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Abstract—Compressed Sensing (CS) is an emerging field in
mathematics that is used to measure few measurements of
sparse vectors for lossless reconstruction. In this paper we use
results from channel coding to create the recovery algorithm
RSCS for CS in the Multiple Measurement Vector case (MMV)
that can be used with a deterministic measurement matrix by
using error correction schemes. In particular, we show that a
modified Reed Solomon encoding-decoding structure can be used
to measure sparsely representable vector systems down to the
theoretical minimum number of measurements with guaranteed
reconstruction, even in the low dimensional case.

Index Terms—Compressed Sensing, Reed Solomon, MMV,
Deterministic

I. MOTIVATION

There has been considerable interest in the emerging field
of Compressed Sensing (CS), especially in the Multiple Mea-
surement Vector (MMV) case. The main problem of CS is
to reconstruct sparsely representable vector systems out of
few measurements, described by a measurement matrix [1].
One of the main problems in CS theory is the design of
good measurement matrices. Normally sub Gaussian random
matrices are used that are well known for good recovery
in high dimensions. Sadly in many applications this is not
feasible to implement or the dimension of the problem is
too low for random number generators to work properly.
A potential solution are deterministic measurement matrices.
They are easier to implement but are known so far for
decreased measurement efficiency [2].
This work was motivated by the search for optimal determin-
istic matrices and a corresponding reconstruction algorithm
that is easy to implement and still has good reconstruction
abilities. Bosserts work on combining channel coding theory
with Compressed Sensing [3] inspired us to take the same
perspective and use this field for solving the CS problem.
Especially Complex Reed Solomon (RS) codes are well known
for their high error correcting capabilities [4]. The fact that
RS codes can decode sparse error vectors can be utilized to
conquer the CS setting. Sadly this only works for vectors, that
directly possess a sparse number of nonzero elements.
To improve upon the results in [3], we go one step further
by extending this idea to sparsely representable vectors, that
can be sparse in any arbitrary basis.

A. Main Result

Our main result is the derivation of the CS reconstruction
algorithm RSCS with a corresponding deterministic measure-
ment matrix, that is inspired by Complex Reed Solomon de-
coding. With X = ΨC ∈ CN×L consisting of L vectors with
N entries each and C being k-row sparse with no requirements
towards Ψ other than a linear independence of the columns
of Ψ this algorithm is guaranteed to retrieve X with the
theoretical minimum of L(k + dL/ke) measurements, even
in the low dimensional case. The number of measurements
is independent of Ψ and of the length of X, which makes
it increasingly effective for very sparse vectors. Furthermore,
an estimator for the unknown value k makes the algorithm
easy and efficient to use. In the following we assume without
loss of generality Ψ to be the identity matrix I to ease the
presentation. In other words X = C is directly sparse in the
canonical basis.

II. COMBINATION OF INTERLEAVED COMPLEX REED
SOLOMON CODES AND MMV CS

Complex Reed Solomon (RS-) codes belong to the family
of cyclic block codes [5]. If only some of the complex
symbols get corrupted, they can be restored, regardless of the
actual complex number of each incorrect symbol. To combine
Compressed Sensing with Complex Reed Solomon codes, we
interpret the sparse vector system X as the systematic part and
the measurements as the parity part of the code. This way,
each complex number in our original sparse vector X is one
RS-symbol. Interleaved Complex RS codes are well known to
correct Lk symbol errors with L(k + dL/ke) parity symbols
if the positions of the erroneous symbols are unknown with
the help of an error locator polynomial (ELP).
Figure 1 illustrates the connection of RS decoding and CS
reconstruction. The upper part shows a CS interpretation of
the problem. A sparse vector X is measured by a matrix Φ
to obtain L(k+ dL/ke) measurements P which are sufficient
to reconstruct X even with noise. The lower part describes
the RS view. RS decoders with L(k+ dL/ke) parity symbols
can correct up to Lk errors at any k positions and amplitudes,
so especially the total erasure E = −X is a correctable error,
if X is row sparse. In other words, the CS algorithm can
measure the L(k+dL/ke) parity symbols of a systematic Reed
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Fig. 1. Schematic for measurement and reconstruction of sparse vectors for
Ψ = I and L=1

Solomon encoding scheme and guarantee the recovery, if C is
k-row sparse. The number of parity symbols is independent of
the length of the original vector system X, so its well suited for
long vectors with k � N . To really combine the two theories,
one crucial detail needs to be clarified. Compressed Sensing
includes the vast group of sparsely representable vectors of
the form

X = ΨC, C sparse (1)

In general, there are not exactly k nonzero elements but k
columns of Ψ are active, e.g. k frequencies. For the algorithm
to still work in this more general case, the RS decoder
needs to be extended. With α as an element of order N and
Aα = diag(α, α2, . . . , αN ) the error locator polynomial (ELP)
is

Λ(t) =

k∏
i=1

(t−αI(i)) = tk+Λ1t
k−1+Λ2t

k−2+ · · ·+Λk (2)

with Λ(αI(i)) = 0 as roots for the active support of X. This
ELP needs to be generalized to

ΛΨ(t) = 1
(
1 ·Ak+1

α + Λ1A
k
α + . . .+ ΛkAα

)
t (3)

with ΛΨ(ΨI(i)) = 0 as roots for the active support in
the sparse representation Ψ. This way, the same theoretical
boundaries that hold for Ψ = E can be achieved for arbitrary
Ψ. The full paper will provide full details on the proof of the
RSCS algorithm.

III. COMPARISON TO OTHER CS ALGORITHMS
To evaluate our new proposition, we compare it to existing

MMV algorithms, namely SOMP [6] and MUSIC [7]. Figure 2
shows results for the three different algorithms. The simulation
was run for N = 100, k = 10, m = 20 and L = 10.
As a measure of performance we depict the mean number of
correctly estimated support entries averaged over 1000 Monte
Carlo trials. As one can see, our Reed Solomon approach
(RSCS) performs best. If the SNR is above 10dB, the recon-
struction is error free every time. The MUSIC algorithm also
achieves perfect reconstruction, but needs a minimal SNR of
20 dB to guarantee it. The SOMP algorithm can not guarantee
reconstruction. Even in the noiseless case, only 70% of the
indices can be reconstructed in the mean. So even in this mild
setting and with optimized tuning parameters, SOMP fails.
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Fig. 2. Mean number of the reconstructed support indices, compared for
RSCS (our contribution), SOMP and MUSIC in the setting N = 100, k = 10,
m = 20, L = 10

The full paper will provide a wider range of numerical results
as well as an extended bibliography.
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