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Architectures for reference-based
and blind multilayer detection

Karl-Dirk Kammeyer, Jürgen Rinas, and Dirk Wübben

Multilayer systems are predestinated for high-rate wireless data transmission,
where the source simultaneously radiates several data streams via multiple trans-
mit antennas. The main computational effort of transmission schemes of this type
is required at the receiver for separating the superimposed information signals. We
distinguish between two types of detection schemes, where the first type requires
channel knowledge for the receiver and the second type performs a totally blind
data estimation.

Recently, several detection algorithms have been investigated under the as-
sumption of known channel state information at the receiver. This channel knowl-
edge may be obtained by pilot-aided transmission and channel estimation. For
these reference-aided transmission the well-known linear detection schemes are
generally outperformed by successive detection schemes, namely, the V-BLAST al-
gorithm. In order to decrease the required computational complexity of this non-
linear scheme, we will restate it by applying the QR decomposition of the channel
matrix. This yields the same successive interference cancelation (SIC) detection
algorithm with complexity comparable to linear detection.

A detection approach avoiding pilot symbols is given by the concept of blind
source separation (BSS). BBS approaches normally lead to linear spatial filters. In
order to achieve the performance of reference-based detection, an iterative com-
bination of BSS and nonlinear SIC is proposed. Furthermore, the application of
BSS is favorable in many practical cases, as the sophisticated MIMO estimation
problems can be transformed to well-known solutions for SISO communication.

The performances of the discussed schemes are demonstrated by simulations
as well as by measurement results.

8.1. System model

Within this chapter, we consider the single-user multiple-antenna system in Figure
8.1 with NT transmit and NR ≥ NT receive antennas in a non-frequency-selective
environment. At the transmitter, the binary information data is demultiplexed into
NT data substreams of equal length and mapped onto PSK or QAM symbols of
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Figure 8.1. Model of a MIMO system with NT transmit and NR receive antennas.

the alphabet A with cardinality |A|. These substreams are organized in frames of
length M and simultaneously transmitted over the NT antennas. Thus, the investi-
gated scheme corresponds to the V-BLAST (vertical Bell Labs layered space-time)
architecture introduced in [1, 2].

In order to describe the MIMO system, the discrete-time complex baseband
model is investigated. Let sp[m] denote the symbol transmitted at time instant
1 ≤ m ≤ M from antenna 1 ≤ p ≤ NT. By defining the NT × 1 transmit signal
vector s[m] = [s1[m] · · · sNT [m]]T the corresponding NR × 1 receive signal vector
r[m] = [r1[m] · · · rNR [m]]T is given by

r[m] = Hs[m] + v[m]. (8.1)

In (8.1), v[m] = [v1[m] · · · vNR [m]]T represents white Gaussian noise of vari-
ance σ2

v observed at the NR receive antennas while the average transmit power of
each antenna is normalized to one, that is,1 E{s[m]sH[m′]} = INTδ(m −m′) and
E{v[m]vH[m′]} = σ2

v INRδ(m−m′). TheNR×NT channel matrix H = [h1, . . . , hNT ]
with column vectors hp contains uncorrelated complex Gaussian fading gains hk,p

with unit variance. We assume that the channel matrix H is constant over a frame
of length M and changes independently from one frame to another (block fading
channel). As the time slots m in (8.1) are independent of each other, we will drop
the time index m in the sequel resulting in

r = Hs + v. (8.2)

In order to investigate the maximum performance achievable, we introduce the
singular value decomposition (SVD) H = UΣVH of the channel matrix H, where U
and V are unitary matrices and the diagonal matrix Σ = diag [σ1, . . . , σNT ] contains
the singular values σp ≥ 0 [3]. By calculating the filtered receive vector

r′ = UHr = ΣVHs︸ ︷︷ ︸
s′

+ UHv︸ ︷︷ ︸
v′

= Σs′ + v′ (8.3)

the MIMO system (8.2) is decomposed into NT parallel single-input single-output

1δ defines the Kronecker delta with δ(0) = 1 and δ(n) = 0 for n �= 0.
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(SISO) systems

r′p = σps
′
p + v′p, (8.4)

where s′p denotes a modified transmit signal. Obviously, information can only be
transmitted over those equivalent SISO channels with nonzero singular values σp.
If the number of transmission layers exceeds the number of strong singular values,
the performance degrades. This effect is demonstrated in Section 8.4 with respect
to measurements.

Several schemes have been investigated to estimate the transmitted informa-
tion at the receiver. One class of detection algorithms requires an estimate of the
channel state information (CSI), whereas a second class applies higher-order sta-
tistics to separate the distinct transmit signals. In the sequel both detection princi-
ples are investigated and a hybrid scheme exploiting the advantages of each prin-
ciple is proposed.

8.2. Reference-based detection algorithms

Within this section we discuss several detection schemes under the assumption of
perfect channel state information at the receiver. Therefore, the achieved perfor-
mances give the upper bound for the blind and non-blind schemes in the subse-
quent section.

8.2.1. Maximum-likelihood detection

In order to detect the transmitted information, it would be optimal to use a maxi-
mum-likelihood (ML) detector. For each time instant m this optimum ML detec-
tor searches over the whole set of transmit signals s ∈ ANT , and decides in favor of
the transmit signal ŝ that minimizes the Euclidean distance to the receive vector r,
that is,

ŝML = arg min
s∈ANT

‖r − Hs‖2. (8.5)

As the computational effort for each time instant is of order |A|NT , brute force ML
detection is not feasible for larger number of transmit antennas or higher modu-
lation schemes. As an example, for a system with NT = 4 transmit antennas and
16-QAM modulation, the ML detection requires the computation of 164 = 65536
Euclidean distances for each transmit vector.

A feasible alternative is the application of the sphere detector [4], which re-
stricts the search space to a sphere around r. However, the computational complex-
ity is still high in comparison to simple but suboptimal linear detection or succes-
sive interference cancelation. In the sequel, we investigate these suboptimum linear
and nonlinear schemes. The advantage of both strategies is that the computational
overhead is only required once for each transmitted frame, so for a large frame
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Figure 8.2. Block diagram of a MIMO scheme with linear detection.

length, the effort for each signal vector is very small. Furthermore, these subopti-
mum detection schemes may achieve near-ML performance in combination with
lattice reduction, for example, see [5, 6].

8.2.2. Linear detection

The linear detector (LD) is the simplest approach for estimating the transmitted
signals. The receive signal vector r is multiplied with a filter matrix G, followed by
a parallel decision on all layers, as shown in the block diagram in Figure 8.2.

In case of the zero-forcing (ZF) solution, the mutual interference between
the layers is completely suppressed. This is accomplished by the Moore-Penrose
pseudoinverse (denoted by (·)+) of the channel matrix

GZF = H+ = (
HHH

)−1
HH , (8.6)

where we assume that H has full column rank. The decision step consists of map-
ping each element of the filter output vector

s̃ = GZFr = H+r = s +
(

HHH
)−1

HHv (8.7)

onto an element of the symbol alphabet A by an elementwise minimum distance
quantization, that is, ŝp = QA{s̃p}. The estimation errors of the different layers
correspond to the main diagonal elements of the error covariance matrix

Φee,ZF = E
{

(s̃ − s)(s̃ − s)H
} = σ2

v

(
HHH

)−1
, (8.8)

which equals the covariance matrix of the noise after the receive filter. It is obvious
that small eigenvalues of HHH will lead to large errors due to noise amplification.

In order to improve the performance of the linear detector the noise term can
be included in the design of the filter matrix G. This is done by the minimum mean
square error (MMSE) detector, where the filter

GMMSE = (
HHH + σ2

v INT

)−1
HH (8.9)

represents a trade-off between noise amplification and interference suppression.
The resulting filter output signal is given by

s̃ = GMMSEr = (
HHH + σ2

v INT

)−1
HHr (8.10)
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and the error covariance matrix is found to be

Φee,MMSE = σ2
v

(
HHH + σ2

v INT

)−1
. (8.11)

For the derivation of the nonlinear MMSE detection algorithm considered
later it will be useful to point out the correspondence of the MMSE and the ZF
criterion. To this end, we define an (NT + NR) × NT extended channel matrix2 H
and an (NT + NR) × 1 extended receive vector r through [7, 8]

H =
[

H
σvINT

]
, r =

[
r

0NT,1

]
. (8.12)

With these definitions we can rewrite the output of the MMSE filter (8.10) as

s̃ =
([

HHσvINT

][ H
σvINT

])−1 [
HHσvINT

][ r
0NT,1

]
(8.13)

= (
HHH

)−1
HHr = H+r. (8.14)

Furthermore, the error covariance matrix (8.11) becomes

Φee,MMSE = σ2
v

(
HHH

)−1
. (8.15)

Comparing (8.14) and (8.15) to the corresponding expression for the linear zero-
forcing detector in (8.7) and (8.8), the only difference is that the channel matrix
H has been replaced by H. Thus, an MMSE detector can be interpreted as a ZF
detector with respect to the extended system model. This simple observation will
be important for incorporating the MMSE criterion into the nonlinear detection
algorithm in the sequel.

8.2.3. Successive interference cancelation detection

Instead of detecting the transmitted symbols in parallel, the nonlinear successive
interference cancelation (SIC) schemes detect the signals one after another. Simi-
lar to a decision-feedback equalizer, the estimated interference of already detected
signals is subtracted from the receive signal r before detecting the remaining sig-
nals. Due to the effect of error propagation, the sequence of detecting the layers
has a strong impact on the overall error performance [2].

V-BLAST algorithm. The original V-BLAST detection algorithm [2] is based on
the linear zero-forcing solution (8.6), but detects the signals one after another and
not in parallel. In order to achieve the best performance, it is optimal to choose al-
ways the layer with the largest postdetection signal-to-noise ratio (SNR), or equiv-
alently with the smallest estimation error [2]. By rewriting the error covariance
(8.8) as Φee,ZF = σ2

v GZFGH
ZF, the pth diagonal element corresponds to σ2

v g(p)gH
(p),

2Henceforth, underlined variables indicate the application of this extended MMSE system model.
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with g(p) denoting row p of GZF. Consequently, the smallest estimation error cor-
responds to the row of GZF with minimum Euclidean norm. Assuming that row
i has the smallest norm in the first detection step, the corresponding filter output
signal is given by

s̃i = g(i)r = si + g(i)v (8.16)

and the estimated signal ŝi = QA{s̃i} is found by quantization. The estimated
interference caused by this signal is then subtracted from the receive signal vector
r and the ith column is removed from the channel matrix, leading to a system with
only NT−1 transmit antennas. This procedure of nulling and canceling is repeated
for the reduced systems until all signals are detected.

The adaptation to the MMSE criterion was presented in several publications
(e.g., [9]), where the optimal detection sequence maximizes the signal-to-inter-
ference-and-noise ratio (SINR) in each decision step. Again, this corresponds to
choosing the layer with the smallest estimation error in (8.11) or (8.15). Using
similar arguments as before, the layer with highest SINR corresponds to the row
of H+ with minimum norm. It is worth to note that this best layer is not neces-
sarily associated with the row of GMMSE with minimum norm, as GMMSE is not
a square root of Φee,MMSE [10]. Consequently, a detector applying the ZF sorting
criterion based on the Euclidean row norm of GMMSE in the MMSE case will lead
to a significant performance loss.

The main drawback of the V-BLAST detection algorithm lies in the compu-
tational complexity, as it requires multiple calculations of the pseudoinverse of
the channel matrix in the ZF case [11] or of the extended channel matrix in the
MMSE case. Thus, several schemes with reduced complexity have been proposed,
for example, [8, 12, 13, 14].

Within this section, we consider the scheme presented in [14] and extended
in [8]. To this end, we restate the successive interference cancelation scheme us-
ing the QR decomposition of the channel matrix, for the ZF as well as the MMSE
case. In order to efficiently achieve an optimized detection order, we will then in-
troduce a suboptimum approach, the so-called sorted QR decomposition. Later
on, we extend this simple scheme by the postsorting algorithm, yielding the per-
fect detection sequence and thereby the performance of the V-BLAST scheme. The
main advantage of this combined scheme comes with the complexity reduction, as
it only requires a fraction of the computational effort of the original V-BLAST
algorithm [8, 11].

ZF-SIC with QR decomposition. It was shown in several publications, for example,
[11, 14, 15, 16, 17], that the zero-forcing solution of the V-BLAST algorithm can
be restated in terms of the QR decomposition of the channel matrix H = QR,
where the NR × NT matrix Q has unitary columns and the NT × NT matrix R =
(ri, j)1≤i, j≤NT is upper triangular [3]. Multiplying the receive signal r with QH yields
the sufficient statistic

s̃ = QHr = Rs + ṽ (8.17)
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Figure 8.3. Block diagram of the successive interference cancelation detector for a system with NT = 4
transmit antennas.

for the estimation of transmit vector s. As Q is a unitary matrix, the statistical
properties of the Gaussian noise term ṽ = QHv remain unchanged and in a com-
ponentwise notation (8.17) becomes


s̃1

s̃2

...
s̃NT

 =


r1,1 r1,2 · · · r1,NT

... r2,2

...
...

. . .
...

0 · · · rNT,NT




s1

s2

...
sNT

 +


ṽ1

ṽ2

...
ṽNT

 . (8.18)

Due to the upper triangular structure of R, the pth element of s̃ is given by

s̃p = rp,psp +
NT∑

i=p+1

rp,isi + ṽp (8.19)

and is free of interference from layers 1, . . . , p − 1. Thus, s̃NT is totally free of in-
terference and can be used to estimate sNT after appropriate scaling with 1/rNT,NT .
Proceeding with s̃NT−1, . . . , s̃1 and assuming correct previous decisions, the inter-
ference can be perfectly canceled in each step. Then it follows from (8.19) that the
SNR of layer p is determined by the diagonal element |rp,p|2. For a system with
NT = 4 transmit antennas the successive detection and cancelation procedure is
shown in Figure 8.3.

The signal spaces of the corresponding detection and interference cancela-
tion steps are shown in Figure 8.4 (achieved with the experimental equipment de-
scribed in Section 8.4). The first depicted column (step 1) corresponds to s̃ (scaled
by r4,4 for illustration purpose), the output of the filter matrix QH . Obviously layer
4 is free of interference and can be estimated, whereas the other layers are still af-
fected by interference. The second column shows the signal space after subtracting
the estimated interference, that is, step 2 in Figure 8.3. Thus, layer 3 may be de-
tected. The succeeding steps are straightforward.

MMSE-SIC with QR decomposition. In order to extend the QR-based detection
with respect to the MMSE criterion, we can exploit the similarity of linear ZF and
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Figure 8.4. Signal space of each layer at the distinct steps of the successive interference cancelation
for a system with NT = 4 transmit antennas, NR = 4 receive antennas and QPSK modulation with
estimated SNR.

MMSE detection. For this purpose, we introduce the QR decomposition of the
extended channel matrix (8.12)

H =
[

H
σvINT

]
= QR =

[
Q1

Q2

]
R =

[
Q1R
Q2R

]
, (8.20)

where the unitary (NT+NR)×NT matrix Q was partitioned into the NR×NT matrix
Q1 and the NT × NT matrix Q2 and R = (ri, j)1≤i, j≤NT denotes the corresponding
upper triangular matrix. Obviously,

QHH = QH
1 H + σvQH

2 = R (8.21)

holds and from the relation σvINT = Q2R in (8.20), it follows that

R−1 = 1
σv

Q2, (8.22)

that is, the inverse R−1 is a by-product of the QR decomposition and Q2 is an
upper triangular matrix. This relation will be useful for the postsorting algorithm
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proposed later on. Using (8.21), the filtered receive vector becomes

s̃ = QHr = QH
1 r = Rs − σvQH

2 s + QH
1 v. (8.23)

The second term on the right-hand side of (8.23) including the lower triangular
matrix QH

2 constitutes the remaining interference that cannot be removed by the
successive interference cancelation procedure. This points out the trade-off be-
tween noise amplification and interference suppression.

As mentioned in the discussion of the V-BLAST algorithm, the order of de-
tection is crucial due to error propagation. Within the QR-based SIC the detec-
tion order can be changed by permuting the columns of H and the correspond-
ing elements in s. The optimum detection sequence now maximizes the signal-
to-interference-and-noise ratio (SINR) for each layer, leading to a minimum es-
timation error for the corresponding detection step. The estimation errors of the
different layers in the first detection step correspond to the diagonal elements of
the error covariance matrix (8.15)

Φee,MMSE = σ2
v

(
HHH

)−1 = σ2
v R−1R−H. (8.24)

The estimation error for layer p after perfect interference cancelation is given by
σ2
v /|r p,p|2. Thus, it is optimal to choose the permutation of H that maximizes |r p,p|

in each detection step, that is, in the orderNT, . . . , 1. The algorithm proposed in the
next paragraph determines an improved detection sequence within a single sorted
QR decomposition and thereby significantly reduces the computational complex-
ity in comparison to the V-BLAST algorithm.

Sorted QR decomposition (SQRD). In order to obtain the optimal detection order,
first |rNT,NT

| has to be maximized over all possible permutations of the columns of
the extended channel matrix H, followed by |rNT−1,NT−1|, and so on. Unfortunately,
using standard algorithms for the QR decomposition, the diagonal elements of R
are calculated just in the opposite order, starting with r1,1. This makes finding the
optimal order of detection a difficult task.

A heuristic approach of arranging the order of detection within the QR de-
composition for the ZF detection was presented in [11, 14] and extended to the
MMSE criterion in [8, 16]. This sorted QR decomposition algorithm is basically
an extension to the modified Gram-Schmidt procedure by reordering the columns
of the channel matrix prior to each orthogonalization step. The fundamental idea
is based on the fact that the determinant of the Gram matrix HHH, that is, the
squared volume of the parallelepiped spanned by H, is invariant to column ex-
changes [3]. Since this determinant can be rewritten as

det
(

HHH
) = det

(
RHR

) =
NT∏
p=1

∣∣r p,p

∣∣2 = const, (8.25)

the product r1,1 · . . . · rNT,NT
is also independent of the chosen column order. Thus,

the basic idea is to exchange the columns to minimize the diagonal elements r p,p
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(1) R = 0, Q = H, p = [1 · · ·NT]
(2) for i = 1, . . . ,NT

(3) norm(i) = ‖Q(:, i)‖2

(4) end
(5) for i = 1, . . . ,NT

(6) ki = arg min norm(i, . . . ,NT)
(7) exchange columns i and ki in

R, p, norm and in the first
NR + i− 1 rows of Q

(8) R(i, i) = √
norm(i)

(9) Q(:, i) = Q(:, i)/R(i, i)
(10) for k = i + 1, . . . ,NT

(11) R(i, k) = Q(:, i)HQ(:, k)
(12) Q(:, k) := Q(:, k) − R(i, k)Q(:, i)
(13) norm(k) := norm(k) − R(i, k)2

(14) end
(15) end

Algorithm 8.1. Pseudocode of MMSE-SQRD-algorithm.

in the order of their calculation, that is, in the sequence r1,1, . . . , rNT,NT
. As the

product is constant, small r p,p in the upper left part should lead to large elements
in the lower right part of R.

Now, r1,1 is simply the norm of the column vector h1, so the first optimiza-
tion in the SQRD algorithm consists merely of permuting the column of H with
minimum norm to this position. During the following orthogonalization of the
vectors h2, . . . , hNT

with respect to the normalized vector h1, the first row of R is
obtained. Next, r2,2 is determined in a similar fashion from the remaining NT − 1
orthogonalized vectors, and so forth. Thus, the extended channel matrix H is suc-
cessively transformed into the matrix Q associated with the desired ordering, while
the corresponding R is calculated row by row. Note that the column norms have
to be calculated only once in the beginning and can be easily updated afterwards.
Hence, the computational overhead due to sorting is negligible. An in-place de-
scription of the whole MMSE-SQRD algorithm is given in3 Algorithm 8.1, with
vector p denoting the permutation of the columns of H.

The reordering steps (lines (6) and (7) within the algorithm) require only a
very small computational overhead compared to an unsorted QR decomposition
[8]. However, the SQRD ordering strategy does not always lead to the perfect de-
tection sequence, but in many cases of interest the performance degradation is
small compared to the reduced complexity. Furthermore, whenever SQRD fails to
find the optimal order, the postsorting algorithm described in the sequel assures
the optimal sorting and thereby achieves the same performance as V-BLAST.

3A(a : b, c : d) denotes the submatrix of A with elements from rows a, . . . , b and columns c, . . . ,d.
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Postsorting algorithm (PSA). In this section we briefly present the postsorting al-
gorithm (PSA) introduced in [8]. In order to motivate the PSA, the structure of
the error covariance matrix in case of optimal sorting is investigated in more detail.
Due to the relation Q2 = σvR−1 introduced in (8.22) the error covariance matrix
(8.24) is given by

Φee,MMSE = Q2QH
2 , (8.26)

that is, Q2 is a square root of Φee,MMSE [7]. Thus, the pth diagonal element of
Φee,MMSE is proportional to the norm of the pth row of Q2. Recalling the optimal
ordering criterion, the last row of Q2 must have minimum norm of all rows. As-
sume that this condition is fulfiled, then the last row of the upper leftNT−1×NT−1
submatrix of Q2 must have minimum norm of all rows of this submatrix. In case
of the correct sorting this condition is accomplished by all upper left submatrices.

Now assume that this condition is not fulfiled for the matrix Q2. Then the row
with minimum norm and the last row (as well as the corresponding elements of p)
need to be exchanged at the expense of destroying the upper triangular structure.
However, by right multiplying the permuted version of Q2 with a proper unitary
NT ×NT Householder reflection matrix4 Θ, a block triangular matrix is achieved.
Finally, Q1 has to be updated to Q1Θ. Instead of permuting columns of R and left
multiplying with ΘH in each step, we can alternatively invert Q2 at the end of the
PSA, due to the relation R = 1/σvQ−1

2 . These ordering and reflection steps are then
iterated for the upper left (NT − 1) × (NT − 1) submatrix of the such modified
matrix Q2 and the first NT − 1 columns of the new matrix Q1, resulting in the QR
decomposition of the optimally ordered channel matrix H. The whole postsorting
algorithm is given in Algorithm 8.2.

Thus, a two-step decomposition and reordering procedure is achieved. This
scheme finds the optimum detection sequence in the sense of V-BLAST and there-
fore leads to the same performance. However, the computational complexity of
the whole detection process reduces to a fraction of the V-BLAST complexity and
is comparable to the effort of linear detection [8].

Performance evaluation. In order to compare the different detection schemes we
investigate the achieved bit error rates (BER) for a system with NT = 4, NR = 4,
and QPSK modulation. Eb denotes the average energy per information bit arriving
at the receiver, thus Eb/N0 = NR/(log2(|A|)σ2

v ) holds. (Due to this normalization
the antenna gain is canceled out.)

Figure 8.5a shows the performance of various ZF detection algorithms and
the BER of ML detection. As expected, the successive detection algorithms outper-
form the linear ZF detector. The impact of an optimized detection order becomes

4The Householder matrix for a 1 × n row vector a with complex elements is given by Θ = In −
(1 + ξ)uHu with the definitions u = (a − ‖a‖en)/‖a − ‖a‖en‖, en = [01,n−11] and ξ = uaH/auH . The
multiplication of a with Θ results in a vector consisting of n− 1 zero elements and one element equal
to the norm of a, that is, aΘ = [01,n−1‖a‖] holds.
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(1) kmin = NT

(2) for i = NT, . . . , 2
(3) for � = 1, . . . , i
(4) error(�) = ‖Q2(�, 1 : i)‖2

(5) end
(6) ki = arg min error(1, . . . , i)
(7) kmin := min(kmin, ki)
(8) if ki < i
(9) exchange rows i and ki in Q2

and columns i and ki in p
(10) end
(11) if kmin < i
(12) calculate Θ such that elements

of Q2(i, kmin : i− 1) become zero
(13) Q2(1 : i, kmin : i) := Q2(1 : i, kmin : i)Θ
(14) Q1(:, kmin : i) := Q1(:, kmin : i)Θ
(15) end
(16) end
(17) R = 1/σvQ−1

2

Algorithm 8.2. Pseudocode of MMSE-PSA-algorithm.

obvious by comparing the unsorted SIC, SQRD-SIC, and SQRD-PSA-SIC (or
equivalently V-BLAST). As SQRD-SIC does not always find the optimum detec-
tion order it results in a performance gap of about 1 dB for a BER of 10−3 compared
to SQRD-PSA-SIC. However, this degradation reduces for an increasing number
of receive antennas, for example, for a system with NR = 6 the difference is only
0.5 dB for a BER of 10−5 [11].

For the same system, Figure 8.5b shows the performance of the MMSE detec-
tion schemes. Comparing these results with the ZF schemes, a remarkable perfor-
mance improvement can be observed. Furthermore, the SQRD-SIC achieves the
same performance as the optimally sorted SQRD-PSA-SIC up to Eb/N0 = 10 dB.
In many cases of interest, the SQRD approach would be the first choice for im-
plementation due to the reduced complexity. However, the combination of SQRD
and PSA yields optimum SIC performance with a minimum of computational
complexity [8].

8.3. Blind source separation

Blind source separation (BSS) is a general problem in multisensor multiantenna
systems and aims at separating data streams from a mixture of signals that stem
from statistical independent sources. There are many applications for this problem
ranging from audio processing to medical applications and communications. In
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Figure 8.5. Bit error rate of (a) ZF and (b) MMSE detection of a system with NT = 4 antennas and
NR = 4 antennas, uncoded QPSK symbols.

this section applications to current MIMO communication systems are presented.
The investigated algorithms are termed blind, because the channel matrix H is not
known and no additional pilot symbols are used to separate the data streams.

8.3.1. Linear separation

For the instantaneous (nonconvolutive) channel model

r = Hs + v (8.27)

of linear separation, the problem can be stated as follows. Blindly find a matrix G
to be multiplied from the left-hand side onto r so that the statistically independent
data streams s can be recovered. This leads to a linear detection of the data streams.

Possible approaches to this BSS problem. In general there are three types of infor-
mation that can be utilized to solve the blind source separation problem [18]:

(i) non-Gaussianity of the source signals. This property is explicitly uti-
lized in all higher-order statistics-(HOS-)based algorithms and will be
explained later on in this text;

(ii) the different coloring of the source signals. This property can normally
not be exploited in a communication context, because communication
signals are designed to utilize a given bandwidth as good as possible and
therefore the signals are mostly white. This type of information is used in
the second order blind identification (SOBI) type of algorithms [19, 20];
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(iii) instationarity of the source signals (or channel). This can be applied to au-
dio and communication signals but requires fading or frequency-select-
ive channels. This can also be utilized in SOBI-like approaches [19, 20].

The general idea of the HOS-based source separation algorithms will be described
in this section in an illustrative way. We search for an NT × NR equalization ma-
trix G that exploits the fact that the signal streams contained in the vector of the
extracted signals

e = Gr (8.28)

are statistically independent. The general definition of statistical independence is
that the joint probability density function (pdf) is the product of the marginal
densities5

p
(
e1, e2

) = p
(
e1
) · p(e2

)
. (8.29)

In order to obtain simple algorithms from this abstract formulation, we need to
apply some approximations. The simplest (first- and second-order) approach to
this problem is to apply this multiplication property not to pdfs but to expectation
values

E
{
e1 · e2

} = E
{
e1
} · E

{
e2
}
. (8.30)

Because in most practical cases communication signals have a mean value of zero,
we can simplify this expression to

E
{
e1 · e2

} = 0. (8.31)

This can be interpreted as follows. The separation problem is split into two steps
to determine the equalization matrix G = BHW. A first approximation towards a
blind source separation is the decorrelation of the output signals with matrix W.
This computation step is also known as sphering, whitening, standardization, or
principle component analysis. With the decorrelation the separation problem is
not yet solved! The second step is to determine the unitary matrix B. This can be
accomplished using different algorithms and will be explained below.

The whitening matrix

W = D−1/2UH (8.32)

is calculated by taking the eigenvalue decomposition (EVD) Φrr = E{rrH} =
UDUH of the covariance of the received signals r. Consequently, the decorrelated

5In this section we use a simplified notation, where we do not distinguish between random vari-
ables and their realizations.
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signals can be obtained by

z = Wr, Φzz = E
{

zzH
} = INT . (8.33)

This procedure can be used in a similar way to limit z to the dominant subspace di-
rections (corresponding to the greatest eigenvalues) in order to reduce the number
of dimensions and the noise influence [21].

Since the decorrelation will lead to orthogonality but not statistical indepen-
dence, we have to search for further degrees of freedom. One remaining degree of
freedom is an NT × NT unitary matrix B, if we do not want to destroy the spatial
orthogonality of z, that is,

I
!= E

{
BHzzHB

} = BHE
{

zzH
}

B = BHB. (8.34)

The basic criterion to determine B is the maximization of the kurtosis of a
separated signal stream. The kurtosis is a fourth-order (auto-)cumulant

kurt{e} = E
{|e|4}− E

{
ee∗

}
E
{
ee∗

}− E{ee}E
{
e∗e∗

}− E
{
ee∗

}
E
{
e∗e

}
(8.35)

that can be interpreted as a fourth-order moment minus the Gaussian parts of the
distribution, so that its value is zero for Gaussian distributed signals. A mixture of
many independent signals (as it is provided by the MIMO channel) will lead to a
Gaussian distribution due to the central limit theorem of statistics. Therefore the
non-Gaussianity in terms of the kurtosis is one possible criterion that is utilized in
the two algorithms that are briefly explained below.6

JADE. The joint approximate diagonalization of eigenmatrices (JADE) algorithm
[21] is one common batch procedure that solves the separation problem. The
first step of this algorithm is to decorrelate the input streams as shown in (8.33).
The final separation is done by additionally utilizing fourth-order information.
Therefore, the JADE algorithm maximizes some elements of the cumulant matrix
cum(e�i , ei, e�j , el)7 obtained from the extracted signals e defined in (8.28)

max
B

NT∑
i, j,l=1

∣∣ cum
(
e�i , ei, e�j , el

)∣∣2
. (8.36)

This optimization problem is solved by an eigenvalue decomposition of the cu-
mulant matrix and a joint diagonalization of the dominant cumulant eigenvectors
rearranged as matrices. This diagonalization is done by a Jacobi-like procedure

6Compared to this illustrative explanation of BSS algorithms more mathematical ones can be
found in specialized textbooks [20, 22, 23] or in [24].

7cum(e�i , ei, e�j , el) is a fourth-order cross-cumulant of the extracted signals ep . Cumulants can
be interpreted as higher-order moments minus their Gaussian parts of the distribution. For further
details see [25].
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using Givens rotations and leads to the unitary NT × NT matrix B and the inde-
pendent data streams

e = BHW︸ ︷︷ ︸
G

r = BHz. (8.37)

For details see [21]. A similar approach that needs less computational effort is the
SSARS algorithm presented in [26].

FastICA. The FastICA algorithm is organized in a different way [10, 27] compared
with the JADE algorithm. The basic idea of this algorithm is to apply a blind source
extraction (BSE) for each component separately and to prevent the same signal
from being extracted multiple times. It starts with the whitening of the received
data as presented in (8.33).

In order to extract signal number p out of the whitened mixture z, a randomly
initialized extraction vector bp—a column vector of the NT × NT matrix B—is
generated. In order to preserve the signals to remain uncorrelated, B has again to
be a unitary matrix. Therefore, bp is constrained to form an orthonormal basis
using the knowledge of the vectors b1 · · ·bp−1 obtained in previous iterations. To
reach this goal matrix,

Bp = [
b1, b2, . . . , bp

]
(8.38)

containing the extraction vectors of the former iterations is built. The randomly
initialized vector bp is orthogonalized with respect to the space spanned by Bp−1

b′
p = bp − Bp−1BH

p−1bp (8.39)

and normalized to a length of one

b′′
p = b′

p∥∥b′
p

∥∥ . (8.40)

In order to determine bp we choose the maximization of the kurtosis of a single
signal as the criterion

max
bp

JFastICA,p
(
ep
) = max

bp

kurt
{∣∣ep∣∣4

}
= max

bp

kurt
{∣∣bH

p z
∣∣4

}
. (8.41)

This can be solved using a fixed-point iteration including the additional con-
straints (8.39) and (8.40) [10]. The resulting signal streams e can be extracted by
multiplying the received signal with the matrix of all collected extraction vectors
B = BNT according to (8.37).
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Figure 8.6. Block diagram of hybrid BSS detection.

Symbol decision. The algorithms presented in the previous sections only provide
statistically independent data streams e. Therefore the signal streams can be ro-
tated by an arbitrary phase factor—modeled by the diagonal matrix Ψ = diag [ψ1,
. . . ,ψNT ]—and can be permuted by a matrix P. In general the permutation prob-
lem cannot be solved without additional addressing in the data streams or other
side information, but the phase problem can be tackled by utilizing knowledge of
the symbol alphabet. If QPSK is used as a modulation form, the phase can be esti-
mated up to a discrete phase or quadrant ambiguity Ψ̂ = diag [ψ̂1, . . . , ψ̂p, . . . , ψ̂NT ],
ψ̂p ∈ {0,π/2,π, (3/2)π}, which can be corrected by

ep,derot[m] = ep[m] · e− j(1/4) arg {−∑M
m′=1 e

4
p[m′]} ∀p ∈ 1, . . . ,NT. (8.42)

The remaining discrete ambiguity Ψ̂ can be removed by differential modulation
forms or rotational invariant coding. But a decision of the pure symbols s is only
possible with a remaining discrete ambiguity.

8.3.2. Hybrid BSS detector

The blind algorithms presented in the previous section approximate only linear
spatial filters in order to separate the data streams. This reaches only a fractional
amount of the performance reached by iterative detection algorithms as can be
seen in Figure 8.5 for the nonblind case.

In this section we improve the detection performance by applying a cancela-
tion scheme. This utilizes the finite symbol alphabet that was only used marginally
up to now and results in a hybrid scheme that is initialized using a linear detection
and iteratively improved using a symbol detection in order to obtain a totally blind
scheme up to the point of the final symbol decision.8

We propose a system as depicted in Figure 8.6. We start with coarsely decided
symbols ŝ that were obtained using a blind separation method (e.g., JADE) and

8This scheme can also be applied in semiblind setups using very few pilot symbols.
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phase correction (8.42) described above.9 Using this data we produce a first chan-
nel estimate H̃. This channel estimate is used to detect the symbols once more
using the MMSE-SIC as presented in Section 8.2.3. Using the output of the SIC
detector for an improved channel estimation in combination with a further detec-
tion of the data will iteratively lead to better results.

The whole detection scheme remains blind, since this detection loop is blindly
initialized and the SIC algorithm only decides symbol positions with quadrant
ambiguities ŝ1, . . . , ŝNT . It has to be proven that despite these ambiguities the iter-
ations work properly. Therefore we assume that the matrix of estimated symbols
Ŝ = [ŝ[1], ŝ[2], . . . , ŝ[M]] achieved by the blind source separation is given by

Ŝ = QA
{
Ψ̂PS

}
. (8.43)

In (8.43), S = [s[1], s[2] · · · s[M]] is the matrix of transmitted symbols, P is a per-
mutation matrix, and Ψ̂ defines the diagonal matrix modeling the discrete quad-
rant ambiguities.

In order to use these BSS decision results Ŝ for a first channel estimation we
calculate

H̃ = R · Ŝ+ (8.44)

using the matrix of the received symbols R = [r[1], r[2] · · · r[M]]. After insert-
ing (8.43) and assuming only a few decision errors, we can simplify the channel
estimation [28] to

H̃ = H · PHΨ̂H. (8.45)

This leads to an estimation H̃ of the channel matrix H in a permuted form, where
every column contains a quadrant ambiguity.

If we use the estimated channel matrix H̃ again for the detection, we should
find the data streams permuted and rotated in the same way as in (8.43). To show
that this channel estimation leads to the same permutation and rotation, a simple
linear detection is used:

Ŝ = QA
{(

H · PHΨ̂H
)+

R
} = QA

{
Ψ̂PH+ · (HS + V

)}
≈ QA

{
Ψ̂PH+ · HS

} = QA{Ψ̂PS}.
(8.46)

9We need to start with a coarse data decision and cannot rely on the separation matrices B and W
since these matrices do perform well for separation but do not include a correct amplitude estimation
of the signals and therefore every cancelation scheme will fail without a first data decision.
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Figure 8.7. BER of hybrid BSS detector, NT = NR = 4, QPSK.

Therefore iterating between detection and channel estimation in a blind way leads
to a stable solution of H̃ with permutation and quadrant ambiguity.

If we apply this channel estimation in the SIC algorithm we get symbols ŝ
(Figure 8.6) with the corresponding discrete quadrant ambiguities Ψ̂, but this does
not influence our further detection and cancelation process, as long as we only
want to decide symbols from the alphabet A.

To summarize, we found an iterative estimation and detection scheme that
utilizes the finite symbol alphabet and remains completely blind.

Performance of the proposed iterative scheme. In order to show the feasibility of our
detection approach we present some BER results of the blind source separation and
the hybrid approach (Figure 8.6). As an initialization we exemplary use the output
of the JADE algorithm.

Figure 8.7 depicts the results of our simulations. Beside the reference curves of
the MMSE and zero-forcing linear detection the MMSE-SIC detection with ideal
known channel matrix was introduced as a further reference. The performance of
the blind JADE algorithm is between the ZF- and the MMSE-linear detection.

Using the proposed iterative scheme we can observe a gain of about 10 dB at a
bit error rate of 10−3 (hybrid BSS, iterations = 5) compared to the classical source
separation using the JADE algorithm only. For this improvement we need only 5
iterations of detection and channel estimation. We nearly reach the curve of the
SIC algorithm with perfectly known channel matrix H.10 We have to emphasize
that the whole detection scheme remains blind since no reference data is used in
order to gain the symbol decisions.

10We can even decrease the gap to the detection with ideally known channel matrix if we increase
the length M of the data block.
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Figure 8.8. Receiver setup in case of hybrid blind source separation.

8.4. Experimental results—measurements

In this section some experiments of transmissions using reference-based and blind
schemes are presented. As a MIMO demonstrator we used our multiple-antenna
system for ISM-band transmission (MASI). This system can be applied to realize
MIMO systems of up to 8 transmit and 8 receive antennas [29]. The transmission
experiments are executed in real time while the processing is done offline using an
interface to Matlab.

Figure 8.8 depicts the receiver setup considering exemplarily a source-separa-
tion-based transmission system. To realize transmissions, some practical problems
have to be solved. First of all the DC offset caused by the direct conversion front
end of the receiver has to be removed. A coarse frame detection based on a power
estimation is carried out. Timing and frequency estimation have to be realized
before the symbol rate processing can be accomplished.

In order to show the feasibility of the proposed approaches, the MIMO system
with NT = 4 antennas, and NR = 4 antennas, and QPSK signals is considered.
The presented measurements are carried out with a sampling frequency of fs =
50 MHz. With an oversampling of w = 8 we can consider the transmission channel
as nearly flat. The distance between transmitter and receiver was spanning two
office rooms.

8.4.1. Reference-based SIC detection

For the proposed scheme we investigate two examples for reference-based trans-
missions. Figure 8.9 shows the eigenvalues λp of HHH (λp = σ2

p with σp denoting
the singular value of H) and the signal spaces at the slicer inputs, corresponding to
Figure 8.4. Since four eigenvalues contribute to the signal transmission, the slicer
input signals correspond to the modulation alphabet leading to a sufficient signal
detection.
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Figure 8.9. Eigenvalue profile and signal space diagrams for good channel condition.

1 2 3 4
0

2

4

6

8

10

12

14

16
λp

−1 0 1

−1

0

1

Layer 3

−1 0 1

−1

0

1

Layer 1

−1 0 1

−1

0

1

Layer 4

−1 0 1

−1

0

1

Layer 2

Figure 8.10. Eigenvalue profile and signal space diagrams for bad channel conditions.

Figure 8.10 shows a second measurement in the same office environment
with slightly changed positions. In contrast to the first example, only two strong
eigenvalues contribute to the transmission. The third and fourth eigenvalues are
almost zero and the detection process fails.

8.4.2. Hybrid BSS detection with iterative refinement

In this section, we show the performance of the hybrid blind source-separation-
based detector by some measurements. The setup used is depicted in Figure 8.8. To
separate the independent components, the BSS algorithm is directly applied to the
oversampled signal. For this step we choose the JADE [21] algorithm as a spatial
separation approach. The separation leads to data streams which are processed in
the classical way like in single-antenna systems. This is a considerable advantage,
since well-known algorithms (e.g., for timing and for frequency synchronization)
can be applied for the separated layers of MIMO systems. We synchronize to the

A print edition of this book can be purchased at
http://www.hindawi.com/spc.3.html

http://www.amazon.com/dp/9775945097

http://www.hindawi.com/spc.3.html
http://www.amazon.com/dp/9775945097


168 Architectures for reference-based and blind multilayer detection

−2 0 2
−2

0

2

−2 0 2

−2

0

2

−2 0 2

−2

0

2

−2 0 2

−2

0

2

Before BSS

−2 0 2

15 dB−2

0

2

−2 0 2

0.2 dB−2

0

2

−2 0 2

9.1 dB−2

0

2

−2 0 2

19.6 dB−2

0

2

After BSS

−2 0 2

10.5 dB−2

0

2

−2 0 2

12.6 dB−2

0

2

−2 0 2

13.7 dB−2

0

2

−2 0 2

22.6 dB−2

0

2

5 iterations

Figure 8.11. Signal constellations before and after blind source separation and after 5 iterations, to-
gether with blindly estimated SNR.

symbol timing using the method presented in [30]. In order to determine the car-
rier frequency offset we apply a non-linearity and frequency estimation.

Figure 8.11 depicts the signal constellation at symbol rate before separation,
after separation, and after 5 iterations of the scheme presented in Figure 8.6. We
have included estimations of the SNR of the symbol constellation before the deci-
sion devices [31]. In Figure 8.11 one of the signal constellations after BSS consists
of noise only. Using the proposed iteration scheme with SIC detection and itera-
tive channel estimation, even this constellation can be resolved to QPSK. Denote
that the overall SNR has been improved.

8.5. Conclusions

Within this contribution, architectures for reference-based and blind detection of
multilayer systems have been investigated. In case of known channel state infor-
mation at the receiver a computational efficient detection algorithm has been pro-
posed. Without any channel state information, we proposed a hybrid combina-
tion of blind source separation with successive interference cancelation. To ensure
the feasibility of the distinct approaches, real-world transmissions have been car-
ried out. It has been shown that the measurements correspond to the predicted
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theoretical results. The feasibility of the proposed schemes have been shown in an
indoor office scenario.

Abbreviations

BER Bit error rate

BSE Blind source extraction

BSS Blind source separation

CSI Channel state information

EVD Eigenvalue decomposition

HOS Higher-order statistics

JADE Joint approximate diagonalization of eigenmatrices

LD Linear detector

MASI Multiple-antenna system for ISM-band transmission

MIMO Multi-input multi-output

ML Maximum likelihood

MSE Minimum mean square error

MMSE-SIC Minimum mean square error-successive interference cancelation

PSA Postsorting algorithm

SIC Successive interference cancelation

SINR Signal-interference-and-noise ratio

SISO Single-input single-output

SNR Signal-to-noise ratio

SOBI Second-order blind identification

SQRD Sorted QR decomposition

SVD Singular value decomposition

V-BLAST Vertical Bell Labs Layered Space-Time

ZF Zero forcing

ZF-SIC Zero-forcing successive interference cancelation
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