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Abstract—In a dense small-cell (SC) network with several users
to be served, a multi-user detection (MUD) can be employed
across SCs, and distributed estimation is a promising technique
for such a scenario. Nevertheless, large communication overhead
due to frequently exchange of variables among SCs will cause
high energy consumption and processing latency. This paper is
focused on the reduction of communication overhead for the
distributed processing. To this end, two algorithms, Augmented
Lagrangian based Cooperative Estimation (ALCE) and Priority-
aided ALCE (PALCE) will be presented. In ALCE a new efficient
approach is adopted to achieve parallel processing among all
SCs, which needs fewer variables to be exchanged. Thus, a
considerable amount of overhead will be saved. However, the
ALCE algorithm is not robust when applied to a network
with erroneous backhaul (BH) links, therefore a variant of this
approach termed PALCE is proposed using a priority oriented
principle to enhance the robustness and maintain low amount of
information exchange. The proposed algorithms are investigated
by means of error rate and communication overhead showing
significant improvement in estimation performance compared to
state of the art algorithms.

I. INTRODUCTION

Recently, extensive deployment of small cells is becoming
a growing trend to extend wireless service coverage and to
increase network capacity for mobile communication systems.
In such a dense deployment, the coverage areas of neighboring
SCs might be overlapping within the same frequency resources
and, correspondingly, interference needs to be coped with.
Therefore, a joint detection of messages from several users
(UEs) can be performed in these dense SC networks for
uplink (UL) transmission. A possible way for a MUD is that
each SC forwards the raw base-band receive signals to a
central entity, e.g., a C-RAN deployment [1] to accomplish
the centralized processing. However, the central processing
usually requires long distance transmission to the central node.
Thus, in order to overcome this weakness, an alternative is
to apply distributed processing exploiting cooperation among
SCs by sharing information through rather short low-cost
wireless transmission links. Several algorithms like the Dis-
tributed Consensus on Demodulated Symbols (DCDS) [2] and
the Distributed Consensus-based Estimation (DiCE) [3] adapt
the Alternating Direction Method of Multipliers (ADMM)
[4] technique to accomplish the distributed estimation, and
in [5] both algorithms have been applied to the scenario
of erroneous inter-node links. Furthermore, considering the
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Fig. 1. Small-cell network where NSC SCs detecting NUE mobile users. Each
SC receives messages xu and exchanges information with neighboring SCs.

high inter-node communication overhead produced during the
iterative processing, some algorithms [6], [7] based on [3] have
been proposed to reduce the communication effort.

In this paper, we aim to improve the communication
efficiency and reduce the computation complexity for the
distributed estimation. Thus, we propose the new algorithm
ALCE by adapting another numerical approach, i.e., the Aug-
mented Lagrangian Multipliers (ALM) method for distributed
processing, which needs fewer variables to be exchanged com-
pared to the ADMM-based algorithms [2]-[8]. Additionally,
we also consider the erroneous inter-node link scenario, and
correspondingly we further propose variant approach PALCE
to enhance the system robustness by increasing the communi-
cation effort a little, but keeping the improvement in overall
performance. Principally, both algorithms can be applied to a
general cooperative network, but here we apply the algorithms
to a small cell network.

The remainder of this paper is structured as follows: The
system model and the investigated scenario are introduced in
Section II. The considered algorithms ALCE and PALCE are
derived and discussed in Section III. In the subsequent Section
IV, simulation results of the proposed algorithms are analyzed
considering different BH topologies and link conditions. The
paper is concluded in Section V.

II. SYSTEM MODEL

Fig. 1 shows a small cell network where NSC SCs are
serving NUE users. This network of nodes is described by



a geometric graph G := {J , E}, in which J := {1, ..., NSC}
denotes the set of nodes and E represents the set of (directional
or bidirectional) edges for the linked nodes. For exchanging
information, each node j ∈ J can only communicate with
its neighboring nodes i ∈ Nj ⊆ J through inter-node links,
where both ideal and erroneous links are considered in this
paper.

In this scenario, each UE is assumed to use NT antennas to
transmit a data vector xu ∈ ANT×1 containing symbols from a
modulation alphabet A. The transmitted data per time instant
from all NUE users can then be constructed into a stacked
vector x =

[
xT
1 , · · · , xT

NUE

]T
containing NI = NT ·NUE system

input components. Those messages are received by individual
SCs equipped with NR receive antennas, and the corresponding
observation yj at SC j can be formulated as

yj =
NUE∑
u=1

Hjuxu + nj = Hjx + nj (1)

where Hju ∈ CNR×NT is the channel matrix between UE
u and SC j, and Hj ∈ CNR×NI is a stacked channel ma-
trix Hj =

[
HT

j1, ..,HT
ju, ..,HT

jNUE

]T
. The complex additive

Gaussian white noise vector nj contains elements with zero
mean and variance σ2

n. In general, each SC can perform local
estimation for x based on the local observation. However, the
local estimations may vary from SC to SC because of different
transmission conditions, and it is possible that the message
cannot be properly estimated due to a badly conditioned
system of linear equations (e.g., NI > NR) [7]. Therefore,
a joint estimation based on global knowledge over the whole
network can achieve a better estimation performance.

In general, one alternative way to recover the UE messages
x in (1) is that each SC j forwards its local observation yj
and channel information Hj to a central node performing
centralized least square (LS) estimation

x̃ = arg min
x′∈CNI

‖y−Hx′‖2 (2)

with the stacked observation vector y =
[
yT
1 , ..., yTNSC

]T
and

the stacked channel matrix H =
[
HT

1 , ...,HT
NSC

]T
achieving an

overall NO × NI MIMO system with NO = NR ·NSC output
signals per time instant. The solution is given by the Zero-
Forcing (ZF) linear equalizer

x̃ZF = (HHH)−1HHy = H+y , (3)

obtaining the central solution of estimate x̃ZF by filtering the
observation vector y with the Moore-Penrose pseudo inverse
of the stacked channel matrix H+ = (HHH)−1HH.

Although it is beneficial to achieve the joint estimate at
a central entity instead of local estimations at separate SCs,
the local observation yj and channel information Hj have
to be delivered to a central node through BH links that are
likely to span a long distance. To avoid the long distance BH
transmission, the centralized LS problem can also be solved
in a distributed fashion by reformulating the problem (2) into

set of separate LS problems over xj parallelized among nodes
with pairwise consensus constraints:

{xj , j ∈ J } = arg min
x′j∈CNI

NSC∑
j=1

∥∥yj −Hjx′j
∥∥2

s.t. xj = xi, ∀i ∈ Nj ,∀j ∈ J
(4)

In such way, the joint estimation over all SCs can be achieved
distributedly, and the system becomes more flexible compared
to the central node processing.

III. DISTRIBUTED ESTIMATION SCHEMES

A. ADMM-based Algorithms

The ADMM technique was applied, e.g., in [2] and [3] to
solve the LS problem (4) in a distributed fashion, fulfilling
the consensus constraint that the estimate xj at SC j equals
the estimate xi at SC i, i.e., xj = xi. In [2], the DCDS
algorithm uses auxiliary variables zji and z′ji to decouple
the constraint directionally, i.e., xj = zji, xi = −z′ji, and
zji = −z′ji, enabling the SCs to update estimates in parallel.
In [3] the DiCE algorithm was proposed, showing improved
performance. It uses only non-directional auxiliary variables
zj at SC j to decouple the constraint as zj = xj , and xi = zj .
Both algorithms follow the ADMM update sequence that can
be implemented distributedly among SCs. Considering DiCE
as an example, the update equations for estimate xj , auxiliary
variable zj and Lagrangian multipliers λji at SC j in iteration
k are given by [8]

zkj =arg min
zj
Lj(zj ; xk−1i ,λk−1

ij ) (5a)

λk
ji =λk−1

ji − 1

µ
(xk−1

j − zki ) (5b)

xk
j =arg min

xj
Lj(xj ; zki ,λ

k
ji), i ∈ Nj ∪ {j} (5c)

where Lj
1 is the Lagrangian function of local SC j detailed in

[3]. Due to the iterative processing, those variables are required
to be exchanged between neighboring SCs for each iteration,
leading to high communication overhead [8]. Correspondingly,
in order to reduce the overall communication effort, the
exchange of some variables can be avoided. Thus, in the
following we will apply the ALM method [9] to solve the
LS problem (4), leading to our novel algorithms ALCE and
PALCE, in which no auxiliary variable is required to decouple
the constraint leading to the reduction of the communication
overhead and improvement of the estimation performance.

B. ALCE Algorithm

Consider a general convex optimization problem:

minimize f(s) (6a)
subject to As = b (6b)

where f : Cn×1 → C is a convex function and vector s ∈
Cn×1 follows the constraint (6b) in a relation with matrix A ∈

1In this paper, we define that the variable before the semicolon in a La-
grangian cost function is under optimization, e.g., xj in Lj(xj ; zki ,λ

k
ji), j ∈

J , while the arguments after the semicolon are fixed, e.g., zki ,λ
k
ji.



Cp×n and vector b ∈ Cp×1. The constrained minimization
problem can be solved by ALM method setting the derivative
of the Augmented Lagrangian (AL) function [10] w.r.t. s to
zero and solving for s. The AL function is given by

L(s,λ) = f(s)− λT(As− b) +
1

2µ
‖As− b‖2 (7)

with the Lagrangian multipliers λ ∈ Cp×1 and penalty param-
eter µ which can be chosen properly according to the object
function (the choice depends on e.g., Hj in (4)). Here, without
loss of generality, we set µ = 1 in following algorithms.

The ALM method is then applied to solve the constrained
LS problem (4), where the objective function still maintains
the convexity [11]. Considering the constraint xj = xi in
(4), the general term λT(As − b) in (7) can be expressed as∑NSC

j=1

∑
i∈Nj

λT
ji(xj − xi). Correspondingly, the AL function

can be rewritten as

L(x,λ) =1

2

NSC∑
j=1

‖yj −Hjxj‖2 −
NSC∑
j=1

∑
i∈Nj

λT
ji(xj − xi)

+
1

2µ

NSC∑
j=1

∑
i∈Nj

‖xj − xi‖2 (8a)

=

NSC∑
j=1

(
1

2
‖yj −Hjxj‖2 −

∑
i∈Nj

λT
ji(xj − xi)

+
1

2µ

∑
i∈Nj

‖xj − xi‖2
)

(8b)

=

NSC∑
j=1

Lj(x,λ) (8c)

where x and λ denote the sets of all variables xj and λji

respectively. Thus the AL function L(x,λ) in (8a) is de-
composed into several AL sub-functions Lj(x,λ) in (8c) that
can be implemented separately at each individual SC j. Note
that, the consensus constraint still needs to be decoupled for
distributed parallel processing. But instead of using auxiliary
variables like in [2] or [3], the decoupling can be done by
matching the local estimate xk+1

j of SC j at iteration k + 1

with the neighboring estimate xki from the last iteration k,
i.e., xk+1

j = xk
i ,∀i ∈ Nj , since for k → ∞ the constraint

xj = xi will also be fulfilled throughout the network. Then, the
local solution xk+1

j of SC j can be derived by minimizing the
convex local AL function Lj(xj ; xki ,λ

k
ji), i ∈ Nj w.r.t. xj , and

the Lagrangian multiplier λk+1
ji is updated using the gradient

descent method for Lj(λji; xkj , xki ,λ
k
ji) w.r.t. λji. Thus, the

update equations of ALCE are given by:

xk+1
j = arg min

xj
Lj(xj ; xki ,λ

k
ji)

=

(
HH

j Hj +
|Nj |
µ

INI

)−1(
HH

j yj +
∑
i∈Nj

(
xki
µ

+ λk
ji

))
(9a)

λk+1
ji = λk

ji −
1

µ

(
xkj − xk

i

)
,∀i ∈ Nj (9b)
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Fig. 2. An example of BH topology for a small cell network composed of
SCs j ∈ {1, .., 4}
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Fig. 3. Update and exchange of estimates xj as well as multipliers λji for
ALCE, i denotes the index of neighboring node

Assuming λ0
ji = 0 and x0

i = 0, we find that the first (k = 1)
estimate x1j is a regularized LS estimate:

x1j =

(
HH

j Hj +
|Nj |
µ

INI

)−1
HH

j yj (10)

After the updates in iteration k, each SC j exchanges its local
estimate xj with neighboring SCs and prepares for the new
updates (9a) and (9b) in k + 1 based on the received infor-
mation in k. For a simple exemplary illustration, a network
of 4 SCs j ∈ {1, .., 4} is connected in a certain topology
as shown in Fig. 2. Based on that network, the general
progress of variable updates and exchanges for ALCE has been
summarized in Fig. 3. It can be seen that the local estimate
xk+1
j and multipliers λk+1

ji of SC j are updated in k+1 based
on the received estimate xki , i ∈ Nj from the last iteration k.
Afterwards, only the local estimates xj are exchanged between
neighboring SCs. Comparing to ADMM-based algorithms,
where the estimates xj , the auxiliary variables zj as well as
multipliers λji need to be exchanged [3], ALCE shows great
advantage in reducing communication overhead.

Although the ALCE algorithm achieves a significant re-
duction in communication overhead, the robustness of the
algorithm is quite low for the case of erroneous inter-node
links as shown in Section IV. As can be seen in Fig. 3, only the
estimates xk

j are delivered via inter-node links, but multipliers
which enforce the constraint are not exchanged among SCs.
If some disturbance exists on the channel, the exchanged
variables will not be received correctly and the error will
be accumulated after each iteration, since no multiplier from



neighboring SC is received to maintain the constraint. This
behavior is similar to the algorithm [6], which also experiences
deteriorated performance by avoiding the exchange of the
multipliers to reduce overhead.

C. PALCE Algorithm

In order to improve the robustness while keeping the low
communication overhead, a variant of ALCE method entitled
“PALCE” is proposed. This algorithm is inspired by the idea
of using directional transmissions in [12] where the links
are oriented for the information exchange in a cooperative
network. Thus, differing from ALCE, the PALCE algorithm
adopts a priority mechanism, i.e., each SC has a different level
of priority which is defined by the index number: the lower
index of the SC is, the higher priority it has. Note that without
loss of generality, the indices of SCs are randomly chosen.
Then, the set of constraints xj = xi in (4) can be divided into
two sub-sets as xi = xj for i < j and xj = xi for i > j
respectively. Considering the same LS estimation problem (2)
with the newly defined constraints, the local Lagrangian cost
function is obtained:

Lj(x,λ)=
1

2
‖yj −Hjxj‖2

−
( ∑

i∈N−j

λij(xi − xj) +
∑

i∈N+
j

λji(xj − xi)

)

+
1

2µ

( ∑
i∈N−j

‖xi − xj‖2 +
∑

i∈N+
j

‖xj − xi‖2
)

(11)

where N+
j is the set of neighboring SCs i of SC j, i > j,

and N−j is the set of neighboring SCs i, i < j. Similar to
the ALCE algorithm, the decoupling for parallel processing
among SCs follows xk+1

j = xki ,∀i ∈ Nj . Therefore, the
iterative update of estimates xk+1

j can be derived by mini-
mizing Lj(xj ; xki ,λ

k
ij ,λ

k
ji) w.r.t. xj , and the multiplier λk+1

ji

is updated based on the newest local xk+1
j and the received

xki from neighboring SCs. The update equations are given by

xk+1
j = arg min

xj
Lj(xj ; xki ,λ

k
ij ,λ

k
ji)

=

(
HH

j Hj +
|N−j |+ |N

+
j |

µ
INI

)−1(
HH

j yj

+
∑

i∈N−j

(
1

µ
xki − λk

ij

)
+
∑

i∈N+
j

(
1

µ
xki + λk

ji

))
(12a)

λk+1
ji = λk

ji −
1

µ

(
xk+1
j − xki

)
, i > j (12b)

Similarly, by initializing the estimate x0
i = 0 and multipliers

λ0
ji = λ0

ij = 0, the first local estimate x1
j is identical to (10).

After that, the latest estimates xk+1
j have to be exchanged

among the neighboring SCs, and multipliers λk+1
ji will be up-

dated subsequently. Based on the network in Fig. 2, the general
progress of update and exchange for PALCE is summarized
in Fig. 4, where it should be noticed that the exchange of
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Fig. 4. Update and exchange of local estimates x as well as multipliers λ
for PALCE, i denotes the index of SC that has higher priority

local estimates xj among SCs is similar to ALCE, i.e., using
bidirectional transmission (both neighboring SCs exchange
their estimates). But in PALCE, the Lagrangian multipliers
λij , i ∈ N−j need to be exchanged additionally, meaning that
only the SC j with higher priority (j < i) shares its multipliers
λji with lower priority neighboring SC i, i.e., uni-directional
transmission is used. Thus only the multipliers λk+1

ji need
to be computed at SC j, while λk

ij in (12a) just needs to be
received by SC j for i < j, e.g., SC 4 only needs to update the
estimate xk+1

4 in Fig. 4. Compared to ALCE, the robustness
of the PALCE algorithm will be stronger due to the additional
exchange of multipliers even for the erroneous inter-node
link, since the fulfillment of the constraint is affected by the
multipliers. Besides, with more information being exchanged,
the convergence behavior for PALCE is faster than ALCE,
which in turn can further reduce the communication overhead,
since fewer iterations are required for the same performance.

IV. PERFORMANCE EVALUATION

A. Bit Error Rate

Both ALCE and PALCE algorithms have been evaluated
by means of Monte Carlo simulations in a small-cell scenario.
Two different topologies, full-meshed type and ring type, have
been simulated for a network consisting of NSC = 4 small
cells, each equipped with NR = 2 receive antennas serving
NUE = 2 UEs with NT = 2 transmit antennas in an UL
transmission, where uncoded QPSK symbols are transmitted.

We perform LS estimation using the proposed distributed
algorithms to investigate the bit error rate (BER) over different
Signal-to-Noise Ratios (SNRs). Fig. 5 shows the averaged
BER over all SCs in a full-meshed network with ideal BH
links. As can be seen, all distributed algorithms show the
same performance as the central ZF solution at low SNRs,
while error floors appear at high SNRs when the number
of iterations is not sufficient for a satisfying convergence.
Nevertheless, better performance can be achieved by these
distributed algorithms with more iterations, as the error floors
decrease from iteration k = 15 to k = 30. Comparing the



−10 −5 0 5 10 15 20
10−5

10−4

10−3

10−2

10−1

100

Eb / N0 in dB

B
E

R

Central Solution
DCDS
DiCE
ALCE
PALCE

Fig. 5. BER performance over SNRs for considered distributed algorithms,
NUE = 2, NT = 2, NSC = 4, NR = 2, fully meshed topology with ideal
BH, 15 iterations ( ), 30 iterations ( )
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Fig. 6. BER performance over SNRs for considered distributed algorithms,
NUE = 2, NT = 2, NSC = 4, NR = 2, fully meshed topology at iteration
k = 30, ideal BH links ( ), noisy BH links ( )

performance of those algorithms, significant improvement has
been achieved by ALCE and PALCE, since much lower BER
error floors are achieved compared to DCDS [2] and DiCE
[3].

Fig. 6 shows the BER performance for ideal BH links as
well as noisy BH links based on a fully meshed topology. Here,
all iterative algorithms are terminated at iteration k = 30,
leading to error floors at high SNRs. For the implementation
with noisy BH links, the variables are additionally distributed
by noise with variance of 0.01 during the inter-node exchange.
Thus, the algorithms implemented with noisy BH links show
lower performance than the implementations with ideal BH
links. Moreover, the ALCE algorithm implemented with noisy
BH links shows extremely low performance as discussed in
Section III, noticing that the error floor of ALCE with noisy
BH links is much higher than other algorithms. Neverthe-
less, the PALCE algorithm still shows higher performance
compared to the DCDS and DiCE algorithms for both BH
conditions.

TABLE I
COMMUNICATION OVERHEAD PER ITERATION FOR VARIOUS TOPOLOGIES

DDCDS DDiCE
Arbitrary (4|E|+NSC)NIL 2(|E|+NSC)NIL
Full Mesh (2N2

SC −NSC)NIL NSC(NSC + 1)NIL
Ring 5NSCNIL 4NSCNIL

DALCE DPALCE
Arbitrary NSCNIL (0.5|E|+NSC)NIL
Full Mesh NSCNIL NSC(NSC + 3)/4NIL

Ring NSCNIL 1.5NSCNIL

B. Communication Overhead

In the following, the issue of communication overhead for
all algorithms is investigated. As discussed above, information
needs to be exchanged among neighboring SCs via BH links
during the iterative processing. In each iteration, NIL variables
are transmitted per link within frame length L. Moreover, point
to multi-point wireless BH links are assumed here, such that
the local estimates xj in ALCE only need to be broadcasted
once from SC j to its neighboring SCs. Thus, the total amount
of exchanged variables per iteration for ALCE DALCE depends
on the number of SCs NSC. However, compared to ALCE,
PALCE needs to transmit extra multipliers λji from SC j
to its neighboring SC i, which are directed transmissions.
Consequently, the total amount of exchanged variables per
iteration for PALCE DPALCE depends on not only the number
of SCs NSC but also the number of edges |E|. To this end, we
consider an arbitrary topology and two particular topologies
i.e., full mesh and ring for investigating the communication
overhead. As a comparison, the overhead per iteration for the
ADMM-based algorithms DCDS DDCDS and DiCE DDiCE [8]
are also taken into account. Table I lists for ADMM-based
and ALM-based algorithms the total amount of exchanged
variables per iteration considering various topologies. As can
be seen, ALCE needs the same amount of exchanged vari-
ables per iteration for each topology, which is the lowest
among these algorithms. For the fully meshed network, the
number of edges is counted as |E| = NSC(NSC − 1)/2. Thus,
NSC(NSC − 1)/4 additional variables are transmitted due to
the priority based transmission for multipliers λji in PALCE.
Nevertheless, compared to the DDCDS and DDiCE indicated in
the Table I, both ALCE and PALCE can significantly reduce
the amount of exchange variables per iteration.

Hence, considering both metrics discussed above, Fig. 7
shows the averaged BER versus the total number of exchanged
variables based on a fully meshed network for an SNR of
10dB. Additionally, the error rates after k = {1, 10, 20, .., 50}
iterations are labeled with markers. Depicted are the results
of distributed algorithms based on a) ideal BH links and b)
erroneous BH links with noise variance of 0.01. In Fig. 7
a), ALCE shows a great advantage in reducing the overhead
compared to PALCE as well as DCDS and DiCE. However,
since no multiplier λji is exchanged during the iterative
processing of ALCE, the performance becomes unreliable
if the BH links are noisy as shown in Fig. 7 b), where
the PALCE and ADMM-based algorithms are more robust.
Moreover, by avoiding exchange of auxiliary variables zj and
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reducing exchange of multipliers λji due to the priority based
transmission, PALCE needs lower overhead for achieving the
same performance compared to DCDS and DiCE. Fig. 8
depicts the results of these algorithms implemented in a ring
connected network assuming the same system configuration.
Compared to Fig. 7, fewer variables are exchanged for the
same number of iterations, due to the lower connectivity of the
network. Nevertheless, similar results as shown in Fig. 8 can
be observed. ALCE can still reduce the overhead significantly
compared to the other algorithms in a network with ideal
BH links. Similarly, the performance of ALCE implemented
with noisy BH links is deteriorated as shown in Fig. 8 b).
In general, the PALCE algorithm can achieve more satisfying
performance than the ADMM-based algorithms, since extra
auxiliary variables zj are required to be broadcasted in DiCE
[8] and extra variables zji and z′ji need to be transmitted
directionally in DCDS [2]. Thus, DCDS produces the highest
overhead for the same performance among all distributed
algorithms.

V. CONCLUSION

For cooperative processing in small-cell networks, we pro-
posed the ALCE and PALCE algorithms to improve the
performance compared to the ADMM-based algorithms from
the state of the art. Both algorithms are presented regarding
the performance, reliability as well as the communication
overhead. According to the analysis and simulations, improved
performance has been achieved by both algorithms compared
to the ADMM-based algorithms in reducing the overhead
for the iterative processing considering a network with ideal
BH links. Furthermore, PALCE has enhanced the robustness
for the application in a network with noisy inter-node links
compared to ALCE, and still outperforms the ADMM-based
algorithms. In the future work, both algorithms can be further
optimized by numerical optimization approaches, and the
robustness of ALCE might to be improved.
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