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Abstract—Machine-to-Machine communication requires new
physical layer concepts to meet future requirements. In previous
works it has already been shown that Compressive Sensing (CS)
detectors are capable of jointly detecting both activity and data
in multi-user detection (MUD). For this detection we propose a
new generalized Group Orthogonal Matching Pursuit algorithm
that allows the use of additional side information regarding
the sparsity structure. As a specific example, we exploit the
information of a sparsity-aware Viterbi decoder in an iterative
feedback loop to improve the activity detection. Here, a significant
improvement of the activity detection is already achieved by
executing only a single additional detection and decoding step.

I. INTRODUCTION

The field of wireless Machine-to-Machine (M2M) commu-
nication is expected to grow tremendously in the future. This
calls for new and adapted physical layer concepts, as system
requirements differ from common applications, such as high
data rate access. Uplink transmission in a sensor network, as an
example of a M2M communication application, is in general
characterized by a large number of sensor nodes that only on
occasion transmit a small amount of data, e.g., event driven or
time controlled. This type of transmission is called sporadic,
as each transmitter is inactive for most of the time.

A new detection paradigm developed in recent years is
Compressive Sensing (CS) [1], [2], which is gaining more
attention in the communication technology community. In
a nutshell, CS shows that, assuming a signal has a sparse
representation, this signal can be detected reliably even in
highly under-determined systems. Since sporadic multi-user
transmission can be interpreted as the transmission of sparse
multi-user signals, we can apply CS detectors for multi-user
detection (MUD), which is shown for a CDMA transmission
in [3]–[5]. The main advantage of this CS MUD is that a
joint detection of both node activity and transmitted data is
performed, reducing the need to signal node activity. This
property is especially beneficial for sensor nodes, where it
can improve battery life or reduce complexity.

The previous research on CS MUD was primarily focused
on symbol level detection without taking channel coding into
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Fig. 1. Sensor node transmitter model of sensor k

account. In this paper, we investigate how the presence of a
channel decoder can be exploited to improve the physical layer
activity detection. More specifically, we introduce a weighted
version of the Group Orthogonal Matching Pursuit (GOMP)
algorithm [6] and use this algorithm in an iterative feedback
loop, which exploits the information from the channel decoder
to improve activity detection.

II. MACHINE-TO-MACHINE SCENARIO

We consider a M2M scenario, where K sensor nodes com-
municate with a central aggregation node, typically denoted as
a star topology. Additionally, the transmissions from the sensor
nodes are sporadic, i.e., the sensor nodes are only active on
occasion. As a model for sensor node activity, we assume that
each sensor node is active for a short time period with a given
activity probability pa. Further, we assume that this activity
probability is identical for all sensor nodes and rather small,
i.e., pa � 1. For a large number of nodes K this is a valid
assumption for practical applications.

The basic transmitter setup of the sensor nodes is depicted
in Fig. 1. We assume that an active node ka transmits a
data frame of NB information bits bka ∈ {0, 1}NB . For
simplicity, we assume that all nodes transmit the same number
of information bits NB, while the system could easily be
adapted to model unequal information bit sizes. For error
protection, the information bits are encoded by a channel code
of code rate RC, yielding code word vector cka ∈ {0, 1}NC .
After random interleaving, the code bits are mapped to BPSK
symbols yielding a symbol vector dka ∈ ANC that contains
the symbols of a frame, where A denotes the BPSK alphabet.
The restriction to BPSK just simplifies the notation without
loss of generality, and other modulation schemes can easily
be applied. Due to the restriction to BPSK, we will consider
a real-valued model. As an inactive node ki does not transmit
any data, we model the transmitted symbols as zero symbols,
i.e., dki ∈ {0}NC . Thus, each sensor transmits frames of
NC consecutive symbols either drawn from the modulation
alphabet A or that are all zero.

In general, the received vector y at the aggregation node



Algorithm 1 Weighted Group Orthogonal Matching Pursuit
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can be written as a multi-user model with

y = Ax + n , (1)

where the matrix A ∈ RM×KNC models the various influences
on the transmitted signal x and n ∈ RM is real-valued
AWGN noise N

(
0, σ2

n

)
. The vector x ∈ AKNC

0 contains the
data from all nodes, i.e., it is the stacked vector of all node
frames dk. Here, A0 is the so-called augmented alphabet
A0 = {A ∪ 0}, which is the BPSK alphabet A augmented
and extended by the zero symbol to indicate inactivity. The
measurement dimension M depends on the system setup and
the channel access technology being used.

III. COMPRESSIVE SENSING

The theory of Compressive Sensing (CS) is focused on
the recovery of sparse signals even from under-determined
equation systems [1], [2]. Ideally, this reconstruction is done
by solving non-convex optimization problems. As this is NP-
hard, convex relaxations are considered instead, e.g., [7].
In addition to convex optimization, several algorithms have
been proposed to efficiently determine a good estimation of
the convex solution, e.g., iterative thresholding or greedy
algorithms.

In this paper, we will focus on CS detection using greedy
algorithms. These algorithms are in general more efficient, but
less accurate than solving the convex optimization problem.
While the Orthogonal Matching Pursuit (OMP) algorithm [8]
is a commonly used greedy algorithm, it is not well suited for
our scenario. This is due to fact that node activity is constant
for a frame, and thus all symbols from one node are either all
zero or non zero, i.e., dk ∈ {ANC ∪ 0NC}. This property is
called block-sparse or group-sparse, where group k is given by
the position of the symbols dk in x. The Group OMP (GOMP)
[6], one of the variants of the OMP, makes use of this property
and is therefore better suited. In order to improve the detection
performance further, we modify the GOMP such that we can
use side information to improve the activity detection.

A. Weighted Group Orthogonal Matching Pursuit (wGOMP)

In order to discuss the weighted GOMP (wGOMP), we
first explain the notation: G is a set of group-indices and
G the complementary set. Γ(k) specifies the vector-indices
corresponding to group k and Γ(G) specifies the vector-indices

corresponding to any group in G. AΓ(G) specifies the columns
with vector-indices in Γ(G), i.e., Aj specifies the jth column,
and xΓ(G) the corresponding elements of x. Additionally,
x`, A` and G` specify the respective variable during the `th

iteration. Herein, A† is the Moore-Penrose pseudoinverse of
A, and AH the Hermitian matrix of A.

The wGOMP, given in Algorithm 1, iteratively determines
the support of x, i.e., the location of the non-zero symbols.
During each iteration the wGOMP determines the group kmax

that has the highest average correlation to the previous residual
r`−1. Afterwards, the wGOMP calculates a new least-square
(LS) estimate for x̂, based on the current and all previous
group choices, and updates the residual r`. For simplicity
we assume that the algorithm is terminated after a number
of iterations equal to the number of active nodes Ka. For
implementation, an appropriate termination criterion needs to
be found that is well suited for the current system.

The wGOMP modifies the GOMP by introducing weights
wj for each correlation in the group selection step. These
weights wj promote the choice of nodes that are likely active
due to side information, even though they may have low
correlation. The weights wj are set based on the available
information in the system, e.g., activity in previous transmis-
sions. As the weights are dependent on the system setup, we
will discuss further details for an exemplary system in the next
section.

IV. CDMA CHIP-RATE SYSTEM MODEL

It has been shown that CS is able to perform MUD for the
CDMA chip-rate model written as a multi-user problem in (1)
[4]. Therefore, we will use CDMA as a technique to facilitate
sporadic and simultaneous medium access. For simplicity,
we assume a synchronous CDMA uplink transmission with
Pseudo Noise (PN) sequences, where the spreading factor NS,
i.e., the number of chips per information symbol, is identical
for all sensor nodes. Here, we assume that PN sequences are
constant for a frame. Other medium access schemes are also
possible, but those are beyond the scope of this paper.

Based on [9], the multi-user CDMA chip-rate model can be
written in the form of (1), where the measurement dimension
M is given by NSNC. Thus, A ∈ RNSNC×KNC models the
spreading, and the channel influences. As a channel model,
we assume that the spread symbols are distorted by a node
specific frequency selective channel hk ∈ RLh of length Lh,
which is constant for a whole frame. The chip-rate model
(1) includes ISI (Inter-Symbol-Interference) within one frame,
due to frequency selective channels. For simplicity, we do not
capture frame start and end processing in this model. Thus,
we omit the last Lh − 1 received values and set the model to
contain only NSNC measurements.

A. Detection Model

As the size of the multi-user vector x is given by KNC,
the computational complexity quickly gets prohibitive for
larger code word sizes NC or many nodes K, necessitating
a restricted model for detection purposes. Therefore, (1) is
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Fig. 2. Detection structure at the aggregation node. Interleaver included in the decoder block for space reasons.
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Fig. 3. Example for division into sub-problems. Dark grey coefficients are
used in the first sub-problem and light grey coefficients are used in the second
sub-problem. White coefficients in A are omitted in sub-problems.

divided into ν = 1, . . . , NC/L sub-problems, each consider-
ing L consecutive transmit symbols per node, as shown in
Fig. 3. Each sub-problem is determined by the system matrix
Aν ∈ RNSL×KL, which is the same for all ν, as both PN
sequences and channels are assumed to be constant for an
entire frame. In order to simplify the detection model, we
neglect the ISI between sub-problems in the detection, as
indicated by omitting the white coefficients in Fig. 3. The
transmit vector xν ∈ AKL0 summarizes L transmit symbols
for each of the K nodes in the ν th sub-problem as

xν = [d1,L(ν−1)+1, . . . , d1,Lν , . . .

, dK,L(ν−1)+1, . . . , dK,Lν ]T . (2)

The sub-problem dimension L is chosen in the system design,
and defines a tradeoff between reduced complexity and higher
detection accuracy.

For improved performance of the CS detection, the system
matrix is normalized to have unit-norm columns prior to
detection, as explained in [10].

B. Applying wGOMP

In this system example, we assume that there is no correla-
tion in node activity between transmissions and that the only
a-priori information is that each node is active with probability
pa. If there is correlation in activity or other additional
information, the initial weights need to be set accordingly.

To improve the detection, the wGOMP is used in an iterative
feedback loop as shown in Fig. 2. During the first cycle, an
initial wGOMP with weights wj = 1 ∀j is applied, which is
identical to applying GOMP. Then the results of the individual
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Fig. 4. Trellis diagram for a sparsity-aware Viterbi detector.

sub-problems are sorted and stacked by nodes, and quantized
to d̂k ∈ ANC

0 for each node. Afterwards, the channel decoder is
used to estimate the probability that a given node was active.
This information is then mapped to weights wj , which are
used in the wGOMP detection of the following cycle. As this
feedback promotes the selection of the overall activity pattern
in each sub-problem, the feedback cycles converge. Thus, this
iterative feedback continues until either a maximum number of
cycles is reached or the process has converged, as indicated by
a sufficiently small difference in weights between the current
and the previous cycle.

To determine the exact probability that a node was active
using soft-decoding of the channel code, we need to know the
soft values regarding the activity for each symbol. While we
can calculate the soft values for symbols detected as active,
there is no information about how reliable symbols are, which
were detected as inactive. The reason for this is that the
wGOMP returns hard-decisions regarding the node activity,
i.e., inactive symbols are always zero, regardless whether the
node had a high or a low correlation. Therefore, we cannot
use soft-decoding to determine activity probabilities.

A good approximation can be calculated using a hard-
decision Viterbi decoder. This detector is already capable of
handling erasures, i.e., active symbols that were detected as
inactive, within the code word, but does not consider the case
that the node was inactive for the duration of the code word.
Therefore, we expand the Viterbi decoder to not only compute
the Euclidean distance ξC of the most likely code word, but
also the Euclidean distance ξε for the erasure hypothesis. More
specifically, ξε is the distance to the all erasure word in BPSK
notation, i.e., ξε(d̂k) = ‖d̂k‖2, which gives an indication
how likely node k was inactive. The decoder then chooses
the hypothesis with the smaller Euclidean distance. We call
this decoder the sparsity-aware Viterbi decoder, shown in
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Fig. 4. With these Euclidean distances as side information,
we compute the weights wj indicating the activity probability
as

wj = 0.5 +
ξC
(
d̂k
)
− ξε

(
d̂k
)

2NC
∀ j ∈ Γ(k) . (3)

Since the Euclidean distances are in the range of 0 to NC, due
to quantization, the normalization with 2NC ensures weights
wj in the range of 0 to 1. Using the information of the decoder
we can only compute weights per node, as the decoder only
has information on the code word level.

V. SIMULATION RESULTS

In this section, we will discuss simulation results for the
wGOMP in the iterative feedback structure described in Fig. 2,
and compare them with simulation results for OMP and
GOMP. The wGOMP was executed with up to five feedback
cycles, unless otherwise noted. Additionally, the symbol error
rate (SER) for the best case performance, and thus the lower
bound for these algorithms, is given by least-squares estima-
tion for a known support of xν . We call this ideal detector
oracle LS.

As a simulation setup, we focus on the CS detection in
an overloaded CDMA system. More specifically, we consider
a transmission from K = 128 sensor nodes, where each
node transmits using a PN sequence of length NS = 32,
and thus the system is overloaded by a factor of four. Unless
otherwise noted, we assume that sensor nodes are only active
with a probability of pa = 0.02, such that the number of
active nodes is on average much smaller than K. Furthermore,
the frame length is NC = 104 symbols using a standard
terminated [7; 5]8 convolutional code (code rate RC = 1/2,
constraint length LC = 3). The channel is modeled by Lh = 6
i.i.d. Rayleigh distributed taps with an exponential decaying
power delay profile. The CS detection uses L = 8 consecutive
symbols per sub-problem.

The SER over the augmented alphabet A0 contains both
errors due to incorrect activity detection and errors due to
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Fig. 6. Symbol Error Rate for a range of activity probabilities
pa = 0.01, . . . , 0.1 and fixed Es/N0 = 8dB.

incorrect data detection. Fig. 5 shows that the GOMP has a
lower SER than the OMP for the entire SNR region, as it
uses the information that each node is active for an entire
sub-problem during the detection. Additionally, the results
in Fig. 5 show that the wGOMP is able to further improve
on the performance of the GOMP by iterative feedback of
frame activity information based on channel decoding. When
comparing the wGOMP to the oracle LS, we can see that
the wGOMP converges on this lower bound in the high SNR
region. This comparison also indicates that the errors of OMP,
GOMP and wGOMP are primarily activity errors.

In addition to these SER results, Fig. 6 shows the SER
of the detectors for fixed Es/N0 = 8dB and a range of
pa = 0.01, . . . , 0.1. Here, the main observation is that
wGOMP scales slightly worse with pa than GOMP. The reason
for this is that subsequent wGOMPs in the iterative feedback
loop are based on the performance of the initial GOMP, and
a worse performance for the GOMP also means less reliable
information for the weights.

On the symbol level, there are two types of activity errors.
On the one hand errors for estimating an active symbol
as inactive, called missed detection, and on the other hand
estimating an inactive symbol as active, called false alarm. For
both the Missed Detection Rate (MDR) and the False Alarm
Rate (FAR) shown in Fig. 7 results indicate similar behavior
as for the SER. The GOMP has a better performance than the
OMP for the entire SNR region, and especially for high SNR.
The wGOMP improves on the performance of the GOMP by
approximately 4dB.

It should be noted that the main drawback of the wGOMP
is a longer runtime than the GOMP. The relative runtime of
the wGOMP compared to the GOMP is proportional to the
number of feedback cycles necessary for convergence. Fig. 7
shows a comparison of performing two feedback cycles and
the previous setup of performing up to five feedback cycles,
denoted as wGOMP. These results show that by executing only
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(dashed).

one additional wGOMP detection after the initial detection,
the activity detection performance is almost fully converged.
Therefore, we only need to execute more than two feedback
cycles in the high SNR region and for very low error rates.

On the frame level, the activity is decided by the sparsity-
aware Viterbi decoder. Fig. 8 shows the Frame Missed Detec-
tion Rate (FMDR) for the detectors. When comparing these
results with the symbol level MDR in Fig. 7, we see that
both the OMP and the GOMP have slightly lower error rates
at the frame level. The reason for this is that each sub-
problem perceives a different noise realization, and therefore
the symbol level errors will be distributed differently among
nodes in each sub-problem. Therefore, it is less likely that
these errors cause the entire frame to be decided as inactive.
For the wGOMP we can note that the FMDR is not only lower
than both the OMP and GOMP, but also equal to the MDR in
Fig. 7. The reason for this is that the wGOMP enforces the
frame level behavior on the symbol level, and thus promotes

correlation in the errors.
For the Frame False Alarm Rate (FFAR), also shown in

Fig. 8, it should be noted that for the OMP and the GOMP no
FFAR could be measured in our simulation of 105 code words.
Thus, we can only state that the FFAR of the OMP and GOMP
are lower than the FFAR of the wGOMP. This is due to the
distribution of the false alarm errors among the different nodes,
such that each of those nodes has a low probability of causing
a frame error. For the wGOMP, we can note the same behavior
as for the FMDR, i.e., the FFAR is identical to the FAR. This
means, that a drawback of the wGOMP is an increased FFAR.
However, how severe this drawback is depends on the error
handling at the higher layers and on the system design.

VI. CONCLUSION

In this paper, we investigated CS MUD using greedy algo-
rithms in a M2M context. We introduced the weighted GOMP
(wGOMP) detector as a new CS detector that is based on the
GOMP. By exploiting side information determined by sparsity-
aware Viterbi decoding in an iterative feedback loop we were
able to show that the activity detection of the wGOMP is
significantly improved compared to a GOMP. In the high SNR
region, the wGOMP even converges on the lower SER bound,
while only requiring one additional greedy CS detection for
this performance. In future works, it should be investigated
which stopping criterion performs best in regard to a wGOMP
used in such a feedback loop.
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