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Advanced Topics in Digital Communications
Spezielle Methoden der digitalen Datenubertragung

Dr.-Ing. Carsten Bockelmann
Institute for Telecommunications and High-Frequency Techniques
Department of Communications Engineering
Room: SPT C3160, Phone: 0421/218-62386
bockelmann@ant.uni-bremen.de

Lecture Tutor
Thursday, 10:00 — 12:00 in N3130 Tobias Monsees
Exercise Room: SPT C3220
Wednesday, 14:00 — 16:00 in N1250 Phone 218-62407
Dates for exercises will be announced tmonsees@ant.uni-bremen.de

during lectures.

www.ant.uni-bremen.de/courses/atdc/
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Outline

= Part 1: Linear Algebra
» Eigenvalues and eigenvectors, pseudo inverse
= Decompositions (QR, unitary matrices, singular value, Cholesky )

» Part 2: Basics and Preliminaries
= Motivating systems with Multiple Inputs and Multiple Outputs (multiple access techniques)
» General classification and description of MIMO systems (SIMO, MISO, MIMO)
= Mobile Radio Channel

» Part 3: Information Theory for MIMO Systems
= Repetition of IT basics, channel capacity for SISO AWGN channel
= Extension to SISO fading channels
= Generalization for the MIMO case

= Part 4: Multiple Antenna Systems
= SIMO: diversity gain, beamforming at receiver
= MISO: space-time coding, beamforming at transmitter
= MIMO: BLAST with detection strategies
» [nfluence of channel (correlation)

= Part 5: Relaying Systems
= Basic relaying structures
= Relaying protocols and exemplary configurations
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Outline

v,

= Part 6: In Network Processing
= Basic of distributed processing
= |INP approach

= Part 7: Compressed Sensing
= Motivating Sampling below Nyquist
= Reconstruction principles and algorithms
= Applications

@ Universitat Bremen* Outline
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Compressive Sensing

= Motivation

= Basic ideas of Compressed Sensing
= Undersampling / Underdetermined Systems
= Sparsity

= Reconstruction principles
= Basic Optimization task
= Relaxations and Algorithms
= Reconstruction Guarantees

= Applications: Sporadic Massive Machine Communications
= Model and application of CS
= Differences to standard CS assumptions
= Adapted and novel CS Multi-User Detection Algorithms

(@’ Universitat Bremen*
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Compressive Sensing Motivation

JPEG
Compression

Huge
J Compact
amount .
Scene file after
of data .
compression
sampled

= Todays signal acquisition systems are often wasteful
= Huge effort in sampling with high accuracy :> Sampling,
= Removal of redundant information then compress

@ Universitat Bremen*
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A First CS Example: The Single Pixel Camera
,single pixel”
measurements
Digital Mirror Single
Scene Device (DMD) ~ -°"S Pixel
= |dea: Mix scene contents through DMD randomly
= DMD consists of a high number of tilting micro mirrors Compressed

= Each pixel measurement contains the whole scene

@ Universitat Bremen*
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Classic Sampling: Shannon/Nyquist

=  Assumption: s(t) 4
= Bandlimited signals with maximum frequency fmax

=  Shannon/Nyquist sampling:
= Sampling frequency f; = 2fmax
= Perfect reconstruction by simple low pass interpolation

@)
. . l Fourier
= Compressible signals SGw)p
= Lower information content than number of samples
= Signal properties besides band limitation not considered
)w
[ Exploit side information of sampled signals! }

(@’ Universitat Bremen*
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Base Assumption: Compressible / Spars Signa

eeeeeeee

= Assume a compressible signal z of length N

= Compressible: l DCT
few coefficients in other domain are sufficient

= Discrete Cosine Transform (DCT)

= Discrete Fourier Transform (DFT)

= K-sparse representation: z = Px l IDFT
= W basis in which z is compressible / sparse 3% of coefficients 5 coefficients
= Only K biggest coefficients are relevant
or

= Signal only contains exactly K components

@ Universitat Bremen*
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The “compressive” in CS

= How to reduce the number of measurements below Nyquist?
= [mage example: sorting and “nulling” of low power coefficients

Zz =~ POx

= Nyquist sampling of z first

]RNXN

= Nulling“ matrix ) € after transformation

—> no reduction and content dependent

= General subsampling in Compressed Sensing
= Should be independent of specific signals l IDCT
= Should be valid for all K-sparse vectors x independent of ¥ 3% of coefficients

= Linear mapping ®: RY - R from dense z to measurement y

yy = PPx

@ Universitat Bremen*
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The Compressive Sensing Problem in a Nutshell

= Problem: Recover x € RN from the M < N measurements in vector

y =Ax+n (underdetermined linear system)

= where n € RM is additive noise and

= A € RM*N js given by the sparsity basis ¥ € R¥*N and measurement matrix

q)ERMXN
A=0Y

= Notation: dense signal z = ¥x, noise free measurement y, = Ax

= QOpen Questions:

= How to choose @ given a sparse representation in basis ¥?

= How to reconstruct z given (noisy) measurements y?
subsampling violates sampling rate requirement
- low-pass reconstruction impossible

@ Universitat Bremen*
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CS History

= Compressive Sensing Theory originated in 2005/2006 [Candés+Tao],
[Donoho]

= Reconstruction properties were quantified with the “Restricted Isometry
Property” [Candés+Tao 2006]

= Reconstruction algorithms based on L1/L2-optimization has been widely
studied [Candés+Tao 2005] and based on Matching Pursuit approaches has
been adapted to CS [Tropp 2007] and further developed [Needell 2008, Dai
2009]

= Special Issue in Signal Processing Magazine, March 2008
= |EEE Transaction on Information Theory: Series on Compressive Sensing

= Application of CS in wireless communications:

= Channel estimation [Berger 2010]
= Coding Theory [Dai 2009, Aggarwal 2009]
= CDMA Transmission [Zhu+Giannakis 2010]

l@’ Universitat Bremen* 11
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Repetition: Linear Equation Systems
m < m, underdetermined

intersecting straight lines

parallel straight lines
N )

al straight lines

a,;x=>b;
X = b1

- aX = by

AN )1111

a,, a, linearly independent

LoA .
282 4~
as b b
M
aj \*/
L1adil

unique SO|M

no solution infinite number of solutions

@ Universitat Bremen™ Part 1: Linear Algebra 5
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= K-sparse is used as a measurement for how sparse a vector is
= Definition: a vector x is K-sparse, if

where |[|x[lo = [supp(x)| = [{j : z; # 0}| <— [,-~“norm"

Example: 3-sparse

(@’ Universitat Bremen*

S-sparse

[x[lo < K

(21
L2
X3

0

(=)
0
X2

\ ¢

3-sparse

\

3-sparse

(1)
L2

xs3

L4

\ ¢

not 3-sparse
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Recovery by [,/l, Optimization

= Underdetermined equations systems can be solved if x is S-sparse
= Minimizing the constrained /,-"norm” yields the sparsest feasible solution

X = arg min||x||p subject to Least-Square-Norm
X

= Solves Least-Squares problem (Zero-Forcing) with the sparsest solution
— If the position of non-zero entries is known, the reduced problem is solvable!

= Problem:
= the [y-"norm” is not convex
= problem is NP-hard

= Approaches: Approximate [,-"norm”, suboptimal Greedy algorithms

(@’ Universitat Bremen*
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Recovery of Sparse Signals

= Algorithms to solve the underdetermined linear systems for S-sparse
solutions can be categorized in three classes

= Convex relaxation:
Solve a convex program whose minimizer approximates the target signal

— e.g. interior-point methods, projected gradient methods
+ succeed with very few measurements
- computational intensive

= Greedy pursuits:
Find sequentially the support for each active element of x in measurement y — e.qg.
Orthogonal Matching Pursuit (OMP)

+ low complexity
- less sampling efficient, highly sensitive to correlation properties of matrix A
= Bayesian Methods:
Belief Propagation and approximations with sparsity inducing priors
+ very sampling efficient
- high to moderate complexity and very dependent on prior assumptions

(@’ Universitat Bremen*
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Least Absolute Shrinkage and Selection Operator (LASSO)

= Convex Relaxation: approximate the [,-"norm” is by l,-norm termed LASSO

*MA50 = arg minlly — A - x5 + Allx[|;
X

= Known from regression analysis [Tibshirani 1996]
= LS-solution regularized by the [,-norm
= Convex problem, can be cast as a quadratic program (for a given \)
= Bayes estimation: )\ is Laplace-prior

= Task: optimum value of A is in general not known
=- has to be estimated or determined iteratively

@ Universitat Bremen*
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Least Absolute Shrinkage and Selection Operator (LASSO)

=  The minimum [,-norm, defined as [|x|1 = >_;_; |z:|, is convex and favors
sparse solutions (noiseless case y=Ax)

unique solution

sparse solutions does not
& have minimal l,-norm

e

>
~

multiple solutions

@

Matlab Demo

@ Universitat Bremen*
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Greedy Algorithms: Matching Pursuit

= |dea: Iteratively increase the support by the element x; with the highest
correlation to measurement y

= Orthogonal Matching Pursuit (OMP):

At = arg max |<rt 1,a]>|

1. Determine index =1,

2. Augment matrix of chosen element A=A aAtJ

3. Solve LS-problem Xt — arg m}ZnHY — Aux||s,
4. Calculate new residual re =y — Aixy

5. Repeat until K elements were chosen

= QOther variants exist, e.g., OLS, StOMP, ROMP, .

= Pros: Low complexity and fast execution

= Cons: Sparsity K has to be known / Proper stopping criteria have to be found
Highly sensitive to correlation properties of matrix A

Less sampling efficient

l@’ Universitat Bremen*
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Compressed Sensing

Problem: Recover X € R* from the m < n measurements in vector

y =Ax+n  (underdetermined linear system)

= where n is additive noise and A € R™ * " js given by the sparsity
= basis W (e.g. Fourier basis) and measurement matrix ® (e.g. identity)

A=V

Notation: dense signal z = WX, noise free measurement YN = PP¥x

Question: How to recover X from the under-determined equation system?

Assumptions:
= The signal x is sparse, but it is unknown which entries are non zero

(@’ Universitat Bremen*
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Why does it work and when does it work?

= (Coherence:

|<¢ki l|,J>|
1<k J<N x> ||‘|’J ”

= measures the maximum correlation between any two elements of @ and ¥

u(@,w) =

= can be checked in practice
= recovery of X with £;-minimization is exact, with probability exceeding 1 — 9, if

M>C-u*(®,%¥)-K - log(N/5)

[ Compressed Sensing only works well for low coherence u(®, ¥) }

Example: Fourier Basis W and random Subsampling by @ (Gaussian, Spike, etc.)

l@’ Universitat Bremen*
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Reconstruction Criteria and Guarantees

= Restricted Isometry Property (RIP): For each positive integer K = 1,2, ...
define the isometry constant §; of a matrix A as the smallest integer such

that , , ,
(1 =6 )IxIl5; < [|Ax]l5 < (1 + ) I3

holds for all K-sparse vector x € Ker(A)

= |sometry: “does not distort space”
= |f RIP of order 2K shall hold for §,x € (0,1/2] then M measurement are required

N
M=C -K-log(E)

Example: N=10000, K =20 2> M = 40 required

RIP is required for most reconstruction guarantees
- Random sub-gaussian distributed matrices!

l@’ Universitat Bremen*
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Applications of CS in Communications

Sampling of sparse Signals
= Sampling and transmission of sparse signals, e.g. sensor networks

Channel Estimation

= Consider tapped delay line with non-uniform delay distribution
—> sparse wireless channel in terms of delay

= Most wireless channels are sparse in sample clock

Spectrum Sensing
= Cognitive radio idea: find unused spectrum / time in which spectrum is free
= Either spectrum or the edges of spectrum in time and frequency are sparse

Sporadic Communication
= Traffic characteristic of machine type traffic leads to sparse detection problems

(@’ Universitat Bremen*
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Massive Machine Communication

= Today’s (cellular) systems (3G/4G)
= Designed for high data rate / large packets
= Access reservation and scheduling
= Control overhead is negligible vs. payload size

= Now: a new massive access problem
= Massive number of nodes (sensors, etc.)
= Typically low-data rates / small packets
= Control overhead for scheduling non-negligible

= Potential solution
= Reduce control signaling overhead by random access
= No control overhead, simply send data
= Major problem: user collisions!

@ Universitat Bremen*
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Sporadic Communication Scenario

sensor nodes

CS-MUD
= Random access: M2M uplink communication

Base Station (BS) sends a beacon to synchronize sensors and define slots
= Sensors send to a central Base Station using one or more slots

Sporadic Communication: users are sporadically active
= Event driven: e.g. a temperature threshold is met
= Periodically: e.g. regular energy measurement (smart grid)
= Non-orthogonal medium access scheme
= User signals interfere during transmission - Collisions!
= Signal processing to reconstruct user signals - Multi-User Detection (MUD)

@ Universitat Bremen*
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Compressed Sensing based Multi-User Detection

= Problem: How to recover sensor data and activity from observations?

sensor nodes

= Sporadic communication

= |nactive nodes “transmit” only zeros

= Active nodes transmit data symbols

- The multi-user vector is sparse

= |dea: Multi-user detection by Compressed Sensing exploiting sporadic activity
for joint activity and data detection

y=A -Xx+n

Ac CMx N js a known matrix fully describing the system and n is additive noise

@ Universitat Bremen*
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Differences to standard CS problems (1/3)

Sensor nodes

eeeeeeee

measurk

= A is actually not fully known!
= Propagation channel is part of A and has to be estimated!
= Unknown radio wave propagation modeled by channel H
= |f a sensor is not active, its channel cannot be estimated

= |n terms of common CS notation: A=PHWY

= Usually ®=I - no compression here
= Problem is under-determined because of ¥! - unusual for CS problems
= H and x unknown - bilinear CS / CS 3.0

@ Universitat Bremen*
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Differences to standard CS problems (2/3)

eeeeeeee

sensor signal

pinary di | o~ o | Xk symbols in
information | FEC i=’i Mod : complex plane

L non-zero elements in x are part of a codeword
= Communication systems use error correcting codes for robust communication

information information + parity

0100110111 — 010011011110001

= Structure that can be exploited, e.g. by iterative detectors/decoders
= Modulation: non-zero elements in x are not continuous

= Communication systems use discrete symbol alphabets
in the complex plane

= Can be exploited, but requires adapted algorithms x 1 x
= New quality measure required: symbol error rate (SER)

Alm
01 x 4+ XOO

,2Digital
CS”

10
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Differences to standard CS problems (3/3)

0S| Model
Data Layer

-( Appllcatlon )
Network Process to
Application
Presentation
Data Data representation
ncryption

n
Data ( Inte hoSs?gosrrl\?'\u itacion
Segments ( End- t r?qsgort?
( ) nd Reliability
Packets ( Pa trll\IDe't:vryn(l)\rl;L(lon )
nd IP (Logical addre:

Data Link

MAC and LLC
(Physical addressing) /

Host Layers

Frames

Media Layers

/7

——
-
-
-

-
-
-

measurement

M

Channel

sensor nodes

L@@ 1. = 1m
l—@lllgxg lljl—![k—i—f—‘—f—!—)
L@‘I’Sevs | mm 1 m,

Beacon

L@‘I’NmNIQD‘ — “D\‘ > slots

System context: higher layers are impacted by reconstruction
= CS theory mainly cares about perfect reconstruction and guarantees

= But: differentiation of support errors is required
Impact of False alarms / Missed detections

= Missed detection: lost sensor information & not recoverable, retransmission
= False alarm: misinformation = more processing at higher layers

CS algorithms are not designed to control either support error rate!

@ Universitat Bremen*
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Example: CDMA Transmission Model (UMTS)

Conv. Code

d; data of sensor k
Xk sensor specific symbols

(@’ Universitat Bremen*

BPSK Random spreading Toeplitz matrix
Im Gaussian channel
0 \){IZ H
Re \ N4 A \
—I_:_:_:_:_:_:_:_:}LI X}, . 4
Mod CDMA  T||channel Z
] H
B D—n
A |- - -—-—-—= J_| ————————————
dk i:i FEC | H—I,::::::::::::ﬁ A CS- y
1 gec. 1l Demod | Detector |°
Il - o :
ay |
Y  received vector
X  estimated (sparse) multi-user vector

Elk estimated data of sensor k
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Repetition: OMP

= |dea: Iteratively increase the support by the element x; with the highest
correlation to measurement y

= Orthogonal Matching Pursuit (OMP):

1. Determine index A = argjﬂ?%dwt—l’ a;)|
2. Augment matrix of chosen element A=A ay,]

3. Solve LS-problem Xt — arg m}ZnHY — Aux||s,
4. Calculate new residual re =y — Aixy

5. Repeat until .S elements were chosen

l@’ Universitat Bremen*
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Group Orthogonal Matsching Pursuit (GOMP)

o Initialize B(9) = . B(D} ={Ll,....K}, u=0, rl9 = y
o Repeat

o j{" = arg max 1 Z ‘A{Q}r{u_lw ACtIVIty
keB* b )l gevy(k) | Atar ], detection

o B™ =p™Y Uk and B =B™ Y \ k
g — AT E —(u —
[ G {w(sw}y]a"d Yo (m)} =9
or =y— Ad LS estimation
o Until stopping criterion is met

@ Universitat Bremen*
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Group Orthogonal Matsching Pursuit (GOMP)

o Greedy algorithm for block-sparse
reconstruction

o During iteration u:
@ Activity decision:
Select node k with highest average
correlation to residual r(*—
@ Data estimation:
Least-Square estimation for active set
@ Compute new residual r(®)

UOI1eJa} IST

o Conclusion:

o Decision for active set not re-evaluated
o Data estimation for entire active set

UOI1eIDY PUy,

-
L

active set

@ Universitat Bremen*
32



— l i —
Dept. of Communications Engineering

eeeeeeee

MAP-Detector with sparsity assumption

= |n communication: transmit vector x is defined over discrete, finite alphabet A

= Greedy algorithms (e.g. OMP) and Convex relaxation methods (e.g. LASSO) are
sub-optimal as they search over C»

= The best possible recovery of sparse signals of discrete, finite alphabets
under noisy measurements is the Maximum a-posterori (MAP) detector

= Proper model of the input distribution of x is required!

= Zero / Active and Non-Zero / Active entries have to modeled
= May be prohibitively complex for large systems!

= Augmented alphabet: Elements of x are taken from a finite alphabet .A which
includes the zero element, e.g. z,€ {-1,0,1} for a BSPK alphabet

@ Universitat Bremen*
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Sparsity Aware MAP-Detector

= Assume: Y = Ax+n wijth n € N(0,0;)
=  Sparsity aware MAP-detector

KMAP — arg max Pr(x|y) = arg min — InPr(y|x) — InPr(x)

xcA™
— arg xIél%HY — Axll% sparsity awareness

= with A =202 1In pa/1<|_j|“_1) , Where p_ is the probability that an element z; is not
zero

= LS optimization over finite alphabet with penalty \||x||o
= Penalty parameter X is related to the a-priori information of elements z,

= Algorithms: combinatorial search — extend Decision Directed Detector /
Sphere decoding by [,-norm

@ Universitat Bremen*
34



N ~th
— l i —
Dept. of Communications Engineering

Overloaded CDMA Transmission
Symbol Errors
= Parameters w.rt{-1,0,1}10°
= K=128 Users
= [=8 Symbols per User
= N=32 Spreading Sequence

= F=256 Frame Length in Chips \4\\0\

= (QObservations

e
= Underdetermined by factor 4, & 10
l.e., 4 times more users than
length of the spreading

sequence 10° \4\

v
/

= OMP ignores and GOMP ——OMP w
exploits block sparsity (L=8) X GOMP

= Exploitation of block sparsity 10° oraclg LS
improves performance 0 5 10 15 20
significantly Es / Ng

@ Universitat Bremen*
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Underloaded CDMA Transmission

= Parameters

= K=10 Users

= L=10 Symbols per User

= N=16 Spreading Sequence

= F=160 Frame Length in Chips
=  Observations

= Overdetermined System K<N 4 10

= OMP/GOMP show error floor

= Sphere Detection just as good 6 | —1—sphere

2 10 1 1
as OMP~ —O0-OMP ~—<
—+—GOMP

—*—oracle LS

5 0 5 10 15 20 25 30
E. /N,

7

Vs
£

@ Universitat Bremen*
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CS-MUD exploiting FEC with Iterative Feedback

ldea: Use information of FEC
to improve detection

Feedback
| L
y| cs |&iFT e g
= Detector _'|"| Demod ﬁ: oo —
1

Baseline / Classic Detection:

Receiver knows active nodes,

only data has to be estimated

Result:

CS-MUD nearly achieves
performance of scheduled
system (known activity)

@ Universitat Bremen*
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_____________________________________________________________________________

| Base CS Algorithm: GOMP, K=128 users, N=32 spreading sequence
'\ length, Activity probability 2%, BPSK symbols, Frames with 50
' information symbols, [5;7] convolutional code, 3 Feedback iterations
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Block correlation SIC (bcSIC) Channel

decoding

o Inspired by both SIC and GOMP

o During iteration u:

@ Activity decision:
Select node k with highest average
correlation to residual r(*—%

@ Data detection:
Least-Square estimation for node k,
followed by decoding

@ Update residual: Subtract interference
of node k from residual r(*—1

Difference to GOMP lteration

GOMP: Estimate entire set of active nodes
bcSIC: Estimate and decode one node
= bcSIC has lower complexity

@ Universitat Bremen*
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Comparison: GOMP vs. bcSIC

Best case: known activity

10-1 g | | E
= —8— GOMP .
- B- GOMP, best case ]
102 & —é— bcSIC g
- - 4= bcSIC, best case |
o B |
Lu _3 — —]
o 0T §
104 &= =
- \hn —< < E
— \ '\-‘q-' _ —
B V] T - - - - —?
10—5 | | \ | | |
—15 =10 —5 0 5 10 15

1 /o7 [dB]

A‘FSI;"IIX— = {]_""l, Pact = 002, Hﬁc —_— I,
K = 64 nodes, [ = 52
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Low SNR-range:

High SNR-range:

CS-MUD shows almost no

loss

bcSIC outperforms GOMP

bcSIC suffers from error

propagation
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Scalability of CS-MUD to keep FER performance

FER= 10
0.2 | | i | 7
—— GOMP G
E = BE= GOMP, best case R
o (0.15 |{ —a— bcSIC %
E - 4= bcSIC, best case
=
R
O 0.1+
o
Foy
S
= 0.05 .
a ,:f*:.@"
@
| | | | |

/02 =0dB, Hy =1, K = 64 nodes, L = 52
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0.1 0.15 0.2 0.25 0.3 035 0.4 0.45 0.5

spreading factor Ns / number of nodes K

CS-MUD detectors scales
gracefully with increased
activity probability
GOMP vs. bcSIC

= bcSIC outperforms GOMP

= bcSIC is of lower complexity
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Activity Errors

= SER/FER do not describe the complete behavior of the detector
= Activity model leads to zeros in estimated user data
=  Symbol and Frame Errors include bit as well as activity errors

= Error events of activity at PHY': Tk Tk
= Loss of data (Missed Detection/MD)
= Pseudo data (False Alarm/FA) | > i, c A

= CS algorithms and MAP do not consider these classes
= |Impact on higher layers is generally not the same
= Optimum trade-off may depend on higher layer processing

@ Universitat Bremen*
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Bayes risk detector

Ll — 0
= Approach: Minimize weighted
risk of erroneous activity

detection rr € A

R := Cr,Prob (z € Alz;, = 0) + CmgProb (2 = 0|z, € A)

# of non-zeros

- L 1—p C
%92 — ml)?elrjlolze”y — Ax||5 + 202 ||x]|pln (Qpa/Va) ) = UAE/I:

/

YT
= Tuning parameter Q JActivity cost”

Prefer activity | Prefer inactivity

Q<1 @ Q>1

MAP-Detector

@ Universitat Bremen*
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Bayes-Risk based activity detection

Missed Detections False Alarms

7 10° i i i | E
= —0— Q=100 =
| 10— Q=10 |
] 10—1 —A— 0 =1 .
R ——Q=0.1 .
E —— Q= 0.001
5 107 E
= 1077 E =
| 104 | /oj(\ | ]
35 0 5 10 15 20 25 30 35
1/0? in dB 1/06? in dB

= MAP detection Q) = 1 is not sufficient for CS-MUD

= Bayes-Risk approach allows to trade-off between both activity error events

= Low Missed Detection rate automatically increases False Alarm rate and vice
versa

@ Universitat Bremen*
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Neyman-Pearson Approach

= Main idea: Tightly control one activity error while minimizing the other
= Activity errors: False Alarm and Missed Detection

X' = argmin Pr (Fa) s.t. Pr(Md) <n

= Bounds the probability of MD to n minimizes the probability of FA

= Problem: Neither probability can be formulated in closed form
= Analytical solution not achievable
=  Approximation required

= Solution: Use soft-values for activity to estimate probabilites
1. Soft-value calculation, e.g. by activity-MAP
2. Estimation of probabilities (the more soft-values, the better)
3. Minimization by threshold finding algorithm
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Neyman Pearson results

= Standard MAP

No control over False Alarm (FA)
and Missed Detection (MD) rates

= Neyman-Pearson Approach:

No violation of MD constraint

MD constraint is over fullled for low
target rates

Overfitting in low SNR range

FA rate increases for lower MD
constraints

Unreliable LLRs lead to overfitting in
low SNR range

= (Conclusion

Allows perfect activity error control
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CS-MUD Channel Estimation Results

1071

= Main assumption:

= Random pilots for each packet

= EJ/Ngloss included: F'/ (F'+ Fp) 1072
= QObservations:

T T TTTTTT

= Small Fp: SER increase dominates 2 s |

= Large Fp: E/N, loss dominates #

= Qverall best choice here: Fp, =128 i ?ﬁ o
= % of frame length F 1074 | Fp =128

= Result E ?ﬁ zi?g

= Joint channel and activity estimation I perfect CSI
by Compressed Sensing algorithms 107 ; 0 5 20 25 30

= Asynchronicity included by maximum . Es/No indB
channel delay r,,,, = 20 chips | Base CS Algorithm: modified GOMP, K=64 users, random spreading

i Perf lost tlv SNR | Activity probability 2%, BPSK symbols, Frames with 8 information .
e_ ormance [ost mostly 0SS ' symbols, 3-tap Rayleigh fading channel with random delays up to 7.,
(pilot overhead) | = 20, exponentially decaying power > Asynchronous communication!
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Outlook

= CSin (wireless) communication scenarios is a hot research topic

= Joint Activity and Data detection by CS detectors is a promising approach for low
overhead communication

= Besides CDMA communication many other schemes can be applied (e.g. SC-
FDMA like in LTE)

= Many other areas are of interest: Decoding by CS, Channel Estimation, Radar
Signal Processing, ...
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