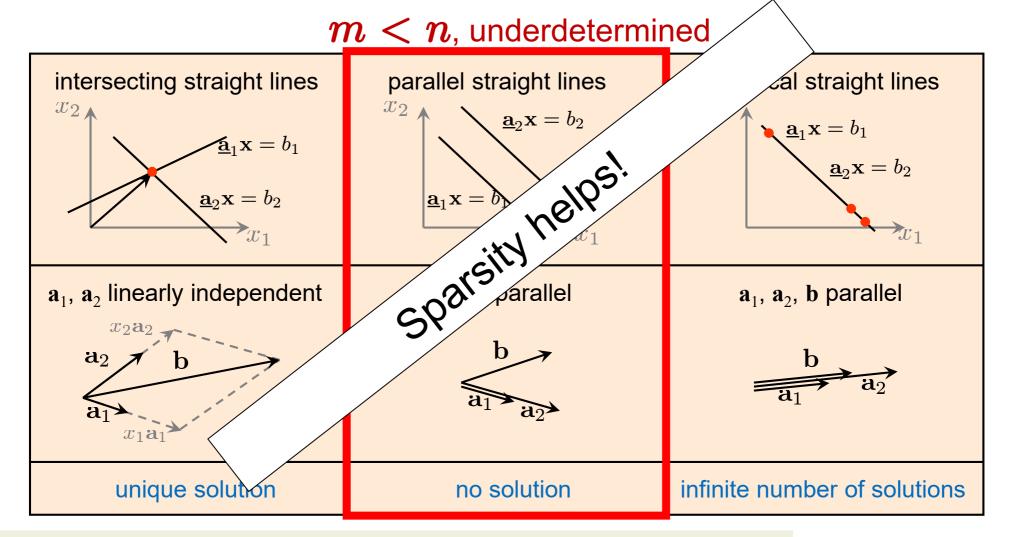
Open Questions:

- How to choose Φ given a sparse representation in basis Ψ ?
- How to reconstruct z given (noisy) measurements y? subsampling violates sampling rate requirement
 - \rightarrow low-pass reconstruction impossible

CS History

- Compressive Sensing Theory originated in 2005/2006 [Candès+Tao], [Donoho]
- Reconstruction properties were quantified with the "Restricted Isometry Property" [Candès+Tao 2006]
- Reconstruction algorithms based on L1/L2-optimization has been widely studied [Candès+Tao 2005] and based on Matching Pursuit approaches has been adapted to CS [Tropp 2007] and further developed [Needell 2008, Dai 2009]
- Special Issue in Signal Processing Magazine, March 2008
- IEEE Transaction on Information Theory: Series on Compressive Sensing
- Application of CS in wireless communications:
 - Channel estimation [Berger 2010]
 - Coding Theory [Dai 2009, Aggarwal 2009]
 - CDMA Transmission [Zhu+Giannakis 2010]

Repetition: Linear Equation Systems



Part 1: Linear Algebra

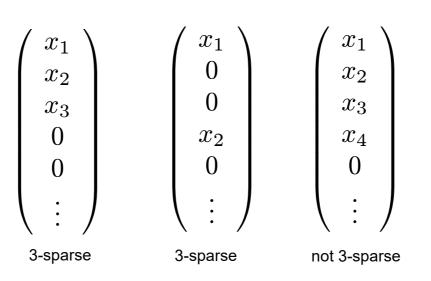
S-sparse

- K-sparse is used as a measurement for how sparse a vector is
- Definition: a vector x is K-sparse, if

$$\|\mathbf{x}\|_0 \le K$$

where $\|\mathbf{x}\|_0 = |\text{supp}(\mathbf{x})| = |\{j : x_j \neq 0\}|$ \leftarrow l_0 -"norm"

Example: 3-sparse



Recovery by l_0/l_2 Optimization

- Underdetermined equations systems can be solved if x is S-sparse
 - Minimizing the constrained l_0 -"norm" yields the sparsest feasible solution

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x}} \|\mathbf{x}\|_0$$
 subject to $\|\mathbf{y} - \mathbf{A} \cdot \mathbf{x}\|_2^2 < \epsilon$ Least-Square-Norm

- Solves Least-Squares problem (Zero-Forcing) with the sparsest solution
 - \rightarrow If the position of non-zero entries is known, the reduced problem is solvable!
- Problem:
 - the l_0 -"norm" is not convex
 - problem is NP-hard
- Approaches: Approximate l₀-"norm", suboptimal Greedy algorithms

Recovery of Sparse Signals

- Algorithms to solve the underdetermined linear systems for S-sparse solutions can be categorized in three classes
- Convex relaxation:

Solve a convex program whose minimizer approximates the target signal

- \rightarrow e.g. interior-point methods, projected gradient methods
- + succeed with very few measurements
- computational intensive

Greedy pursuits:

Find sequentially the support for each active element of \mathbf{x} in measurement $\mathbf{y} \rightarrow e.g.$ Orthogonal Matching Pursuit (OMP)

- + low complexity
- less sampling efficient, highly sensitive to correlation properties of matrix A

Bayesian Methods:

Belief Propagation and approximations with sparsity inducing priors

- + very sampling efficient
- high to moderate complexity and very dependent on prior assumptions

Least Absolute Shrinkage and Selection Operator (LASSO)

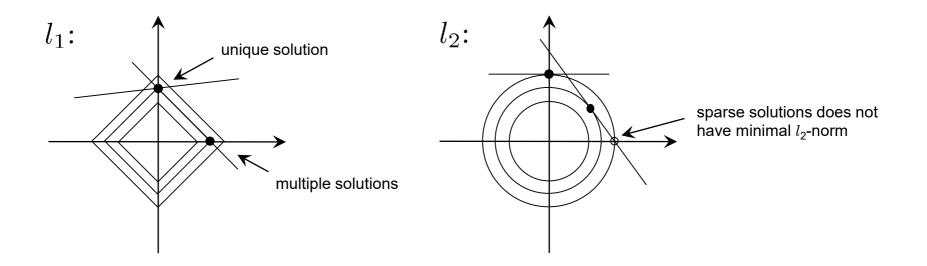
• Convex Relaxation: approximate the l_0 -"norm" is by l_1 -norm termed LASSO

$$\hat{\mathbf{x}}^{\text{LASSO}} = \arg \min_{\mathbf{x}} \|\mathbf{y} - \mathbf{A} \cdot \mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

- Known from regression analysis [Tibshirani 1996]
 - LS-solution regularized by the l₁-norm
 - Convex problem, can be cast as a quadratic program (for a given λ)
 - Bayes estimation: λ is Laplace-prior
- Task: optimum value of λ is in general not known \Rightarrow has to be estimated or determined iteratively

Least Absolute Shrinkage and Selection Operator (LASSO)

• The minimum l_1 -norm, defined as $\|\mathbf{x}\|_1 = \sum_{i=1}^n |x_i|$, is convex and favors sparse solutions (noiseless case $\mathbf{y}=\mathbf{A}\mathbf{x}$)

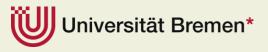


Matlab Demo

Greedy Algorithms: Matching Pursuit

- Idea: Iteratively increase the support by the element x_i with the highest correlation to measurement y
- Orthogonal Matching Pursuit (OMP):
 - 1. Determine index
 - 2. Augment matrix of chosen element
 - 3. Solve LS-problem
 - 4. Calculate new residual
 - 5. Repeat until K elements were chosen
- Other variants exist, e.g., OLS, StOMP, ROMP, ...
 - Pros: Low complexity and fast execution
 - Cons: Sparsity K has to be known / Proper stopping criteria have to be found Highly sensitive to correlation properties of matrix A Less sampling efficient

$$\lambda_t = \arg \max_{\substack{j=1,...d}} |\langle \mathbf{r}_{t-1}, \mathbf{a}_j \rangle|$$
$$\mathbf{A}_t = |\mathbf{A}_{t-1} \ \mathbf{a}_{\lambda_t}|$$
$$\mathbf{x}_t = \arg \min_{\mathbf{x}} ||\mathbf{y} - \mathbf{A}_t \mathbf{x}||_{l_2}$$
$$\mathbf{r}_t = \mathbf{y} - \mathbf{A}_t \mathbf{x}_t$$



Compressed Sensing

• Problem: Recover $\mathbf{x} \in \mathbb{R}^n$ from the m < n measurements in vector

y = Ax + n (underdetermined linear system)

- where \mathbf{n} is additive noise and $\mathbf{A} \in \mathbb{R}^{m \times n}$ is given by the sparsity
- basis Ψ (e.g. Fourier basis) and measurement matrix $oldsymbol{\Phi}$ (e.g. identity)

$$\mathbf{A} = \mathbf{\Phi} \mathbf{\Psi}$$

- Notation: dense signal $\mathbf{z} = \Psi \mathbf{x}$, noise free measurement $\mathbf{y}_{\mathbf{N}} = \Phi \Psi \mathbf{x}$
- Question: How to recover **x** from the under-determined equation system?
- Assumptions:
 - The signal x is sparse, but it is unknown which entries are non zero



Why does it work and when does it work?

• Coherence:

$$\mu(\mathbf{\Phi}, \mathbf{\Psi}) = \max_{1 \le k, j \le N} \frac{\left| \langle \mathbf{\Phi}_k, \mathbf{\Psi}_j \rangle \right|}{\|\mathbf{\Phi}_k\|_2 \|\mathbf{\Psi}_j\|_2}$$

- measures the maximum correlation between any two elements of Φ and Ψ
- can be checked in practice
- recovery of **x** with ℓ_1 -minimization is exact, with probability exceeding 1δ , if

 $M \ge C \cdot \mu^2(\mathbf{\Phi}, \mathbf{\Psi}) \cdot K \cdot \log(N/\delta)$

Compressed Sensing only works well for low coherence $\mu(\Phi, \Psi)$

Example: Fourier Basis Ψ and random Subsampling by Φ (Gaussian, Spike, etc.)

Reconstruction Criteria and Guarantees

• Restricted Isometry Property (RIP): For each positive integer K = 1, 2, ...define the isometry constant δ_K of a matrix **A** as the smallest integer such that

 $(1 - \delta_K) \|\mathbf{x}\|_2^2 \le \|\mathbf{A}\mathbf{x}\|_2^2 \le (1 + \delta_K) \|\mathbf{x}\|_2^2$

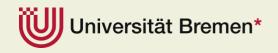
holds for all *K*-sparse vector $\mathbf{x} \notin \text{Ker}(\mathbf{A})$

- Isometry: "does not distort space"
- If RIP of order 2K shall hold for $\delta_{2K} \in (0, 1/2]$ then M measurement are required

$$M \ge C \cdot K \cdot \log\left(\frac{N}{K}\right)$$

Example: N=10000, $K=20 \rightarrow M \approx 40$ required

RIP is required for most reconstruction guarantees → Random sub-gaussian distributed matrices!



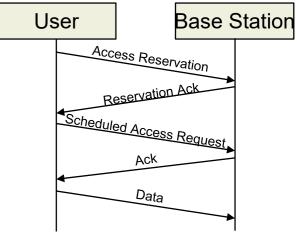
Applications of CS in Communications

- Sampling of sparse Signals
 - Sampling and transmission of sparse signals, e.g. sensor networks
- Channel Estimation
 - Consider tapped delay line with non-uniform delay distribution
 → sparse wireless channel in terms of delay
 - Most wireless channels are sparse in sample clock
- Spectrum Sensing
 - Cognitive radio idea: find unused spectrum / time in which spectrum is free
 - Either spectrum or the edges of spectrum in time and frequency are sparse
- Sporadic Communication
 - Traffic characteristic of machine type traffic leads to sparse detection problems

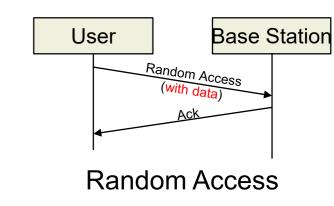


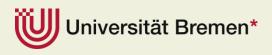
Massive Machine Communication

- Today's (cellular) systems (3G/4G)
 - Designed for high data rate / large packets
 - Access reservation and scheduling
 - Control overhead is negligible vs. payload size
- Now: a new massive access problem
 - Massive number of nodes (sensors, etc.)
 - Typically low-data rates / small packets
 - Control overhead for scheduling non-negligible
- Potential solution
 - Reduce control signaling overhead by random access
 - No control overhead, simply send data
 - Major problem: user collisions!

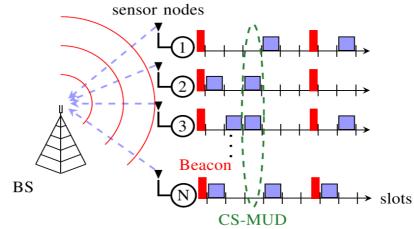


Access Reservation



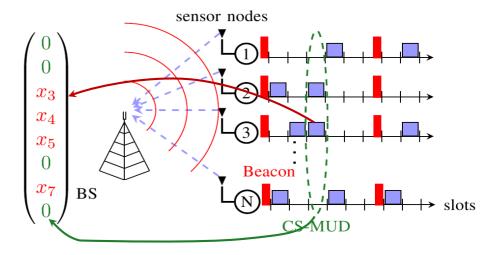


Sporadic Communication Scenario



- Random access: M2M uplink communication
 - Base Station (BS) sends a beacon to synchronize sensors and define slots
 - Sensors send to a central Base Station using one or more slots
- Sporadic Communication: users are sporadically active
 - Event driven: e.g. a temperature threshold is met
 - Periodically: e.g. regular energy measurement (smart grid)
- Non-orthogonal medium access scheme
 - User signals interfere during transmission → Collisions!
 - Signal processing to reconstruct user signals → Multi-User Detection (MUD)

- Problem: How to recover sensor data and activity from observations?
- Sporadic communication
 - Inactive nodes "transmit" only zeros
 - Active nodes transmit data symbols
 - → The multi-user vector is sparse

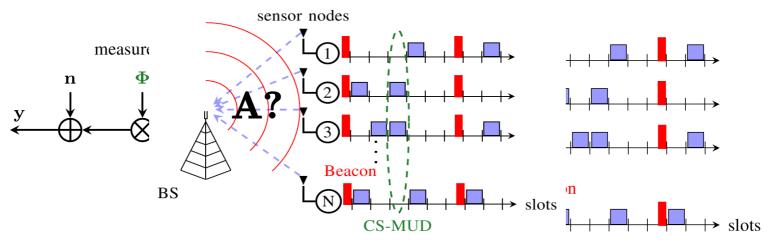


 Idea: Multi-user detection by Compressed Sensing exploiting sporadic activity for joint activity and data detection

$$\mathbf{y} = \mathbf{A} \cdot \mathbf{x} + \mathbf{n}$$

 $\mathbf{A} \in \mathbb{C}^{M \times N}$ is a known matrix fully describing the system and \mathbf{n} is additive noise Universität Bremen*

Differences to standard CS problems (1/3)

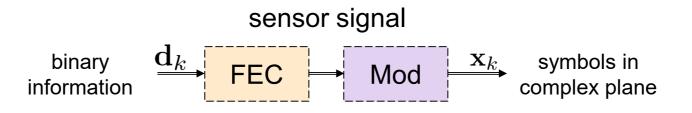


- A is actually not fully known!
 - Propagation channel is part of A and has to be estimated!
 - Unknown radio wave propagation modeled by channel H
 - If a sensor is not active, its channel cannot be estimated
- In terms of common CS notation:

$$A = \Phi H \Psi$$

- Usually $\Phi = I \rightarrow$ no compression here
- Problem is under-determined because of Ψ ! \rightarrow unusual for CS problems
- **H** and **x** unknown \rightarrow bilinear CS / CS 3.0

Differences to standard CS problems (2/3)



- Forward Error Correction: non-zero elements in x are part of a codeword
 - Communication systems use error correcting codes for robust communication

information information + parity 0100110111 \longrightarrow 01001101110001

- Structure that can be exploited, e.g. by iterative detectors/decoders
- Modulation: non-zero elements in x are not continuous
 - Communication systems use discrete symbol alphabets in the complex plane
 - Can be exploited, but requires adapted algorithms
 - New quality measure required: symbol error rate (SER)

"Digital

CS"

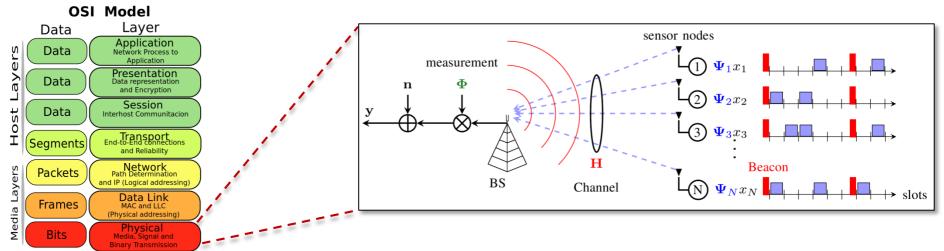
x 00

X 10

01 🗙

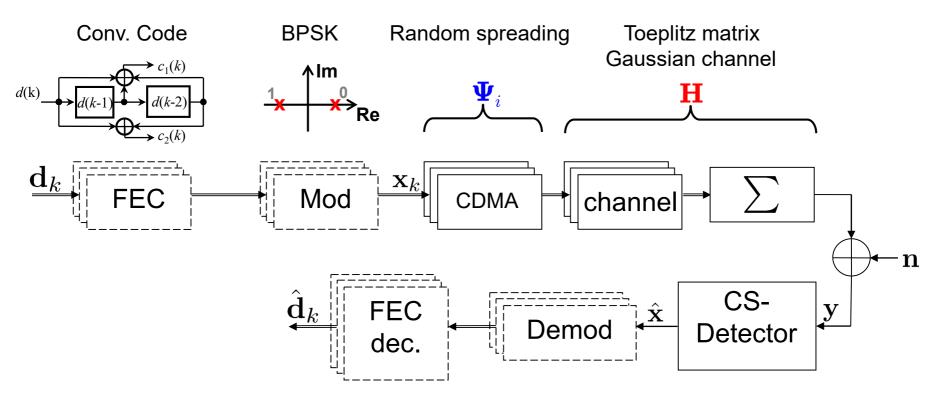
11 X

Differences to standard CS problems (3/3)



- System context: higher layers are impacted by reconstruction
 - CS theory mainly cares about perfect reconstruction and guarantees
 - But: differentiation of support errors is required
- Impact of False alarms / Missed detections
 - Missed detection: lost sensor information \rightarrow not recoverable, retransmission
 - False alarm: misinformation \rightarrow more processing at higher layers
- CS algorithms are not designed to control either support error rate!

Example: CDMA Transmission Model (UMTS)



 $\hat{\mathbf{x}}$

 \mathbf{d}_k data of sensor k

 \mathbf{X}_k sensor specific symbols

versität Bremen*

- y received vector
 - estimated (sparse) multi-user vector
- $\hat{\mathbf{d}}_k$ estimated data of sensor k

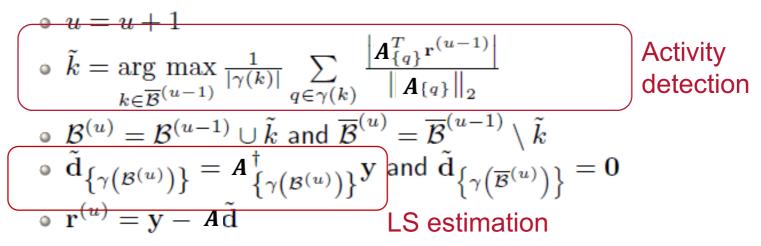
Repetition: OMP

- Idea: Iteratively increase the support by the element x_i with the highest correlation to measurement y
- Orthogonal Matching Pursuit (OMP):
 - 1. Determine index
 - 2. Augment matrix of chosen element
 - 3. Solve LS-problem
 - 4. Calculate new residual
 - 5. Repeat until S elements were chosen

$$\lambda_{t} = \arg \max_{j=1,...d} |\langle \mathbf{r}_{t-1}, \mathbf{a}_{j} \rangle|$$
$$\mathbf{A}_{t} = [\mathbf{A}_{t-1} \ \mathbf{a}_{\lambda_{t}}]$$
$$\mathbf{x}_{t} = \arg \min_{\mathbf{x}} ||\mathbf{y} - \mathbf{A}_{t}\mathbf{x}||_{l_{2}}$$
$$\mathbf{r}_{t} = \mathbf{y} - \mathbf{A}_{t}\mathbf{x}_{t}$$

Group Orthogonal Matsching Pursuit (GOMP)

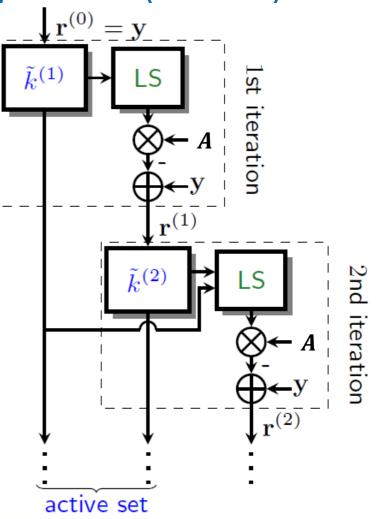
- Initialize $\mathcal{B}^{(0)} = \emptyset$, $\overline{\mathcal{B}}^{(0)} = \{1, \dots, K\}$, u = 0, $\mathbf{r}^{(0)} = \mathbf{y}$
- Repeat



Until stopping criterion is met

Group Orthogonal Matsching Pursuit (GOMP)

- Greedy algorithm for block-sparse reconstruction
- During iteration u:
 - 1 Activity decision: Select pode \tilde{k} with h
 - Select node k with highest average correlation to residual $\mathbf{r}^{(u-1)}$
 - ② Data estimation: Least-Square estimation for active set
 - ${f 3}$ Compute new residual ${f r}^{(u)}$
- Conclusion:
 - Decision for active set not re-evaluated
 - Data estimation for entire active set



MAP-Detector with sparsity assumption

- In communication: transmit vector \mathbf{x} is defined over discrete, finite alphabet \mathcal{A}
 - Greedy algorithms (e.g. OMP) and Convex relaxation methods (e.g. LASSO) are sub-optimal as they search over Cⁿ
- The best possible recovery of sparse signals of discrete, finite alphabets under noisy measurements is the Maximum a-posterori (MAP) detector
 - Proper model of the input distribution of x is required!
 - Zero / Active and Non-Zero / Active entries have to modeled
 - May be prohibitively complex for large systems!
- Augmented alphabet: Elements of \mathbf{x} are taken from a finite alphabet \mathcal{A} which includes the zero element, e.g. $x_i \in \{-1,0,1\}$ for a BSPK alphabet

Sparsity Aware MAP-Detector

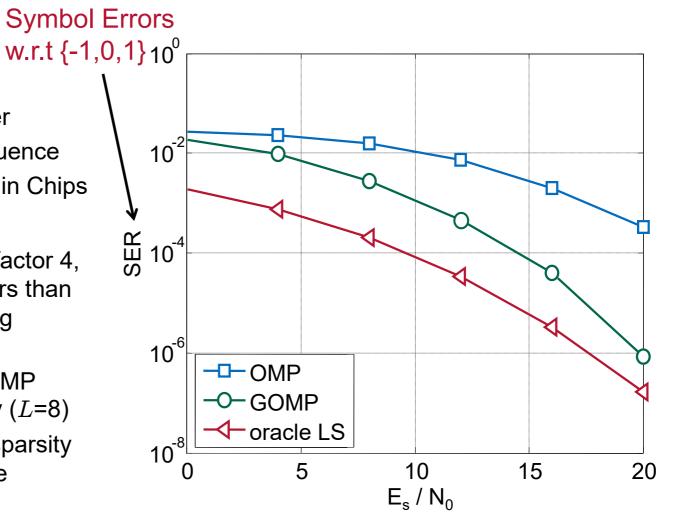
- Assume: $\mathbf{y} = \mathbf{A}\mathbf{x} + \mathbf{n}$ with $\mathbf{n} \in \mathcal{N}(0, \sigma_n^2)$
- Sparsity aware MAP-detector

$$\hat{\mathbf{x}}^{\text{MAP}} = \arg \max_{\mathbf{x} \in \mathcal{A}^n} \Pr(\mathbf{x} | \mathbf{y}) = \arg \min_{\mathbf{x} \in \mathcal{A}^n} -\ln \Pr(\mathbf{y} | \mathbf{x}) - \ln \Pr(\mathbf{x})$$
$$= \arg \min_{\mathbf{x} \in \mathcal{A}^n} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_0 \qquad \text{sparsity awareness}$$

- with $\lambda=2\sigma_n^2\ln\frac{1-p_a}{p_a/(|\mathcal{A}|-1)}$, where p_a is the probability that an element x_i is not zero
- LS optimization over finite alphabet with penalty $\lambda \|\mathbf{x}\|_0$
- Penalty parameter λ is related to the a-priori information of elements x_i
- Algorithms: combinatorial search \rightarrow extend Decision Directed Detector / Sphere decoding by l_0 -norm

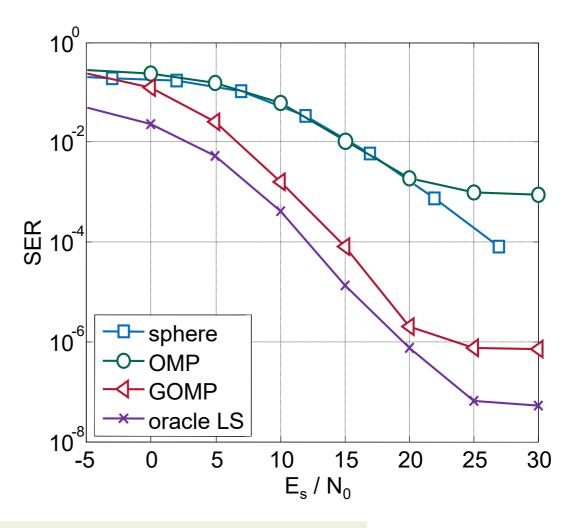
Overloaded CDMA Transmission

- Parameters
 - K=128 Users
 - L=8 Symbols per User
 - N=32 Spreading Sequence
 - F=256 Frame Length in Chips
- Observations
 - Underdetermined by factor 4, i.e., 4 times more users than length of the spreading sequence
 - OMP ignores and GOMP exploits block sparsity (L=8)
 - Exploitation of block sparsity improves performance significantly



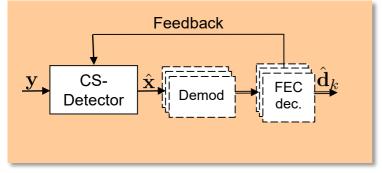
Underloaded CDMA Transmission

- Parameters
 - K=10 Users
 - L=10 Symbols per User
 - N=16 Spreading Sequence
 - F=160 Frame Length in Chips
- Observations
 - Overdetermined System *K*<*N*
 - OMP/GOMP show error floor
 - Sphere Detection just as good as OMP?



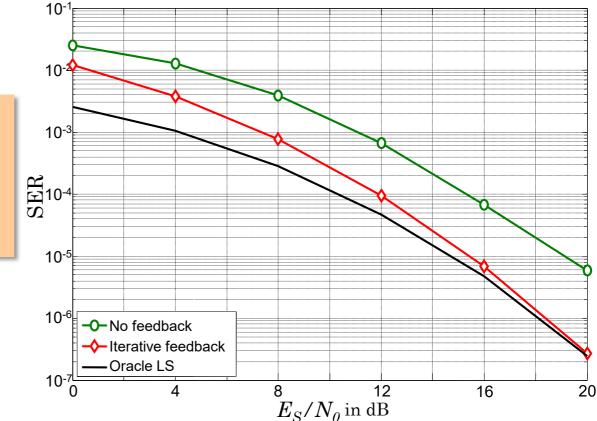
CS-MUD exploiting FEC with Iterative Feedback

 Idea: Use information of FEC to improve detection



- Baseline / Classic Detection: Receiver knows active nodes, only data has to be estimated
- Result:

CS-MUD nearly achieves performance of scheduled system (known activity)



Base CS Algorithm: GOMP, K=128 users, N=32 spreading sequence length, Activity probability 2%, BPSK symbols, Frames with 50 information symbols, [5;7] convolutional code, 3 Feedback iterations

Channel

Block correlation SIC (bcSIC)

- Inspired by both SIC and GOMP
- During iteration u:
 - Activity decision:

Select node \tilde{k} with highest average correlation to residual $\mathbf{r}^{(u-1)}$

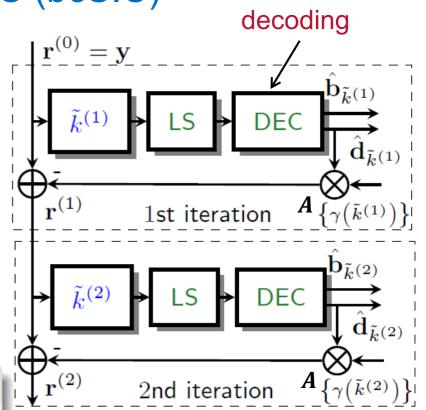
② Data detection:

Least-Square estimation for node k, followed by decoding

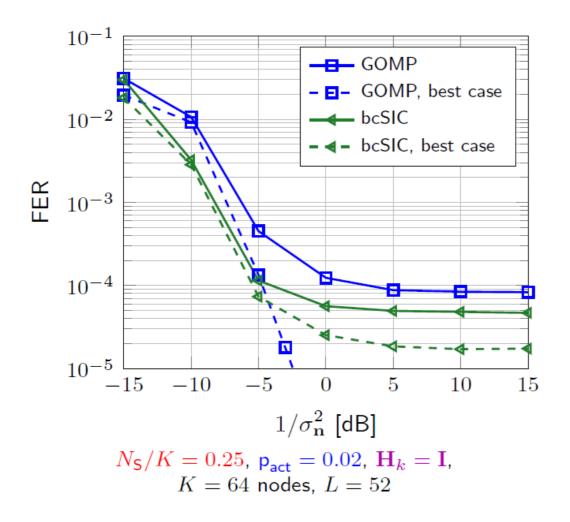
③ Update residual: Subtract interference of node \tilde{k} from residual $\mathbf{r}^{(u-1)}$

Difference to GOMP Iteration

GOMP: Estimate entire set of active nodes **bcSIC:** Estimate and decode one node ⇒ bcSIC has lower complexity

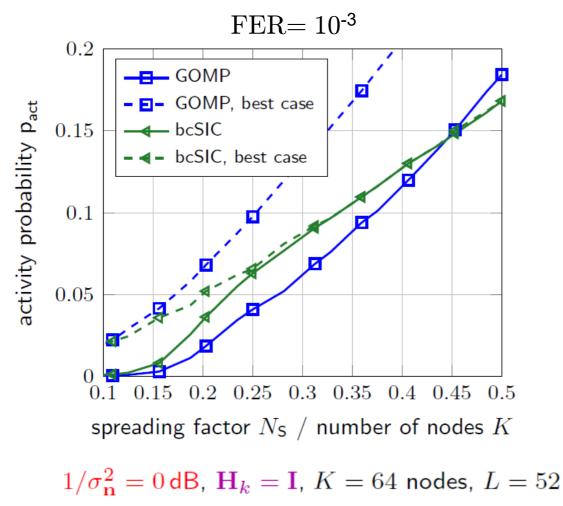


Comparison: GOMP vs. bcSIC



- Best case: known activity
- Low SNR-range:
 - CS-MUD shows almost no loss
 - bcSIC outperforms GOMP
- High SNR-range:
 - bcSIC suffers from error propagation

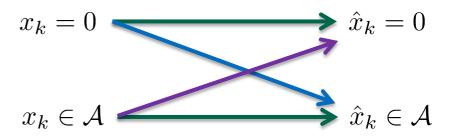
Scalability of CS-MUD to keep FER performance



- CS-MUD detectors scales gracefully with increased activity probability
- GOMP vs. bcSIC
 - bcSIC outperforms GOMP
 - bcSIC is of lower complexity

Activity Errors

- SER / FER do not describe the complete behavior of the detector
 - Activity model leads to zeros in estimated user data
 - Symbol and Frame Errors include bit as well as activity errors
- Error events of activity at PHY:
 - Loss of data (Missed Detection/MD)
 - Pseudo data (False Alarm/FA)

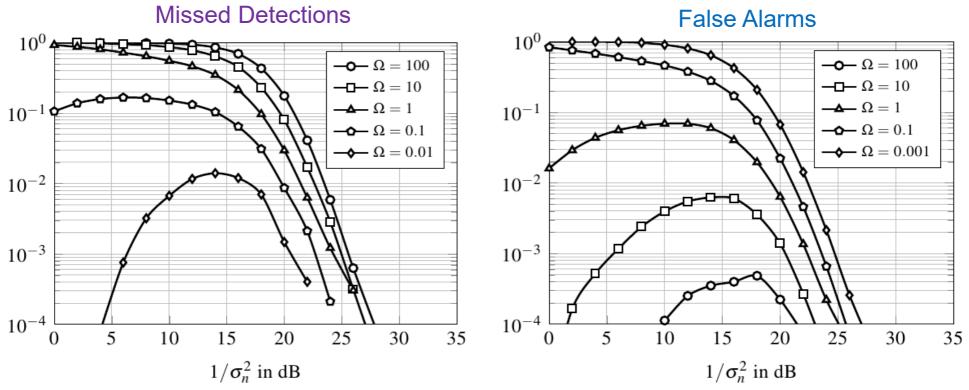


- CS algorithms and MAP do not consider these classes
 - Impact on higher layers is generally not the same
 - Optimum trade-off may depend on higher layer processing

Bayes risk detector

 $\hat{x}_k = 0$ $x_k = 0$ C_{F_a} Approach: Minimize weighted risk of erroneous activity CMd $\hat{x}_k \in \mathcal{A}$ detection $x_k \in \mathcal{A}$ $R := C_{\text{Fa}} \mathbf{Prob} \left(\hat{x} \in \mathcal{A} | x_k = 0 \right) + C_{\text{Md}} \mathbf{Prob} \left(\hat{x} = 0 | x_k \in \mathcal{A} \right)$ # of non-zeros $\hat{\mathbf{x}}^{\Omega} = \underset{\mathbf{x} \in \mathcal{A}_0}{\operatorname{minimize}} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + 2\sigma_n^2 \|\mathbf{x}\|_0 \ln\left(\Omega \frac{1 - p_a}{p_a/|\mathcal{A}|}\right) \quad \Omega = \frac{C_{\operatorname{Fa}}}{C_{\operatorname{Md}}}$ "Activity cost" Tuning parameter Ω **Prefer** activity **Prefer inactivity** $\Omega < 1$ $\Omega = 1$ $\Omega > 1$ **MAP-Detector**

Bayes-Risk based activity detection



- MAP detection $\Omega = 1$ is not sufficient for CS-MUD
- Bayes-Risk approach allows to trade-off between both activity error events
- Low Missed Detection rate automatically increases False Alarm rate and vice versa

Neyman-Pearson Approach

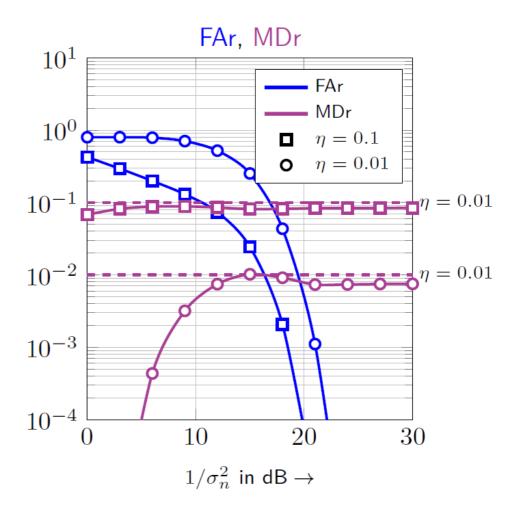
- Main idea: Tightly control one activity error while minimizing the other
 - Activity errors: False Alarm and Missed Detection

 $\hat{\mathbf{x}}^{\eta} = \arg \min \Pr(\mathsf{Fa})$ s.t. $\Pr(\mathsf{Md}) \le \eta$

- Bounds the probability of MD to η minimizes the probability of FA
- Problem: Neither probability can be formulated in closed form
 - Analytical solution not achievable
 - Approximation required
- Solution: Use soft-values for activity to estimate probabilities
 - 1. Soft-value calculation, e.g. by activity-MAP
 - 2. Estimation of probabilities (the more soft-values, the better)
 - 3. Minimization by threshold finding algorithm

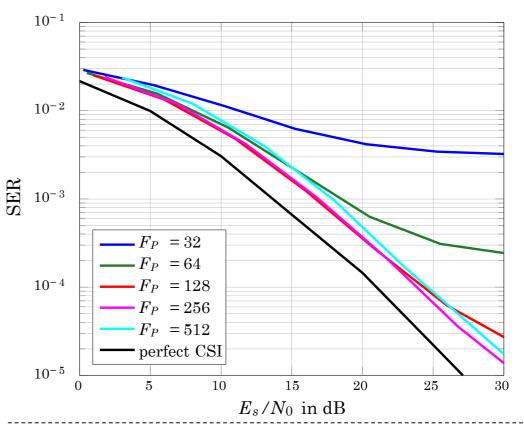
Neyman Pearson results

- Standard MAP
 - No control over False Alarm (FA) and Missed Detection (MD) rates
- Neyman-Pearson Approach:
 - No violation of MD constraint
 - MD constraint is over fulled for low target rates
 - Overfitting in low SNR range
 - FA rate increases for lower MD constraints
 - Unreliable LLRs lead to overfitting in low SNR range
- Conclusion
 - Allows perfect activity error control



CS-MUD Channel Estimation Results

- Main assumption:
 - Random pilots for each packet
 - E_s/N_0 loss included: $F/(F + F_P)$
- Observations:
 - Small $F_{\rm P}$: SER increase dominates
 - Large $F_{\rm P}$: $E_{\rm s}/N_0$ loss dominates
 - Overall best choice here: F_P=128
 - ¼ of frame length *F*
- Result
 - Joint channel and activity estimation by Compressed Sensing algorithms
 - Asynchronicity included by maximum channel delay $\tau_{max} = 20$ chips
 - Performance lost mostly SNR loss (pilot overhead)



Base CS Algorithm: modified GOMP, K=64 users, random spreading Activity probability 2%, BPSK symbols, Frames with 8 information symbols, 3-tap Rayleigh fading channel with random delays up to τ_{max} = 20, exponentially decaying power \rightarrow Asynchronous communication!

Outlook

- CS in (wireless) communication scenarios is a hot research topic
 - Joint Activity and Data detection by CS detectors is a promising approach for low overhead communication
 - Besides CDMA communication many other schemes can be applied (e.g. SC-FDMA like in LTE)
 - Many other areas are of interest: Decoding by CS, Channel Estimation, Radar Signal Processing, ...

