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Abstract—Implementation of radio access network func-

tions on centralized cloud platforms is envisioned for on-
demand provisioning of computing resources in mobile net-
works. In principle, this allows for more advanced algorithms 
and offers the ability to balance the computational load, but 
also imposes challenges on the design of the applied algorithms. 
In this paper, we analyse the implementation of decoding algo-
rithms on general purpose hardware, as decoding draws the 
main computational burden of signal processing in the uplink. 

I. INTRODUCTION 
For the evolution towards 5G mobile networks several 

technologies are currently investigated. The dense deploy-
ment of small cells in combination with (partly) centralized 
processing is one promising candidate. In centralized radio 
access networks (C-RAN) part of the digital baseband pro-
cessing is shifted from the radio access points (RAPs) to a 
central processing unit. Although this allows for efficient 
resource usage and advanced multi-cell algorithms, dedicat-
ed and special hardware like DSPs is still required [1]. As a 
long term goal, the deployment of cloud computing plat-
forms running on general purpose hardware (GP-HW) lead-
ing to Cloud-RAN systems would be more beneficial [2].  

In cloud platforms the required computational resources 
are provided on-demand by introducing the concept of virtu-
alization. Thus, Cloud-RAN will allow deploying algorithms 
that scale with the current needs and leverage massive paral-
lelism. On the other hand, cloud-implementations also im-
pose challenges for implementing baseband processing on 
GP-HW due to the tight constraints caused by the protocol 
stack of mobile communication standards. For example, in 
3GPP LTE the hybrid automatic repeat request (HARQ) pro-
cess requires to execute all physical processing of codewords 
within 3 ms [3]. Due its complexity, this poses a significant 
challenge especially for FEC decoding which is usually im-
plemented on specialized hardware such as ASICs or 
FPGAs. In order to meet the stringent requirements on data 
rates, cloud-based FEC decoders will need to fully exploit 
the available parallelism of a cloud-computing platform. In 
this context, Low Density Parity Check (LDPC) and Turbo 
Codes (TC) are two promising candidates because both allow 
for accommodating various degrees of parallelization. 

In this paper, we discuss the challenges of cloud-
implementation of FEC decoders and present current results 
for implementing message passing algorithms for LDPC 
codes and for implementing LTE Turbo Decoder. 

II. IMPLEMENTATION OF DECODING ALGORITHMS 

A. Parallel Decoding on Multiprocessor Platforms 
Two main approaches can be used to exploit parallelism 

in multiprocessor/multicore platforms as visualized in Fig. 
1. First, fully or partially parallel decoders can be imple-
mented through the use of concurrent threads, with every 

processor or core executing a separate thread. The efficiency 
of such a parallel implementation depends also on the de-
gree of parallelism allowed by the implemented algorithm. 

 

Fig. 1. Two approaches to exploit parallelism in multiprocessor platforms 

The second approach consists of using multi-codeword 
decoders, with each processor running a separate image that 
decodes a different codeword. Both approaches allow in-
creasing the throughput, although in two different ways: the 
first by reducing the latency per decoded codeword, the sec-
ond by increasing the number of codewords decoded within 
the same latency period. In addition, both approaches can be 
combined, depending on the implemented algorithm and the 
specific characteristic of the computing platform. 

B. LDPC decoder 
This section presents experimental results on the achievable 
throughput of software-based LDPC decoders. Due to com-
putational complexity and convergence speed reasons, the 
Min-Sum decoder with layered scheduling has been chosen 
for our investigation. In order to assess the achievable 
throughput on GP-HW, a C++ implementation of a multi-
codeword decoder has been carried out. Multithreading was 
implemented by using Message Passing Interface (MPI) and 
Open Multi-Processing (OpenMP) directives. The maximum 
number of decoding iterations has been set to 20. The decod-
er stops when whether a codeword have been found (syn-
drome equal zero) or the maximum number of iterations is 
reached. In particular, the average number of decoding itera-
tions decreases with increasing SNR, or equivalently, with 
improving error correction performance. The performance of 
the Min-Sum decoder for WiMAX LDPC codes with rate 1/2 
and 5/6 is presented in Table I, in terms of required SNR for 
a target frame error rate (FER) of 10-2 and 10-4 (QPSK modu-
lated A). The corresponding average number of decoding 
iterations is also shown in the table. 
Table I: Required SNR and average number of decoding iterations for target 

FER of 10-2 and 10-4  

Required SNR Ave Iter Nb Required SNR Ave Iter Nb

LDPC@rate 1/2 2.1 dB 6.9 2.5 dB 5

LDPC@rate 5/6 5.9 dB 4 6.3 dB 2.8

Target FER = 10-2 Target FER = 10-4

 
 The Min-Sum multi-codeword decoder has been run on 
two Intel Xeon x5650 @2.67GHz processors, each one com-
posed of 6 physical cores. Each physical core is further com-



posed of 2 logical cores, which leads to a total of 24 logical 
cores divided in two processors. 

 
Fig. 2. Average Throughput as function of the number of cores,  

Threads decoding different codewords are synchronized, 
in the sense that they all start in same time and wait for the 
slowest one to complete decoding (since codewords decod-
ed by different threads can take a different number of de-
coding iterations). The average throughput, as function of 
the number of cores is presented in Fig. 2 for SNR values 
reported in Table I. The throughput is expressed as number 
of useful (information) bits per second. The difference be-
tween rate-1/2 and rate-5/6 throughput is explained by (i) 
the faster convergence of the rate-5/6 decoder, which results 
in a reduced average number of decoding iterations, and (ii) 
the increased number of information bits for each decoded 
codeword. It can also be observed that the achieved 
throughput significantly increases when the FER improves 
from 10-4 to 10-2, corresponding to an SNR increase of about 
0.4 dB. For an SNR of 6.3 dB (FER = 10-4), the rate-5/6 
decoder achieves an average throughput of 140 Mbits/s, by 
decoding 22 codewords in parallel (22 logical cores are 
used). 

C. LTE Turbo Decoder 
In order to assess the computational diversity offered by 

multi-core implementations we present experimental results 
for spectral efficiency and required computational com-
plexity of an 3GPP LTE uplink decoder. The turbo decoder 
has been implemented on a default VMWare ESXi server 
with Ubuntu Linux host operating system, GNU C++ com-
piler, and codeword multi-threading in order to account for 
the virtualization overhead. We measured the required CPU 
time to decode one codeword and determined the average 
CPU time within the 90% confidence interval. 

 
Fig. 3. Spectral Efficiency achieved for turbo decoding on GP-HW 

Fig. 3 shows the achievable spectral efficiency for a given 
SNR (AWGN, no fading) and target block error rate 
BLERtar = 0.01 for two cases: maximum throughput and low 
complexity by limiting the number of iterations to 2. Obvi-

ously, reducing the complexity results in a performance 
penalty of 1-2 dB.  

 
Fig. 4. Required number of CPU cores for turbo decoding on general 

purpose hardware 

In Fig. 4, we show the required computational resources 
for a 10MHz 3GPP LTE system. The required complexity 
strongly depends upon the SNR. Firstly, it increases linearly 
with the number of information bits which implies a loga-
rithmic increase of complexity in SNR. Secondly, the com-
plexity increases with the number of iterations that are nec-
essary to decode a codeword. Markers show the SNR where 
the next higher MCS has been chosen. We can notice at 
each of these markers an increase of the computational de-
mand which is then quickly decreasing in SNR. Apparently, 
this strongly varying computational demand allows for ex-
ploiting multi-user computational diversity at the centralized 
processor. For instance, computational load balancing 
across multiple users to reduce the ratio of peak to average 
computational efforts can be performed or the computation-
al demand can actively been shaped by selecting MCS to 
satisfy a computational constraint. 

III. CONCLUSION AND OUTLOOK 
Cloud-RAN offers massive parallel computing and al-

lows for computational load balancing. We present through-
put and complexity results for decoder implementations on 
commodity hardware and point out design criteria that allow 
for flexible load balancing. 
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