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Abstract—Compressed Sensing (CS) is an emerging field in
communications and mathematics that is used to measure few
measurements of long sparse vectors with the ability of lossless
reconstruction. In this paper we use results from channel coding
to design a recovery algorithm for CS with a deterministic
measurement matrix by exploiting error correction schemes. In
particular, we show that a generalized Reed Solomon encoding-
decoding structure can be used to measure sparsely representable
vectors, that are sparse in some fitting basis, down to the
theoretical minimum number of measurements with the ability of
guaranteed lossless reconstruction, even in the low dimensional
case.

Index Terms—Compressed Sensing, Reed Solomon, Determin-
istic, Sparsity

I. INTRODUCTION

A. Motivation

There has been considerable interest in the emerging field
of Compressed Sensing (CS). The main task of CS is to
reconstruct long sparsely representable vectors out of few
linear measurements , described by a measurement matrix [1].
This representability occurs in very many different disciplines
like communications, electronics, medicine and physics with
uncountable applications. One main challenge of CS is the
design of good measurement matrices. Usually sub Gaussian
random matrices are used, that are well known for good
recovery in high dimensions. Sadly in many applications this
is not feasible to implement or the dimension of the problem is
too low for random number generators to work properly. A po-
tential solution are deterministic measurement matrices. They
are easier to implement but so far are known for decreased
measurement efficiency [2]. This work was motivated by the
search for optimal deterministic matrices and corresponding
reconstruction algorithms, that combine the advantages of both
worlds. Bosserts work on combining channel coding theory
with Compressed Sensing [3] inspired us to take the same
perspective and use this well studied field for solving the CS
problem. Especially Complex Reed Solomon (RS) codes are
well known for their high error correcting capabilities [4].
The fact that RS codes can decode sparse error vectors can
be utilized to conquer the CS setting. Sadly the state of the
art algorithms only works for vectors, that directly possess a
sparse number of nonzero elements. This is due to the fact,
that RS codes are used to correct sparse errors as they are

common in communications.
To improve upon the results in [3] and [5], we go one step
further by extending the idea of combining RS codes with
Compressed Sensing to sparsely representable vectors, that
can be sparse in a broader set of bases. This is done by
generalizing the kind of errors that RS codes are capable of
correcting and directly translating this to a CS scheme.

B. Main Contribution

Our main contribution is the derivation of the CS re-
construction algorithm RSCS with a corresponding deter-
ministic measurement matrix, that is inspired by Complex
Reed Solomon decoding. With x = Ψc and c being k-
sparse and requirements towards Ψ, that are fulfilled by most
common representations (especially canonical and Fourier),
this algorithm is guaranteed to retrieve x with the theoretical
minimum of 2k measurements, even in the low dimensional
case. The number of measurements is independent of the
length of x, which makes it increasingly effective for very
sparse vectors. Furthermore, there is no need for tuning
parameters. The algorithm includes an intrinsic estimator for
the usually unknown value k which makes the algorithm easy
and efficient to use.

C. Structure

The paper is structured as follows: In section II the CS
problem is formally stated and the connection between CS
and Reed Solomon codes is explained in the canonical case. In
section III this combination is extended towards more general
bases. Section IV shows numerical results comparing our
contribution to state of the art algorithms. Section V concludes
the paper.

II. THEORETICAL BACKGROUND

A. Compressed Sensing

Formally spoken, the Compressed Sensing problem is the
reconstruction of x out of few measurements

y = Φx (1)

for the dense vector x ∈ CN being sparsely representable
(∃Ψ ∈ CN×N , s.t. x = Ψc with ||c||0 = k � N). The
measurement matrix Φ is a m ×N -matrix with m < N and



consequently y ∈ Cm. We define I := {i ∈ N|ci 6= 0} as
the support of c and ci as the corresponding i-th entry of I,
formally ci := cI(i). The equation system (1) has an infinite
number of solution, so it should be solved in a way, that the
sparsest solution emerges.
The joint properties of A := ΦΨ determine if a solution of
(1) can be found. Because many relevant problems can be cast
in this form, a firm mathematical theory with requirements
towards A is needed that guarantees perfect reconstruction
of every arbitrary sparse vector x out of its corresponding
measurements y. To classify if a certain matrix is suited for
this problem, Candes [6] introduced the now ubiquitous Null
Space Property:

Theorem 1 (Null Space Property). Let A ∈ Rm×N be
a measurement matrix and y ∈ Rm be the corresponding
measurement. Iff

spark(A) > 2k (2)

there is an unique k-sparse x ∈ RN , s.t. y = Ax. The spark is
the minimum number of linear dependent columns. Formally
that means

spark(A) = min
x6=0
||x||0 s.t. Ax = 0 (3)

Due to spark(A) ≤ m+ 1, it follows that

m ≥ 2k (4)

needs to be fulfilled for unique recovery. In other words, m =
2k is the theoretical minimum of measurements that suffice
for the guaranteed reconstruction of every k-sparse vector.

Proof. Let spark(A) ≤ 2k. Then a vector v ∈null(A)
exists, s.t. ||v||0 ≤ 2k. Set x1 and x2 in a way, that
||x1||0 = ||x2||0 = k and v = x1 − x2. Then

0 = Av = A(x1 − x2)⇒ Ax1 = Ax2 (5)

In other words, x1 and x2 can not be uniquely recovered,
because they are mapped onto the same y.
The same reasoning can be used to show that two different
k-sparse vectors will never be mapped onto the same y as
long as spark(A) > 2k.

Randomly chosen matrices like subgaussian fulfill the NSP
with high probability, so many researchers use these matrices
A = ΦΨ, that interprets Ψ as part of the sensing matrix so
that the reconstruction task shifts from x to c. This way, only
the easier task of reconstructing the sparse vector c remains.
Sadly this does not allow for an easy implementation because
the reconstruction algorithm needs to be aware of the random
matrix that was used at the measurement step. In this paper, to
obtain an efficient hardware friendly algorithm we concentrate
on deterministic Compressed Sensing by defining a measure-
ment matrix Φ through the theory of Complex Reed Solomon
Codes. This way the deterministic matrix can be hard coded
in the encoder and the decoder. With this deterministic matrix
Ψ has to be specifically considered in the reconstruction
algorithm.

B. Complex Reed Solomon Coding

To present the main reasoning more clearly, in this section
Ψ is assumed to be the identity matrix E. In other words
x = c is directly sparse in the canonical basis.
Complex Reed Solomon (RS-) codes belong to the family of
cyclic block codes [7]. Originally, channel codes are used to
protect messages against random occurring errors by adding
redundancy to the information. Based on this redundancy, a
decoder can find or even correct errors. Reed Solomon codes
in particular are commonly used because they can correct a
high number of burst errors [8]. Due to this fact, RS codes are
well suited for fading channels in wireless communications. If
only a few of the complex code symbols get corrupted, they
can be completely restored, regardless of the actual complex
value in each incorrect symbol.
While RS codes are well suited for error correction, they
can be used for the CS problem of reconstructing a sparse
vector from few measurements as well. Figure 1 illustrates
the connection of RS decoding and CS reconstruction. The
upper part describes the RS view. RS decoders with 2k
parity symbols can correct up to k errors at any positions
and amplitudes, so especially the total erasure e = −x is a
correctable error, if x is sparse. The lower part shows a CS
interpretation of the problem. A sparse vector x is measured by
a matrix Φ to obtain 2k measurements p which are sufficient
to reconstruct x even with noise.
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Fig. 1. Schematic for measurement and reconstruction of sparse vectors for
Ψ = E

In other words, the CS algorithm can just measure the



2k parity symbols of a systematic Reed Solomon encoding
scheme and guarantee the recovery, if x is k-sparse. The
number of parity symbols is completely independent of the
underlying length of the original vector x, so its well suited
for long vectors with k � N . This scheme has a compression
rate of 2k

N , being increasingly effective for very sparse vectors.
More formally, we define x as the original sparse vector,
α = exp(2πj/N) as an element of order N , G as the genera-
tor matrix of a RS code and [x,p] = Gx as the corresponding
RS code word with parity symbols p. With [f ](t) denoting
the evaluation of the polynomial with coefficients [f ] at t, the
parity symbols need to fulfill [x,p](αj) = 0 ∀j = 1, . . . , 2k.
Further defining e as the additive error and r = [x,p]+[ex, ep]
as the received vector, we can use the standard RS syndrome
decoding idea, i.e.

Sj = r(αj) = [x,p](αj)︸ ︷︷ ︸
=0

+[ex, ep](αj) for j = 1, . . . , 2k

(6)
to reconstruct the error vector. In terms of CS only the
parity part is known, meaning that the systematic part can be
seen as totally erased by an error vector [ex, ep] = [−c,0].
Thus, the decoder simply has to find e to reconstruct x.
Consequently, the decoding is actually only based on this
erasure hypothesis, so the syndromes can be directly computed
at the CS measurement step. Formally, this results in S0

...
S2k−1

=

 −x(α0)
...

−x(α2k−1)

=−

 α0 · · · α0N

...
. . .

...
α2k−1 · · · α(2k−1)N

x.

(7)
In this way, the complete encoding step is cast in the same
way as in equation (1), the standard CS problem. In other
words, we can interpret the computation of syndromes as a CS
compatible sensing matrix Φ with N columns and 2k � N
rows. Namely Φ is the Fourier matrix

Φ =

 α0 · · · α0N

...
. . .

...
α2k−1 · · · α(2k−1)N

 (8)

with known high RIP qualities [9] in comparison to other de-
terministic matrices. Because of the equivalence of both views,
this sensing matrix still allows us to use known algorithms like
the Berlekamp Massey algorithm [4] for the reconstruction
of the original sparse vector, effectively combining the two
theories. The number of measurements m = 2k is the
theoretical minimum for guaranteed recovery and independent
of the length of the original vector x.
To really combine CS with RS, one crucial detail needs to
be clarified. The previous derivations all assumed x to be
sparse, but CS generally includes the vast group of sparsely
representable vectors of the form

x = Ψc, c sparse. (9)

In general, there are not exactly k nonzero elements in x but k
columns of Ψ are active, e.g. k frequencies. For the algorithm

to still work in this more general case, it needs to be extended
as presented in the next section.

III. COMPLEX REED SOLOMON RECONSTRUCTION OF
SPARSELY REPRESENTABLE VECTORS

A. Recap of RS decoding

To explain the extension of the reconstruction algorithm in
[3] we again start with the canonical basis. That is, at first x
has the form

x =

k∑
i=1

ciEI(i) (10)

with Ei being the columns of the identity matrix. In other
words, x is sparse in the canonical basis. The first main
step of the standard Complex Reed Solomon decoder is the
calculation of the error locator polynomial (ELP) of the form

Λ(t) =

k∏
i=1

(t−αI(i)) = tk+Λ1t
k−1+Λ2t

k−2+· · ·+Λk (11)

with t = αI(i) as roots for the active set I of nonzero entries.
Inserting the roots leads to k equations for the parameters
Λ1, . . . ,Λk:α

I(1)·(k−1) · · · αI(1)·0

...
. . .

...
αI(k)·(k−1) · · · αI(k)·0


Λ1

...
Λk

 =

−α
I(1)·k

...
−αI(k)·k

 (12)

The syndromes (7) that can be used to evaluate these equations
are of the form

Sj = Φjx =
(
αj · · · αjN

)( k∑
i=1

ciEI(i)

)
=

k∑
i=1

ciα
I(i)·j

(13)
so multiplying by ci and different powers of α before adding
the rows in (12) leads toSk−1k · · · S0

...
. . .

...
S2k−2 · · · Sk−1


Λ1

...
Λk

 =

 −Sk
...

−S2k−1

 (14)

The rank of this system is the number of nonzero elements
of x. If this number is less than the maximum k = m/2, the
matrix has to be transformed appropriately to get a solvable
full rank system. With Λi given the generalized ELP can be
computed. The roots of the ELP now describe the active set
I. With I known, the corresponding ci can be easily derived
by L2 minimization.

B. Modification to sparsely representable vectors

Now we extend this algorithm to x of the form

x =

k∑
i=1

ciΨI(i) (15)

for arbitrary Ψ. We propose a modification of the error locator
polynomial to take this change in account. With the definition
Aα = diag(α, α2, . . . , αN ) we propose the generalization

ΛΨ(t) = 1
(
1 ·Ak

α + Λ1A
k−1
α + . . .+ Λk

)
t (16)



with t = ΨI(i) as root for the active set I. Because t ∈ CN×1
it follows that

ΛΨ(t) : CN×1 → C1 (17)

Interpreting the condition for the roots as a linear equation
system with

ΨI(i)(α
j) =

(
α1·j · · · αN ·j

)ΨI(i),1
...

ΨI(i),N

 (18)

leads toΨI(1)(α
k−1) · · · ΨI(1)(α

0)
...

. . .
...

ΨI(k)(α
k−1) · · · ΨI(k)(α

0)


Λ1

...
Λk

=

−ΨI(1)(α
k)

...
−ΨI(k)(α

k)


(19)

This extension is consistent, because if Ψ is the identity
matrix, the modified equation system and the corresponding
error locator polynomial lead to the exact same result as the
original version. Namely

ΛE(ei) = Λ(αi) (20)

But if Ψ is not equal to E as is the case in the general setting,
this modification can still be used to utilize the syndromes,
if Ψ meets one requirement. Multiplying the equations by
ci before adding them leads to the corresponding syndrome
equation

Sj = Φjx =
(
αj · · ·αjN

)( k∑
i=1

ciΨI(i)

)
(21)

=

k∑
i=1

ciΨI(i)(α
j) (22)

as in equation (13), so

(
Sk−1 · · · S0

)Λ1

...
Λk

 =
(
Sk
)

(23)

emerges. If for all Ψi the condition

ΨI(i)(α
j) = ΨI(i)(α)j , j = 1, . . . ,m (24)

is fulfilled, the same idea of multiplying by ci and different
powers of ΨI(i)(α) can be used to also get the higher
syndrome equations, so that the same system as in (14) results.
In other words, 2k measurements are sufficient for the perfect
reconstruction of the original vector by solving the equation
system for Λi and testing the columns of Ψ in the modified
ELP. This again also effectively solves the problem of finding
the unknown sparsity parameter k. Analog to the normal RS
decoder, the rank of the linear equation system of syndromes
determines the sparsity, so the sparsity does not need to be
known at the decoder entrance.

C. Making use of the condition

The condition

ΨI(i)(α
j) = ΨI(i)(α)j , j = 1, . . . ,m (25)

seems odd at first, but can be transformed into a design
criterion

ΨI(i) = IFFT

 β
...
βm

 (26)

for any β ∈ C as the IFFT matrix is the Vandermonde matrix
built from xj = αj . Due to this fact, ΨI(i)(α

j) can be
expressed as the j-th row of FFT(ΨI(i)) (see (18)). In other
words, any ΨI(i) that fulfills (26) fulfills condition (25). The
identity matrix Ψ = E can be built naturally by setting β = αi

for each column of Ei. Setting β on the complex unity sphere
leads to periodic functions that form Fourier bases of different
frequencies.
As there are numerous situations where researchers want to
use CS and have control over the design of Ψ, this condition
can be easily fulfilled (e.g. the CS-MUD setting [10]). The
next section now compares the RS algorithm with fitting Ψ
as described above against existing algorithms.

IV. COMPARISON TO OTHER CS ALGORITHMS

We compare our RS algorithm with the greedy Orthogonal
Matching Pursuit (OMP, [11]) and the more sophisticated
Smoothed L0 (SL0, [12]) algorithm. To show a fair com-
parison, the dictionary Ψ is created as described in (26) for
random β and tested for the RS algorithm, but other algorithms
will perform on their preferred sub Gaussian sensing matrices.
Figure 2 shows the phase diagram for N = 100.
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Fig. 2. Phase diagram for RS, SL0 and OMP, N = 100 for even numbers
of m.

In figure 2, for every relative number of measurements m/N
the relative sparsity k/M is plotted that could be perfectly
reconstructed in more than 50% of the time. For odd numbers,



due to m/2 /∈ N, the optimal reconstruction line is bm2 c/m. As
this values are disturbing the m

2 /m = 1
2 line of even numbers,

only the results for even numbers are plotted. The RS algo-
rithm easily outperforms the other algorithms in this setting.
The theoretical maximum of k/m = 0.5 ≡ m = 2k (as stated
in theorem 1) is achieved for every m/N value. In comparison
the OMP and SL0 algorithms are increasing in performance
with an increased number of measurements. While the SL0
algorithm outperforms the OMP by a vast margin for few
measurements, both are getting equally performant in the high
m/N region. But still even at their peak, both algorithms
fall short in comparison to our new contribution. Note, that
an extreme case like N = 10000,m = 2, k = 1 without
noise can still be solved by our new approach, which makes
it increasingly performant in very sparse settings. But as men-
tioned in the theoretical derivation before, this huge increase in
reconstruction capabilities comes with the cost of being well
tailored to the dictionary condition ΨI(i)(α

j) = ΨI(i)(α)j ,
while the effect of the dictionary for SL0 and OMP are nearly
neglectable.
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Fig. 3. Number of perfect recoveries for N = 100,m = 50

Figure 3 shows a bisection of figure 2 at m = 50. That
means, for N = 100 and m = 50, the percentage of perfect
recoveries is depicted against the sparsity k. Here the steep
transition at k = 25 = m/2 is very present. In CS the
steepness of the phase transition depicted in figure 3 will
usually increase with N → ∞ keeping the value at 0.5
constant. As can be easily seen, our approach shows a sudden
transition from perfect reconstruction to failure already at low
N . Also, this transition always occurs at m = 2k for even
m. OMP and SL0 show the expected behaviour at much
lower k and need m ≥ 5k for equivalent reconstruction
performance. Especially for low dimension scenarios this is a
huge advantage. Random matrices can only be guaranteed to
be incoherent enough for N →∞, so there are not well suited
for small N . This shows that combined with our algorithms,
deterministic Fourier matrices outperform random matrices

by a fair margin, if Ψ can be cast in a suitable form (see
(25)).

V. CONCLUSION

We showed that a generalization of the Reed Solomon
decoding algorithm can be used as a powerful CS algorithm
that only needs the theoretical minimum number of 2k mea-
surements for guaranteed reconstruction and even works for
sparsely representable vectors that are sparse in a fitting basis.
Future work will lower the requirement towards Ψ even further
to transform it into an universal CS algorithm.
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