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Outline
 Part 1: Linear Algebra

 Eigenvalues and eigenvectors, pseudo inverse
 Decompositions (QR, unitary matrices, singular value, Cholesky )

 Part 2: Basics and Preliminaries
 Motivating systems with Multiple Inputs and Multiple Outputs (multiple access techniques)
 General classification and description of MIMO systems (SIMO, MISO, MIMO)
 Mobile Radio Channel

 Part 3: Information Theory for MIMO Systems
 Repetition of IT basics, channel capacity for SISO AWGN channel
 Extension to SISO fading channels
 Generalization for the MIMO case

 Part 4: Multiple Antenna Systems 
 SIMO: diversity gain, beamforming at receiver 
 MISO: space-time coding, beamforming at transmitter
 MIMO: BLAST with detection strategies
 Influence of channel (correlation)

 Part 5: Relaying Systems
 Basic relaying structures
 Relaying protocols and exemplary configurations
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Outline
 Part 6: In Network Processing

 Basic of distributed processing
 INP approach

 Part 7: Compressed Sensing
 Motivating Sampling below Nyquist
 Reconstruction principles and algorithms
 Applications
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Compressive Sensing

 Motivation

 Basic ideas of Compressed Sensing
 Undersampling / Underdetermined Systems
 Sparsity

 Reconstruction principles
 Basic Optimization task
 Relaxations and Algorithms
 Reconstruction Guarantees

 Applications: Sporadic Massive Machine Communications
 Model and application of CS
 Differences to standard CS assumptions
 Adapted and novel CS Multi-User Detection Algorithms
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Compressive Sensing Motivation

 Todays signal acquisition systems are often wasteful
 Huge effort in sampling with high accuracy
 Removal of redundant information 

5

JPEG 
Compression

Huge 
amount 
of data

sampled

Compact
file after 

compression
Scene

Sampling, 
then compress



A First CS Example: The Single Pixel Camera

 Idea: Mix scene contents through DMD randomly
 DMD consists of a high number of tilting micro mirrors
 Each pixel measurement contains the whole scene
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Classic Sampling: Shannon/Nyquist

 Assumption: 
 Bandlimited signals with maximum frequency 𝑓𝑓max

 Shannon/Nyquist sampling: 
 Sampling frequency 𝑓𝑓𝑠𝑠 ≥ 2𝑓𝑓max
 Perfect reconstruction by simple low pass interpolation

 Compressible signals
 Lower information content than number of samples
 Signal properties besides band limitation not considered
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Exploit side information of sampled signals!
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Base Assumption: Compressible / Sparse Signals

 Assume a compressible signal 𝐳𝐳 of length 𝑁𝑁

 Compressible: 
few coefficients in other domain are sufficient
 Discrete Cosine Transform (DCT)
 Discrete Fourier Transform (DFT)

 𝐾𝐾-sparse representation: 𝐳𝐳 = 𝚿𝚿𝚿𝚿
 𝚿𝚿 basis in which 𝐳𝐳 is compressible / sparse
 Only 𝐾𝐾 biggest coefficients are relevant

or
 Signal only contains exactly 𝐾𝐾 components
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The “compressive” in CS

 How to reduce the number of measurements below Nyquist?
 Image example: sorting and “nulling” of low power coefficients

 Nyquist sampling of 𝐳𝐳 first
 „Nulling“ matrix 𝛀𝛀 ∈ ℝ𝑁𝑁×𝑁𝑁after transformation
 no reduction and content dependent

 General subsampling in Compressed Sensing
 Should be independent of specific signals
 Should be valid for all 𝐾𝐾-sparse vectors 𝚿𝚿 independent of 𝚿𝚿
 Linear mapping 𝚽𝚽:ℝ𝑁𝑁 → ℝ𝑀𝑀 from dense 𝐳𝐳 to measurement 𝐲𝐲

𝐲𝐲𝑁𝑁 = 𝚽𝚽𝚿𝚿𝚿𝚿

𝒛𝒛 ≈ 𝚿𝚿𝛀𝛀𝚿𝚿 DCT

IDCT

3% of coefficients
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The Compressive Sensing Problem in a Nutshell

 Problem: Recover 𝚿𝚿 ∈ ℝ𝑁𝑁 from the 𝑀𝑀 < 𝑁𝑁 measurements in vector

 where 𝐧𝐧 ∈ ℝ𝑀𝑀 is additive noise and 
 𝐀𝐀 ∈ ℝ𝑀𝑀×𝑁𝑁 is given by the sparsity basis 𝚿𝚿 ∈ ℝ𝑁𝑁×𝑁𝑁 and measurement matrix 
𝚽𝚽 ∈ ℝ𝑀𝑀×𝑁𝑁

 Notation: dense signal 𝐳𝐳 = 𝚿𝚿𝚿𝚿, noise free measurement 𝐲𝐲𝑁𝑁 = 𝐀𝐀𝚿𝚿

 Open Questions:
 How to choose 𝚽𝚽 given a sparse representation in basis 𝚿𝚿?
 How to reconstruct 𝐳𝐳 given (noisy) measurements 𝐲𝐲?

subsampling violates sampling rate requirement 
 low-pass reconstruction impossible
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(underdetermined linear system)𝐲𝐲 = 𝐀𝐀𝚿𝚿 + 𝐧𝐧

𝐀𝐀 = 𝚽𝚽𝚿𝚿



CS History

 Compressive Sensing Theory originated in 2005/2006 [Candès+Tao], 
[Donoho]

 Reconstruction properties were quantified with the “Restricted Isometry 
Property” [Candès+Tao 2006]

 Reconstruction algorithms based on L1/L2-optimization has been widely 
studied [Candès+Tao 2005] and based on Matching Pursuit approaches has 
been adapted to CS [Tropp 2007] and further developed [Needell 2008, Dai 
2009]

 Special Issue in Signal Processing Magazine, March 2008
 IEEE Transaction on Information Theory: Series on Compressive Sensing
 Application of CS in wireless communications:

 Channel estimation [Berger 2010]
 Coding Theory [Dai 2009, Aggarwal 2009]
 CDMA Transmission [Zhu+Giannakis 2010]
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Repetition: Linear Equation Systems

Part 1: Linear Algebra

intersecting straight lines parallel straight lines identical straight lines

a1, a2 linearly independent a1, a2 parallel a1, a2, b parallel

unique solution no solution infinite number of solutions

m < n, underdetermined
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 K-sparse is used as a measurement for how sparse a vector is
 Definition: a vector x is K-sparse, if

where

S-sparse
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Recovery by l0/l2 Optimization
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 Underdetermined equations systems can be solved if x is S-sparse
 Minimizing the constrained l0-”norm” yields the sparsest feasible solution

 Solves Least-Squares problem (Zero-Forcing) with the sparsest solution
→ If the position of non-zero entries is known, the reduced problem is solvable!

 Problem: 
 the l0-”norm” is not convex
 problem is NP-hard

 Approaches: Approximate l0-”norm”, suboptimal Greedy algorithms

Least-Square-Normx̂ = arg min
x
kxk0 subject to ky ¡A ¢ xk2

2 < ²



Recovery of Sparse Signals
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 Algorithms to solve the underdetermined linear systems for S-sparse 
solutions can be categorized in three classes

 Convex relaxation: 
Solve a convex program whose minimizer approximates the target signal 
→ e.g. interior-point methods, projected gradient methods
+ succeed with very few measurements
- computational intensive 

 Greedy pursuits: 
Find sequentially the support for each active element of x in measurement y → e.g. 
Orthogonal Matching Pursuit (OMP)
+ low complexity
- less sampling efficient, highly sensitive to correlation properties of matrix A

 Bayesian Methods: 
Belief Propagation and approximations with sparsity inducing priors
+ very sampling efficient
- high to moderate complexity and very dependent on prior assumptions



 Convex Relaxation: approximate the l0-”norm”  is by l1-norm termed LASSO

 Known from regression analysis [Tibshirani 1996]
 LS-solution regularized by the l1-norm
 Convex problem, can be cast as a quadratic program (for a given ¸)
 Bayes estimation: ¸ is Laplace-prior

 Task: optimum value of ¸ is in general not known
) has to be estimated or determined iteratively

Least Absolute Shrinkage and Selection Operator (LASSO)
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x̂LASSO = arg min
x

ky ¡A ¢ xk2
2 + ¸kxk1



 The minimum l1-norm, defined as                           , is convex and favors 
sparse solutions (noiseless case y=Ax)

Matlab Demo

Least Absolute Shrinkage and Selection Operator (LASSO)
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unique solution

multiple solutions

sparse solutions does not 
have minimal l2-norm

kxk1 =
Pn

i=1 jxij



 Idea: Iteratively increase the support by the element xi with the highest 
correlation to measurement y

 Orthogonal Matching Pursuit (OMP):
1. Determine index
2. Augment matrix of chosen element 
3. Solve LS-problem  
4. Calculate new residual
5. Repeat until K elements were chosen

 Other variants exist, e.g., OLS, StOMP, ROMP, …
 Pros: Low complexity and fast execution
 Cons: Sparsity K has to be known / Proper stopping criteria have to be found

Highly sensitive to correlation properties of matrix A
Less sampling efficient

Greedy Algorithms: Matching Pursuit
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¸t = arg max
j=1;:::d

jhrt¡1; ajij

At = [At¡1 a¸t ]

xt = arg min
x
ky ¡Atxkl2

rt = y ¡Atxt



Compressed Sensing

 Problem: Recover x 2 Rn from the m < n measurements in vector

 where n is additive noise and A 2 Rm £ n is given by the sparsity 
 basis ª (e.g. Fourier basis) and measurement matrix © (e.g. identity)

 Notation: dense signal z = ªx, noise free measurement yN = ©ªx

 Question: How to recover x from the under-determined equation system?
 Assumptions:

 The signal x is sparse, but it is unknown which entries are non zero
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(underdetermined linear system)y = Ax + n

A = ©ª



Why does it work and when does it work?
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 Coherence:

 measures the maximum correlation between any two elements of 𝚽𝚽 and 𝚿𝚿
 can be checked in practice
 recovery of 𝚿𝚿 with ℓ1-minimization is exact, with probability exceeding 1 − 𝛿𝛿, if

Example: Fourier Basis 𝚿𝚿 and random Subsampling by 𝚽𝚽 (Gaussian, Spike, etc.)

𝜇𝜇 𝚽𝚽,𝚿𝚿 = max
1≤𝑘𝑘,𝑗𝑗≤𝑁𝑁

𝛟𝛟𝑘𝑘,𝛙𝛙𝑗𝑗

𝛟𝛟𝑘𝑘 2 𝛙𝛙𝑗𝑗 2

𝑀𝑀 ≥ 𝐶𝐶 � 𝜇𝜇2 𝚽𝚽,𝚿𝚿 � 𝐾𝐾 � log 𝑁𝑁/𝛿𝛿

Compressed Sensing only works well for low coherence 𝜇𝜇 𝚽𝚽,𝚿𝚿



Reconstruction Criteria and Guarantees

21

 Restricted Isometry Property (RIP): For each positive integer 𝐾𝐾 = 1,2, …
define the isometry constant 𝛿𝛿𝐾𝐾 of a matrix 𝐀𝐀 as the smallest integer such 
that

holds for all 𝐾𝐾-sparse vector 𝚿𝚿 ∉ Ker(𝐀𝐀)
 Isometry: “does not distort space”

 If RIP of order 2𝐾𝐾 shall hold for 𝛿𝛿2𝐾𝐾 ∈ 0, 1/2 then 𝑀𝑀 measurement are required

Example: 𝑁𝑁=10000, 𝐾𝐾 = 20  𝑀𝑀 ≈ 40 required

1 − 𝛿𝛿𝐾𝐾 𝚿𝚿 2
2 ≤ 𝐀𝐀𝚿𝚿 2

2 ≤ (1 + 𝛿𝛿𝐾𝐾) 𝚿𝚿 2
2

𝑀𝑀 ≥ 𝐶𝐶 ⋅ 𝐾𝐾 ⋅ log
𝑁𝑁
𝐾𝐾

RIP is required for most reconstruction guarantees
 Random sub-gaussian distributed matrices!



Applications of CS in Communications

 Sampling of sparse Signals
 Sampling and transmission of sparse signals, e.g. sensor networks

 Channel Estimation
 Consider tapped delay line with non-uniform delay distribution
 sparse wireless channel in terms of delay

 Most wireless channels are sparse in sample clock

 Spectrum Sensing
 Cognitive radio idea: find unused spectrum / time in which spectrum is free
 Either spectrum or the edges of spectrum in time and frequency are sparse

 Sporadic Communication
 Traffic characteristic of machine type traffic leads to sparse detection problems



Massive Machine Communication

 Today’s (cellular) systems (3G/4G)
 Designed for high data rate / large packets
 Access reservation and scheduling
 Control overhead is negligible vs. payload size

 Now: a new massive access problem
 Massive number of nodes (sensors, etc.)
 Typically low-data rates / small packets
 Control overhead for scheduling non-negligible

 Potential solution
 Reduce control signaling overhead by random access
 No control overhead, simply send data
 Major problem: user collisions!

User Base Station

Access Reservation

User Base Station

Random Access
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Sporadic Communication Scenario

 Random access: M2M uplink communication
 Base Station (BS) sends a beacon to synchronize sensors and define slots
 Sensors send to a central Base Station using one or more slots

 Sporadic Communication: users are sporadically active
 Event driven: e.g. a temperature threshold is met
 Periodically: e.g. regular energy measurement (smart grid)

 Non-orthogonal medium access scheme
 User signals interfere during transmission  Collisions!
 Signal processing to reconstruct user signals  Multi-User Detection (MUD)
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Compressed Sensing based Multi-User Detection

 Problem: How to recover sensor data and activity from observations?

 Sporadic communication

 Inactive nodes “transmit” only zeros

 Active nodes transmit data symbols 

 The multi-user vector is sparse

 Idea: Multi-user detection by Compressed Sensing exploiting sporadic activity
for joint activity and data detection

A2 CM £ N is a known matrix fully describing the system and n is additive noise
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Differences to standard CS problems (1/3)

 A is actually not fully known!
 Propagation channel is part of A and has to be estimated!
 Unknown radio wave propagation modeled by channel H
 If a sensor is not active, its channel cannot be estimated

 In terms of common CS notation: 
 Usually ©=I  no compression here
 Problem is under-determined because of ª!  unusual for CS problems
 H and x unknown  bilinear CS / CS 3.0

26

A=©Hª

A?



Differences to standard CS problems (2/3)

 Forward Error Correction: non-zero elements in x are part of a codeword
 Communication systems use error correcting codes for robust communication

 Structure that can be exploited, e.g. by iterative detectors/decoders
 Modulation: non-zero elements in x are not continuous

 Communication systems use discrete symbol alphabets
in the complex plane

 Can be exploited, but requires adapted algorithms
 New quality measure required: symbol error rate (SER)
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Differences to standard CS problems (3/3)

 System context: higher layers are impacted by reconstruction
 CS theory mainly cares about perfect reconstruction and guarantees
 But: differentiation of support errors is required

 Impact of False alarms / Missed detections
 Missed detection: lost sensor information  not recoverable, retransmission
 False alarm: misinformation  more processing at higher layers

 CS algorithms are not designed to control either support error rate!
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Example: CDMA Transmission Model (UMTS)

CS-
Detector

FEC Mod

Demod
FEC
dec.

sensor specific symbols

CDMA channel

estimated (sparse) multi-user vector
received vectordata of sensor k

estimated data of sensor k
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 Idea: Iteratively increase the support by the element xi with the highest 
correlation to measurement y

 Orthogonal Matching Pursuit (OMP):
1. Determine index
2. Augment matrix of chosen element 
3. Solve LS-problem  
4. Calculate new residual
5. Repeat until S elements were chosen

Repetition: OMP
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¸t = arg max
j=1;:::d

jhrt¡1; ajij

At = [At¡1 a¸t ]

xt = arg min
x
ky ¡Atxkl2

rt = y ¡Atxt



Group Orthogonal Matsching Pursuit (GOMP)
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Activity
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Group Orthogonal Matsching Pursuit (GOMP)
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MAP-Detector with sparsity assumption
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 In communication: transmit vector x is defined over discrete, finite alphabet
 Greedy algorithms (e.g. OMP) and Convex relaxation methods (e.g. LASSO) are 

sub-optimal as they search over Cn

 The best possible recovery of sparse signals of discrete, finite alphabets 
under noisy measurements is the Maximum a-posterori (MAP) detector
 Proper model of the input distribution of x is required!
 Zero / Active and Non-Zero / Active entries have to modeled
 May be prohibitively complex for large systems!

 Augmented alphabet: Elements of x are taken from a finite alphabet     which 
includes the zero element, e.g. xi2 {-1,0,1} for a BSPK alphabet



Sparsity Aware MAP-Detector

 Assume:                      with 
 Sparsity aware MAP-detector

 with                                 , where pa is the probability that an element xi is not 
zero

 LS optimization over finite alphabet with penalty
 Penalty parameter ¸ is related to the a-priori information of elements xi

 Algorithms: combinatorial search → extend Decision Directed Detector / 
Sphere decoding by l0-norm
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y = Ax + n n 2 N (0; ¾2
n)

¸kxk0

sparsity awareness

x̂MAP = arg max
x2An

Pr(xjy) = arg min
x2An

¡ ln Pr(yjx)¡ ln Pr(x)

= arg min
x2An

ky ¡Axk2
2 + ¸kxk0

¸ = 2¾2
n ln 1¡pa

pa=(jAj¡1)



Overloaded CDMA Transmission

 Parameters
 K=128 Users
 L=8 Symbols per User
 N=32 Spreading Sequence
 F=256 Frame Length in Chips

 Observations
 Underdetermined by factor 4, 

i.e., 4 times more users than 
length of the spreading 
sequence

 OMP ignores and GOMP 
exploits block sparsity (L=8)

 Exploitation of block sparsity 
improves performance 
significantly
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Underloaded CDMA Transmission
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 Parameters
 K=10 Users
 L=10 Symbols per User
 N=16 Spreading Sequence
 F=160 Frame Length in Chips

 Observations
 Overdetermined System K<N

 OMP/GOMP show error floor
 Sphere Detection just as good 

as OMP?



 Idea: Use information of FEC
to improve detection

 Baseline / Classic Detection:
Receiver knows active nodes, 
only data has to be estimated

 Result: 
CS-MUD nearly achieves 
performance of scheduled 
system (known activity)

CS-MUD exploiting FEC with Iterative Feedback
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No feedback
Iterative feedback
Oracle LS

CS-
Detector Demod FEC

dec.

Feedback

Base CS Algorithm: GOMP, K=128 users, N=32 spreading sequence 
length, Activity probability 2%, BPSK symbols, Frames with 50 
information symbols, [5;7] convolutional code, 3 Feedback iterations
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Channel 
decoding

Block correlation SIC (bcSIC)
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𝑨𝑨



Comparison: GOMP vs. bcSIC
 Best case: known activity
 Low SNR-range: 
 CS-MUD shows almost no 

loss
 bcSIC outperforms GOMP

 High SNR-range:
 bcSIC suffers from error 

propagation
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Scalability of CS-MUD to keep FER performance

 CS-MUD detectors scales 
gracefully with increased 
activity probability

 GOMP vs. bcSIC
 bcSIC outperforms GOMP
 bcSIC is of lower complexity 
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FER= 10-3



Activity Errors

 SER / FER do not describe the complete behavior of the detector
 Activity model leads to zeros in estimated user data
 Symbol and Frame Errors include bit as well as activity errors

 Error events of activity at PHY:
 Loss of data (Missed Detection/MD)
 Pseudo data (False Alarm/FA)

 CS algorithms and MAP do not consider these classes
 Impact on higher layers is generally not the same
 Optimum trade-off may depend on higher layer processing



 Approach: Minimize weighted
risk of erroneous activity
detection

x̂ = minimize
x2A0

ky ¡Axk2
2 + 2¾2

nkxk0ln

µ


1 ¡ pa
pa=jAj

¶

 < 1  > 1 = 1

Prefer activity Prefer inactivity

# of non-zeros

„Activity cost“

MAP-Detector

 = CFa

CMd

 Tuning parameter Ω
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Bayes risk detector



43

Bayes-Risk based activity detection
False AlarmsMissed Detections

 MAP detection            is not sufficient for CS-MUD 
 Bayes-Risk approach allows to trade-off between both activity error events
 Low Missed Detection rate automatically increases False Alarm rate and vice 

versa



Neyman-Pearson Approach

 Main idea: Tightly control one activity error while minimizing the other
 Activity errors: False Alarm and Missed Detection

 Bounds the probability of MD to ´ minimizes the probability of FA

 Problem: Neither probability can be formulated in closed form
 Analytical solution not achievable
 Approximation required

 Solution: Use soft-values for activity to estimate probabilites
1. Soft-value calculation, e.g. by activity-MAP
2. Estimation of probabilities (the more soft-values, the better)
3. Minimization by threshold finding algorithm
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Neyman Pearson results

 Standard MAP
 No control over False Alarm (FA) 

and Missed Detection (MD) rates
 Neyman-Pearson Approach:

 No violation of MD constraint
 MD constraint is over fullled for low 

target rates
 Overfitting in low SNR range
 FA rate increases for lower MD

constraints
 Unreliable LLRs lead to overfitting in 

low SNR range
 Conclusion

 Allows perfect activity error control
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CS-MUD Channel Estimation Results

 Main assumption:
 Random pilots for each packet
 Es/N0 loss included: F / (F + FP)

 Observations:
 Small FP: SER increase dominates
 Large FP: Es/N0 loss dominates
 Overall best choice here: FP =128
 ¼ of frame length F

 Result
 Joint channel and activity estimation

by Compressed Sensing algorithms
 Asynchronicity included by maximum

channel delay ¿max = 20 chips
 Performance lost mostly SNR loss

(pilot overhead)
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FP  = 32
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FP  = 256
FP  = 512
perfect CSI

Base CS Algorithm: modified GOMP, K=64 users, random spreading 
Activity probability 2%, BPSK symbols, Frames with 8 information 
symbols, 3-tap Rayleigh fading channel with random delays up to ¿max
= 20; exponentially decaying power  Asynchronous communication!



Outlook

 CS in (wireless) communication scenarios is a hot research topic
 Joint Activity and Data detection by CS detectors is a promising approach for low 

overhead communication
 Besides CDMA communication many other schemes can be applied (e.g. SC-

FDMA like in LTE)
 Many other areas are of interest: Decoding by CS, Channel Estimation, Radar 

Signal Processing, …


