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Outline
 Part 1: Linear Algebra

 Eigenvalues and eigenvectors, pseudo inverse
 Decompositions (QR, unitary matrices, singular value, Cholesky )

 Part 2: Basics and Preliminaries
 Motivating systems with Multiple Inputs and Multiple Outputs (multiple access techniques)
 General classification and description of MIMO systems (SIMO, MISO, MIMO)
 Mobile Radio Channel

 Part 3: Information Theory for MIMO Systems
 Repetition of IT basics, channel capacity for SISO AWGN channel
 Extension to SISO fading channels
 Generalization for the MIMO case

 Part 4: Multiple Antenna Systems 
 SIMO: diversity gain, beamforming at receiver 
 MISO: space-time coding, beamforming at transmitter
 MIMO: BLAST with detection strategies
 Influence of channel (correlation)

 Part 5: Relaying Systems
 Basic relaying structures
 Relaying protocols and exemplary configurations

2
Outline



Outline
 Part 6: In Network Processing

 Basic of distributed processing
 INP approach

 Part 7: Compressed Sensing
 Motivating Sampling below Nyquist
 Reconstruction principles and algorithms
 Applications
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Compressive Sensing

 Motivation

 Basic ideas of Compressed Sensing
 Undersampling / Underdetermined Systems
 Sparsity

 Reconstruction principles
 Basic Optimization task
 Relaxations and Algorithms
 Reconstruction Guarantees

 Applications: Sporadic Massive Machine Communications
 Model and application of CS
 Differences to standard CS assumptions
 Adapted and novel CS Multi-User Detection Algorithms
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Compressive Sensing Motivation

 Todays signal acquisition systems are often wasteful
 Huge effort in sampling with high accuracy
 Removal of redundant information 
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A First CS Example: The Single Pixel Camera

 Idea: Mix scene contents through DMD randomly
 DMD consists of a high number of tilting micro mirrors
 Each pixel measurement contains the whole scene
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Classic Sampling: Shannon/Nyquist

 Assumption: 
 Bandlimited signals with maximum frequency 𝑓𝑓max

 Shannon/Nyquist sampling: 
 Sampling frequency 𝑓𝑓𝑠𝑠 ≥ 2𝑓𝑓max
 Perfect reconstruction by simple low pass interpolation

 Compressible signals
 Lower information content than number of samples
 Signal properties besides band limitation not considered
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Base Assumption: Compressible / Sparse Signals

 Assume a compressible signal 𝐳𝐳 of length 𝑁𝑁

 Compressible: 
few coefficients in other domain are sufficient
 Discrete Cosine Transform (DCT)
 Discrete Fourier Transform (DFT)

 𝐾𝐾-sparse representation: 𝐳𝐳 = 𝚿𝚿𝚿𝚿
 𝚿𝚿 basis in which 𝐳𝐳 is compressible / sparse
 Only 𝐾𝐾 biggest coefficients are relevant

or
 Signal only contains exactly 𝐾𝐾 components
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The “compressive” in CS

 How to reduce the number of measurements below Nyquist?
 Image example: sorting and “nulling” of low power coefficients

 Nyquist sampling of 𝐳𝐳 first
 „Nulling“ matrix 𝛀𝛀 ∈ ℝ𝑁𝑁×𝑁𝑁after transformation
 no reduction and content dependent

 General subsampling in Compressed Sensing
 Should be independent of specific signals
 Should be valid for all 𝐾𝐾-sparse vectors 𝐱𝐱 independent of 𝚿𝚿
 Linear mapping 𝚽𝚽:ℝ𝑁𝑁 → ℝ𝑀𝑀 from dense 𝐳𝐳 to measurement 𝐲𝐲

𝐲𝐲𝑁𝑁 = 𝚽𝚽𝚽𝚽𝚽𝚽

𝒛𝒛 ≈ 𝚿𝚿𝛀𝛀𝐱𝐱 DCT

IDCT

3% of coefficients
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The Compressive Sensing Problem in a Nutshell

 Problem: Recover 𝐱𝐱 ∈ ℝ𝑁𝑁 from the 𝑀𝑀 < 𝑁𝑁 measurements in vector

 where 𝐧𝐧 ∈ ℝ𝑀𝑀 is additive noise and 
 𝐀𝐀 ∈ ℝ𝑀𝑀×𝑁𝑁 is given by the sparsity basis 𝚿𝚿 ∈ ℝ𝑁𝑁×𝑁𝑁 and measurement matrix 
𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁

 Notation: dense signal 𝐳𝐳 = 𝚿𝚿𝚿𝚿, noise free measurement 𝐲𝐲𝑁𝑁 = 𝐀𝐀𝐀𝐀

 Open Questions:
 How to choose 𝚽𝚽 given a sparse representation in basis 𝚿𝚿?
 How to reconstruct 𝐳𝐳 given (noisy) measurements 𝐲𝐲?

subsampling violates sampling rate requirement 
 low-pass reconstruction impossible
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(underdetermined linear system)𝐲𝐲 = 𝐀𝐀𝐀𝐀 + 𝐧𝐧

𝐀𝐀 = 𝚽𝚽𝚽𝚽



CS History

 Compressive Sensing Theory originated in 2005/2006 [Candès+Tao], 
[Donoho]

 Reconstruction properties were quantified with the “Restricted Isometry 
Property” [Candès+Tao 2006]

 Reconstruction algorithms based on L1/L2-optimization has been widely 
studied [Candès+Tao 2005] and based on Matching Pursuit approaches has 
been adapted to CS [Tropp 2007] and further developed [Needell 2008, Dai 
2009]

 Special Issue in Signal Processing Magazine, March 2008
 IEEE Transaction on Information Theory: Series on Compressive Sensing
 Application of CS in wireless communications:

 Channel estimation [Berger 2010]
 Coding Theory [Dai 2009, Aggarwal 2009]
 CDMA Transmission [Zhu+Giannakis 2010]
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Repetition: Linear Equation Systems

Part 1: Linear Algebra
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 K-sparse is used as a measurement for how sparse a vector is
 Definition: a vector x is K-sparse, if

where

S-sparse
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Recovery by l0/l2 Optimization
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 Underdetermined equations systems can be solved if x is S-sparse
 Minimizing the constrained l0-”norm” yields the sparsest feasible solution

 Solves Least-Squares problem (Zero-Forcing) with the sparsest solution
→ If the position of non-zero entries is known, the reduced problem is solvable!

 Problem: 
 the l0-”norm” is not convex
 problem is NP-hard

 Approaches: Approximate l0-”norm”, suboptimal Greedy algorithms

Least-Square-Normx̂ = arg min
x
kxk0 subject to ky ¡A ¢ xk2

2 < ²



Recovery of Sparse Signals
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 Algorithms to solve the underdetermined linear systems for S-sparse 
solutions can be categorized in three classes

 Convex relaxation: 
Solve a convex program whose minimizer approximates the target signal 
→ e.g. interior-point methods, projected gradient methods
+ succeed with very few measurements
- computational intensive 

 Greedy pursuits: 
Find sequentially the support for each active element of x in measurement y → e.g. 
Orthogonal Matching Pursuit (OMP)
+ low complexity
- less sampling efficient, highly sensitive to correlation properties of matrix A

 Bayesian Methods: 
Belief Propagation and approximations with sparsity inducing priors
+ very sampling efficient
- high to moderate complexity and very dependent on prior assumptions



 Convex Relaxation: approximate the l0-”norm”  is by l1-norm termed LASSO

 Known from regression analysis [Tibshirani 1996]
 LS-solution regularized by the l1-norm
 Convex problem, can be cast as a quadratic program (for a given ¸)
 Bayes estimation: ¸ is Laplace-prior

 Task: optimum value of ¸ is in general not known
) has to be estimated or determined iteratively

Least Absolute Shrinkage and Selection Operator (LASSO)
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x̂LASSO = arg min
x

ky ¡A ¢ xk2
2 + ¸kxk1



 The minimum l1-norm, defined as                           , is convex and favors 
sparse solutions (noiseless case y=Ax)

Matlab Demo

Least Absolute Shrinkage and Selection Operator (LASSO)
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unique solution

multiple solutions

sparse solutions does not 
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kxk1 =
Pn

i=1 jxij



 Idea: Iteratively increase the support by the element xi with the highest 
correlation to measurement y

 Orthogonal Matching Pursuit (OMP):
1. Determine index
2. Augment matrix of chosen element 
3. Solve LS-problem  
4. Calculate new residual
5. Repeat until K elements were chosen

 Other variants exist, e.g., OLS, StOMP, ROMP, …
 Pros: Low complexity and fast execution
 Cons: Sparsity K has to be known / Proper stopping criteria have to be found

Highly sensitive to correlation properties of matrix A
Less sampling efficient

Greedy Algorithms: Matching Pursuit

18

¸t = arg max
j=1;:::d

jhrt¡1; ajij

At = [At¡1 a¸t ]

xt = arg min
x
ky ¡Atxkl2

rt = y ¡Atxt



Compressed Sensing

 Problem: Recover x 2 Rn from the m < n measurements in vector

 where n is additive noise and A 2 Rm £ n is given by the sparsity 
 basis ª (e.g. Fourier basis) and measurement matrix © (e.g. identity)

 Notation: dense signal z = ªx, noise free measurement yN = ©ªx

 Question: How to recover x from the under-determined equation system?
 Assumptions:

 The signal x is sparse, but it is unknown which entries are non zero

19

(underdetermined linear system)y = Ax + n

A = ©ª



Why does it work and when does it work?
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 Coherence:

 measures the maximum correlation between any two elements of 𝚽𝚽 and 𝚿𝚿
 can be checked in practice
 recovery of 𝐱𝐱 with ℓ1-minimization is exact, with probability exceeding 1 − 𝛿𝛿, if

Example: Fourier Basis 𝚿𝚿 and random Subsampling by 𝚽𝚽 (Gaussian, Spike, etc.)

𝜇𝜇 𝚽𝚽,𝚿𝚿 = max
1≤𝑘𝑘,𝑗𝑗≤𝑁𝑁

𝛟𝛟𝑘𝑘,𝛙𝛙𝑗𝑗

𝛟𝛟𝑘𝑘 2 𝛙𝛙𝑗𝑗 2

𝑀𝑀 ≥ 𝐶𝐶 � 𝜇𝜇2 𝚽𝚽,𝚿𝚿 � 𝐾𝐾 � log 𝑁𝑁/𝛿𝛿

Compressed Sensing only works well for low coherence 𝜇𝜇 𝚽𝚽,𝚿𝚿



Reconstruction Criteria and Guarantees
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 Restricted Isometry Property (RIP): For each positive integer 𝐾𝐾 = 1,2, …
define the isometry constant 𝛿𝛿𝐾𝐾 of a matrix 𝐀𝐀 as the smallest integer such 
that

holds for all 𝐾𝐾-sparse vector 𝐱𝐱 ∉ Ker(𝐀𝐀)
 Isometry: “does not distort space”

 If RIP of order 2𝐾𝐾 shall hold for 𝛿𝛿2𝐾𝐾 ∈ 0, 1/2 then 𝑀𝑀 measurement are required

Example: 𝑁𝑁=10000, 𝐾𝐾 = 20  𝑀𝑀 ≈ 40 required

1 − 𝛿𝛿𝐾𝐾 𝐱𝐱 2
2 ≤ 𝐀𝐀𝐱𝐱 2

2 ≤ (1 + 𝛿𝛿𝐾𝐾) 𝐱𝐱 2
2

𝑀𝑀 ≥ 𝐶𝐶 ⋅ 𝐾𝐾 ⋅ log
𝑁𝑁
𝐾𝐾

RIP is required for most reconstruction guarantees
 Random sub-gaussian distributed matrices!



Applications of CS in Communications

 Sampling of sparse Signals
 Sampling and transmission of sparse signals, e.g. sensor networks

 Channel Estimation
 Consider tapped delay line with non-uniform delay distribution
 sparse wireless channel in terms of delay

 Most wireless channels are sparse in sample clock

 Spectrum Sensing
 Cognitive radio idea: find unused spectrum / time in which spectrum is free
 Either spectrum or the edges of spectrum in time and frequency are sparse

 Sporadic Communication
 Traffic characteristic of machine type traffic leads to sparse detection problems



Massive Machine Communication

 Today’s (cellular) systems (3G/4G)
 Designed for high data rate / large packets
 Access reservation and scheduling
 Control overhead is negligible vs. payload size

 Now: a new massive access problem
 Massive number of nodes (sensors, etc.)
 Typically low-data rates / small packets
 Control overhead for scheduling non-negligible

 Potential solution
 Reduce control signaling overhead by random access
 No control overhead, simply send data
 Major problem: user collisions!

User Base Station

Access Reservation

User Base Station

Random Access
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Sporadic Communication Scenario

 Random access: M2M uplink communication
 Base Station (BS) sends a beacon to synchronize sensors and define slots
 Sensors send to a central Base Station using one or more slots

 Sporadic Communication: users are sporadically active
 Event driven: e.g. a temperature threshold is met
 Periodically: e.g. regular energy measurement (smart grid)

 Non-orthogonal medium access scheme
 User signals interfere during transmission  Collisions!
 Signal processing to reconstruct user signals  Multi-User Detection (MUD)
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Compressed Sensing based Multi-User Detection

 Problem: How to recover sensor data and activity from observations?

 Sporadic communication

 Inactive nodes “transmit” only zeros

 Active nodes transmit data symbols 

 The multi-user vector is sparse

 Idea: Multi-user detection by Compressed Sensing exploiting sporadic activity
for joint activity and data detection

A2 CM £ N is a known matrix fully describing the system and n is additive noise
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Differences to standard CS problems (1/3)

 A is actually not fully known!
 Propagation channel is part of A and has to be estimated!
 Unknown radio wave propagation modeled by channel H
 If a sensor is not active, its channel cannot be estimated

 In terms of common CS notation: 
 Usually ©=I  no compression here
 Problem is under-determined because of ª!  unusual for CS problems
 H and x unknown  bilinear CS / CS 3.0

26

A=©Hª

A?



Differences to standard CS problems (2/3)

 Forward Error Correction: non-zero elements in x are part of a codeword
 Communication systems use error correcting codes for robust communication

 Structure that can be exploited, e.g. by iterative detectors/decoders
 Modulation: non-zero elements in x are not continuous

 Communication systems use discrete symbol alphabets
in the complex plane

 Can be exploited, but requires adapted algorithms
 New quality measure required: symbol error rate (SER)
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Differences to standard CS problems (3/3)

 System context: higher layers are impacted by reconstruction
 CS theory mainly cares about perfect reconstruction and guarantees
 But: differentiation of support errors is required

 Impact of False alarms / Missed detections
 Missed detection: lost sensor information  not recoverable, retransmission
 False alarm: misinformation  more processing at higher layers

 CS algorithms are not designed to control either support error rate!
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Example: CDMA Transmission Model (UMTS)

CS-
Detector

FEC Mod

Demod
FEC
dec.

sensor specific symbols

CDMA channel

estimated (sparse) multi-user vector
received vectordata of sensor k

estimated data of sensor k
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 Idea: Iteratively increase the support by the element xi with the highest 
correlation to measurement y

 Orthogonal Matching Pursuit (OMP):
1. Determine index
2. Augment matrix of chosen element 
3. Solve LS-problem  
4. Calculate new residual
5. Repeat until S elements were chosen

Repetition: OMP
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¸t = arg max
j=1;:::d

jhrt¡1; ajij

At = [At¡1 a¸t ]

xt = arg min
x
ky ¡Atxkl2

rt = y ¡Atxt



Group Orthogonal Matsching Pursuit (GOMP)
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Activity
detection

LS estimation
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Group Orthogonal Matsching Pursuit (GOMP)
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MAP-Detector with sparsity assumption
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 In communication: transmit vector x is defined over discrete, finite alphabet
 Greedy algorithms (e.g. OMP) and Convex relaxation methods (e.g. LASSO) are 

sub-optimal as they search over Cn

 The best possible recovery of sparse signals of discrete, finite alphabets 
under noisy measurements is the Maximum a-posterori (MAP) detector
 Proper model of the input distribution of x is required!
 Zero / Active and Non-Zero / Active entries have to modeled
 May be prohibitively complex for large systems!

 Augmented alphabet: Elements of x are taken from a finite alphabet     which 
includes the zero element, e.g. xi2 {-1,0,1} for a BSPK alphabet



Sparsity Aware MAP-Detector

 Assume:                      with 
 Sparsity aware MAP-detector

 with                                 , where pa is the probability that an element xi is not 
zero

 LS optimization over finite alphabet with penalty
 Penalty parameter ¸ is related to the a-priori information of elements xi

 Algorithms: combinatorial search → extend Decision Directed Detector / 
Sphere decoding by l0-norm
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y = Ax + n n 2 N (0; ¾2
n)

¸kxk0

sparsity awareness

x̂MAP = arg max
x2An

Pr(xjy) = arg min
x2An

¡ ln Pr(yjx)¡ ln Pr(x)

= arg min
x2An

ky ¡Axk2
2 + ¸kxk0

¸ = 2¾2
n ln 1¡pa

pa=(jAj¡1)



Overloaded CDMA Transmission

 Parameters
 K=128 Users
 L=8 Symbols per User
 N=32 Spreading Sequence
 F=256 Frame Length in Chips

 Observations
 Underdetermined by factor 4, 

i.e., 4 times more users than 
length of the spreading 
sequence

 OMP ignores and GOMP 
exploits block sparsity (L=8)

 Exploitation of block sparsity 
improves performance 
significantly
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Underloaded CDMA Transmission
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 Parameters
 K=10 Users
 L=10 Symbols per User
 N=16 Spreading Sequence
 F=160 Frame Length in Chips

 Observations
 Overdetermined System K<N

 OMP/GOMP show error floor
 Sphere Detection just as good 

as OMP?



 Idea: Use information of FEC
to improve detection

 Baseline / Classic Detection:
Receiver knows active nodes, 
only data has to be estimated

 Result: 
CS-MUD nearly achieves 
performance of scheduled 
system (known activity)

CS-MUD exploiting FEC with Iterative Feedback

0 4 8 12 16 2010-7
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10-4

10-3

10-2

10-1

ES/N0 in dB

SE
R

No feedback
Iterative feedback
Oracle LS

CS-
Detector Demod FEC

dec.

Feedback

Base CS Algorithm: GOMP, K=128 users, N=32 spreading sequence 
length, Activity probability 2%, BPSK symbols, Frames with 50 
information symbols, [5;7] convolutional code, 3 Feedback iterations
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Channel 
decoding

Block correlation SIC (bcSIC)
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𝑨𝑨



Comparison: GOMP vs. bcSIC
 Best case: known activity
 Low SNR-range: 
 CS-MUD shows almost no 

loss
 bcSIC outperforms GOMP

 High SNR-range:
 bcSIC suffers from error 

propagation
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Scalability of CS-MUD to keep FER performance

 CS-MUD detectors scales 
gracefully with increased 
activity probability

 GOMP vs. bcSIC
 bcSIC outperforms GOMP
 bcSIC is of lower complexity 

40

FER= 10-3



Activity Errors

 SER / FER do not describe the complete behavior of the detector
 Activity model leads to zeros in estimated user data
 Symbol and Frame Errors include bit as well as activity errors

 Error events of activity at PHY:
 Loss of data (Missed Detection/MD)
 Pseudo data (False Alarm/FA)

 CS algorithms and MAP do not consider these classes
 Impact on higher layers is generally not the same
 Optimum trade-off may depend on higher layer processing



 Approach: Minimize weighted
risk of erroneous activity
detection

x̂­ = minimize
x2A0

ky ¡Axk2
2 + 2¾2

nkxk0ln

µ
­

1 ¡ pa
pa=jAj

¶

­ < 1 ­ > 1­ = 1

Prefer activity Prefer inactivity

# of non-zeros

„Activity cost“

MAP-Detector

­ = CFa

CMd

 Tuning parameter Ω

42

Bayes risk detector
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Bayes-Risk based activity detection
False AlarmsMissed Detections

 MAP detection            is not sufficient for CS-MUD 
 Bayes-Risk approach allows to trade-off between both activity error events
 Low Missed Detection rate automatically increases False Alarm rate and vice 

versa



Neyman-Pearson Approach

 Main idea: Tightly control one activity error while minimizing the other
 Activity errors: False Alarm and Missed Detection

 Bounds the probability of MD to ´ minimizes the probability of FA

 Problem: Neither probability can be formulated in closed form
 Analytical solution not achievable
 Approximation required

 Solution: Use soft-values for activity to estimate probabilites
1. Soft-value calculation, e.g. by activity-MAP
2. Estimation of probabilities (the more soft-values, the better)
3. Minimization by threshold finding algorithm
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Neyman Pearson results

 Standard MAP
 No control over False Alarm (FA) 

and Missed Detection (MD) rates
 Neyman-Pearson Approach:

 No violation of MD constraint
 MD constraint is over fullled for low 

target rates
 Overfitting in low SNR range
 FA rate increases for lower MD

constraints
 Unreliable LLRs lead to overfitting in 

low SNR range
 Conclusion

 Allows perfect activity error control
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CS-MUD Channel Estimation Results

 Main assumption:
 Random pilots for each packet
 Es/N0 loss included: F / (F + FP)

 Observations:
 Small FP: SER increase dominates
 Large FP: Es/N0 loss dominates
 Overall best choice here: FP =128
 ¼ of frame length F

 Result
 Joint channel and activity estimation

by Compressed Sensing algorithms
 Asynchronicity included by maximum

channel delay ¿max = 20 chips
 Performance lost mostly SNR loss

(pilot overhead)
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FP  = 32
FP  = 64
FP  = 128
FP  = 256
FP  = 512
perfect CSI

Base CS Algorithm: modified GOMP, K=64 users, random spreading 
Activity probability 2%, BPSK symbols, Frames with 8 information 
symbols, 3-tap Rayleigh fading channel with random delays up to ¿max
= 20; exponentially decaying power  Asynchronous communication!



Outlook

 CS in (wireless) communication scenarios is a hot research topic
 Joint Activity and Data detection by CS detectors is a promising approach for low 

overhead communication
 Besides CDMA communication many other schemes can be applied (e.g. SC-

FDMA like in LTE)
 Many other areas are of interest: Decoding by CS, Channel Estimation, Radar 

Signal Processing, …


