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Abstract—Compressed Sensing (CS) is an emerging field in
communications and mathematics that is used to measure few
measurements of long sparse vectors with the ability of lossless
reconstruction. In this paper we use methods from channel
coding to create the CS recovery algorithm RSCS in the Multiple
Measurement Vector case (MMV) that uses a specifically con-
structed measurement matrix. In particular, we use a modified
Reed Solomon encoding-decoding structure to measure sparsely
representable vector systems down to the theoretical minimum
number of measurements. We prove that the reconstruction is
guaranteed, even in the low dimensional case.

Index Terms—Compressed Sensing, Reed Solomon, MMV,
Deterministic CS

I. INTRODUCTION

A. Motivation

Compressed Sensing (CS) has sparked considerable interest
in the last years, especially the Multiple Measurement Vector
(MMV) case, that is considering several correlated vectors at
once. The main task of CS is to reconstruct long sparsely rep-
resentable vectors out of few linear measurements, described
by a measurement matrix [1]. Many different disciplines like
electronics, medicine, physics and communications can make
good use of this concept, because it naturally arises in uncount-
able applications. One of the main challenges in the CS theory
is the design of good measurement matrices. Usually random
(sub Gaussian) matrices are used, that are well studied and
known for good recovery in high dimensions. Sadly in many
applications the dimension of the problem is not high enough
for pseudo random number generators to work properly or
they are not practical to implement. A potential solution is
a deterministic choice for the measurement matrix, but an
explicit construction that shows good recovery properties is
still an open research topic [2], [3], [4]. This work was mo-
tivated by the search for an optimal reconstruction algorithm
that uses easily constructed deterministic matrices and still has
good recovery properties in small and large dimensions. Early
work of combining channel coding theory with Compressed
Sensing [5], [6] inspired us to take the same approach and use
this well studied field to tackle the CS framework. Especially
Complex Reed Solomon (RS) codes are prominent for their
high error correcting capabilities of sparse error vectors [7].
This fact can be utilized to solve the CS problem. State of the

art algorithms exist that combine Reed Solomon codes with
CS, but they only work in the identity basis. To improve upon
the results in [8] we go one step further by extending this idea
to sparsely representable vectors that can be sparse in any
arbitrary basis.

B. Main Result

Our main result is the derivation of the CS reconstruction
algorithm RSCS with a corresponding deterministic mea-
surement matrix, that is inspired by Complex Reed Solomon
decoding. Let X = ΨC, X ∈ CN×L consist of L vectors
with N entries each and C being k-row sparse. Then with
no requirements towards Ψ other than a linear independence
of the columns of Ψ this algorithm is guaranteed to retrieve
X with the theoretical minimum of k + 1 measurements for
each of the L vectors if L ≥ k, even in the low dimensional
case. The number of measurements is independent of Ψ and
of the length of X which makes it increasingly effective for
very sparse vectors. Furthermore, there is no need for tuning
parameters. The algorithm includes an intrinsic estimator for
the usually unknown value k which makes the algorithm easy
and efficient to use.

C. Structure

The paper is structured at follows: In section II the CS
problem is formally stated and the connection between CS
and Reed Solomon codes is explained in the canonical case.
In section III this combination is extended towards arbitrary
bases. Section IV shows numerical results comparing our
contribution to state of the art algorithms. Section V concludes
the paper.

II. THEORETICAL BACKGROUND

A. Compressed Sensing

Formally spoken, the Multiple Measurement Vector Com-
pressed Sensing (MMV-CS) problem is the reconstruction of
X out of few measurements

Y = ΦX (1)

for the dense vector system X ∈ CN×L being row sparsely
representable. Formally this means

∃Ψ ∈ CN×N , s.t. X = ΨC with ||Cl||0 = k � N (2)



for all columns of C (l ∈ 1, · · · , L) and

supp Ci = supp Cj ∀i, j ∈ 1, · · · , N. (3)

The measurement matrix Φ is an m×N -matrix with m < N
and consequently Y lies in Cm×L. We define

I := {i ∈ N|Ci 6= 0 ∀i ∈ 1, · · · , N} (4)

as the k dimensional support of C and Ci as the corresponding
i-th row of CI , formally Ci := CI(i).
To further differentiate between the k dimensional support and
the N dimensional vector space all other vectors will still use
the I(i) subset notation.
The equation system (1) can not be solved uniquely, instead
the sparsest solution C should be used. The joint properties of
A := ΦΨ then determine the recovery properties. For this a
firm mathematical theory towards A is needed that can guar-
antee perfect recovery of every sparsely representable vector
system X when specific conditions are fulfilled. To classify if
a given matrix is well suited Candes [9] introduced the now
ubiquitous Null Space Property, that can be reformulated for
the MMV case [10]:

Theorem 1 (Null Space Property). Let A ∈ Rm×N be a
measurement matrix and Y ∈ Rm×L be the corresponding L
measurements. If

spark(A) ≥ k + dk/Le (5)

(with dke as rounding up k to the next integer) there is an
unique k-row sparse X ∈ RN×L, s.t. Y = AX. The spark is
the minimum number of linear dependent columns. Formally
that means

spark(A) = min
x6=0
||x||0 s.t. Ax = 0 (6)

Due to spark(A) ≤ m, it follows that

m ≥ k + dk/Le (7)

needs to be fulfilled for unique recovery. For L ≥ k, this means
that

m ≥ k + 1 (8)

is needed. A proof can be found in [10].

Randomly chosen matrices like subgaussian ones have full
spark (spark(A) = m) with high probability, so many re-
searchers use these matrices as sensing matrix Φ. This way
we can make the assumption towards Ψ that A := ΦΨ is
still subgaussian, so that the reconstruction task shifts from
the complicated dense X to the sparse C. This way, only the
easier task of reconstructing the sparse vector C remains.
Sadly this does not allow for an simple implementation
because the reconstruction algorithm needs to be aware of the
random matrix that was used to measure. To obtain an efficient
hardware friendly algorithm in this paper we concentrate on
finding deterministic measurement matrices. The theory of
Complex Reed Solomon Codes allows us to define such a
matrix Φ but for this to work a careful design of the algorithm

needs to be considered. This way the deterministic matrix can
be hard coded in the encoder and the decoder, leading to a
simple and efficient design. The next subsection will introduce
Complex Reed Solomon (RS) coding and then combine CS
with the RS theory.

B. Interleaved Complex Reed Solomon Coding

To clarify the main idea, in this section Ψ is assumed to
be the identity matrix I and the number of signals L is set to
be equal to the sparsity k. In other words the vector system
X = C is directly sparse in the canonical basis. Later on we
will generalize these conditions.
Complex Reed Solomon (RS-) codes belong to the family of
cyclic block codes [11]. If only a few of the complex symbols
are erroneous, they can be reconstructed, regardless of the
actual complex number in each incorrect symbol. To combine
CS with CRS codes, we interpret the systematic part of the
interleaved code as the sparse vector system X, while the
measurements Y are interpreted as the parity symbols. This
way, each complex number in our original sparse vectors X is
one RS-symbol. Interleaved Complex RS codes are prominent
for correcting Lk symbol errors for L ≥ k when k + 1
parity symbols are given for each individual vector, if the
positions and values of the erroneous symbols are unknown.
Figure 1 illustrates the connection of RS decoding and CS
reconstruction for L = k.
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Fig. 1. Schematic for measurement and reconstruction of sparse vectors for
Ψ = I

The left part shows a CS interpretation of the problem. A
sparse vector system X is measured by a matrix Φ to obtain
L(k+dL/ke) = k(k+1) measurements P which are sufficient
to reconstruct X even with noise.



The right part describes the RS view. RS decoders with
L(k + dL/ke) = k(k + 1) parity symbols can correct up to
Lk errors at any k positions and amplitudes, so especially
the total erasure of the systematic part [EX,EP] = [−X,0]
is a correctable error, if X is row sparse. In other words, for
L ≥ k the CS algorithm can measure k+ 1 parity symbols of
each of the L systematic Reed Solomon encoding schemes and
guarantee the recovery, if C is k-row sparse. The number of
parity symbols is independent of the length of the original
vector system X, so its well suited for long vectors with
k � N . To better formally introduce the RS coding idea, we
define α = exp(2πj/N) as the generating element of order
N , G as the generator matrix of the RS code and the encoding
as

[Xl,Pl] = GXl (9)

for each corresponding RS code word (l = 1, · · · , L) with
parity symbols P. With [f ](t) denoting the evaluation of the
polynomial with coefficients [f ] at t, the parity symbols need
to fulfill the equation

[Xl,Pl](α
j) = 0 ∀j = 1, . . . , k + 1, l = 1, . . . , L. (10)

Further defining El as the additive error and Rl = [Xl,Pl] +
[El,X,El,P] as the received vector, we can use the standard
RS syndrome decoding idea, i.e.

Sj = Rl(α
j) = [Xl,Pl](α

j)︸ ︷︷ ︸
=0

+[El,X,El,P](αj) (11)

for j = 1, . . . , k + 1, l = 1, . . . , L to reconstruct each
error vector. In terms of CS only the parity part is known,
meaning that the systematic part can be seen as totally erased
by an error vector [EX,EP] = [−X,0]. Thus, the decoder
simply has to find E to reconstruct the total system X.
Consequently, the decoding is actually only based on this
erasure hypothesis, so all syndromes can be directly computed
by one CS measurement step. Formally, this results inS0

...
Sk

=

−X(α0)
...

−X(αk)

=−

α
0 · · · α0N

...
. . .

...
αk · · · αkN

X. (12)

In this way, the complete encoding step is cast in the same
way as in equation (1), the standard CS problem. In other
words, we can interpret the computation of syndromes as a CS
compatible sensing matrix Φ with N columns and k+1� N
rows. Namely Φ is the Fourier matrix

Φ =

α
0 · · · α0N

...
. . .

...
αk · · · αkN

 (13)

with known full spark [12], thus fulfilling theorem 1. Because
of the equivalence of both views, this sensing matrix still
allows us to use known algorithms like the Berlekamp Massey
algorithm [7] for the reconstruction of the original sparse
vector, effectively combining the two theories. The number
of measurements m = k + 1 is the theoretical minimum

for guaranteed recovery and independent of the length of the
original vector system X.
To really combine CS with RS, one crucial detail needs to
be clarified. The previous derivations all assumed X to be
sparse, but CS generally includes the vast group of sparsely
representable vectors of the form

X = ΨC, C sparse. (14)

In general, there are not exactly k nonzero elements in X but k
columns of Ψ are active, e.g. k frequencies. For the algorithm
to still work in this more general case, it needs to be extended
as presented in the next section.

III. COMBINATION OF INTERLEAVED COMPLEX REED
SOLOMON CODES AND MMV CS

A. Recap of RS decoding
To explain the extension of the reconstruction algorithm in

[8] we again start with the canonical basis. That is, at first
each vector Xl has the form

Xl =

k∑
i=1

Ci,lII(i) (15)

with II(i) being the columns of the identity matrix. In other
words, each column of X is sparse in the canonical basis. The
first main step of the standard Complex Reed Solomon decoder
is the calculation of the error locator polynomial (ELP) of the
form

Λ(t) =

k∏
i=1

(t−αI(i)) = tk+Λ1t
k−1+Λ2t

k−2+· · ·+Λk (16)

with t = αI(i) as roots for the active set I of nonzero entries.
Inserting the roots leads to k equations for the parameters
Λ1, . . . ,Λk:α

I(1)·(k−1) · · · αI(1)·0

...
. . .

...
αI(k)·(k−1) · · · αI(k)·0


Λ1

...
Λk

 =

−α
I(1)·k

...
−αI(k)·k

 (17)

The syndromes (12) that can be used to evaluate these equa-
tions are of the form

Sj,l = ΦjXl =
(
αj · · · αjN

)( k∑
i=1

Ci,lII(i)

)
=

k∑
i=1

Ci,lα
I(i)·j

(18)
so multiplying by Ci and different powers of α before adding
the rows in (17) leads to Sk−1 · · · S0

...
. . .

...
S2k−2 · · · Sk−1


Λ1

...
Λk

 =

 −Sk
...

−S2k−1

 (19)

The rank of this system is the number of nonzero elements
of X. If this number is less than the maximum k = m/2, the
matrix has to be transformed appropriately to get a solvable
full rank system. With all Λi being computed the generalized
ELP can be computed. The roots of the ELP now describe
the active set I. With I known, the corresponding Ci can be
easily derived by L2-minimization.



B. Modification to sparsely representable vectors

Now we extend this algorithm to Xl of the form

Xl =

k∑
i=1

Ci,lΨI(i) (20)

for arbitrary Ψ. We propose a modification of the error locator
polynomial to take this change in account. With the definition
Aα = diag(α, α2, . . . , αN ) we propose the generalization

ΛΨ(t) = 1
(
1 ·Ak

α + Λ1A
k−1
α + . . .+ Λk

)
t (21)

with t = ΨI(i) as root for the active set I. Because t ∈ CN×1
it follows that

ΛΨ(t) : CN×1 → C1 (22)

With the equation

ΨI(i)(α
j) =

(
α1·j · · · αN ·j

)
ΨI(i) (23)

we can interpret the condition for the roots as a linear equation
asΨI(1)(α

k−1) · · · ΨI(1)(α
0)

...
. . .

...
ΨI(k)(α

k−1) · · · ΨI(k)(α
0)


Λ1

...
Λk

=

−ΨI(1)(α
k)

...
−ΨI(k)(α

k)


(24)

This extension is consistent, because if Ψ is the identity
matrix, the modified equation system and the corresponding
error locator polynomial lead to the exact same result as the
original version. Namely

ΛI(Ii) = Λ(αi) (25)

But if Ψ is not equal to I as is the case in the general setting,
this modification can still be used to utilize the syndromes in
the MMV case. Multiplying the equations by Ci before adding
them leads to the corresponding syndrome equation

Sj,l = ΦjXl =
(
αj · · ·αjN

)( k∑
i=1

Ci,lΨI(i)

)
(26)

=

k∑
i=1

Ci,lΨI(i)(α
j) (27)

as in equation (18), so

(
Sk−1 · · · S0

)Λ1

...
Λk

 =
(
Sk
)

(28)

emerges. Sadly this does not work for higher syndromes,
because the condition

ΨI(i)(α
j) = ΨI(i)(α)j , j = 1, . . . ,m (29)

is not fulfilled for arbitrary Ψ. But due to the MMV case every
vector Xj has the same support, we can use k+ 1 syndromes
from each vector to build the error locator polynomial as long
as L ≥ k. In other words, k vectors with k+ 1 measurements
each are sufficient for the perfect reconstruction of the original
vector system by solving the equation system for all Λi and

testing the columns of Ψ in the modified ELP. This again also
effectively solves the problem of finding the unknown sparsity
parameter k. Analog to the normal RS decoder, the rank of the
linear equation system of syndromes determines the sparsity,
so the sparsity does not need to be known at the decoder
entrance.
The Fourier matrix has nice properties, that can be exploited
as designed above. But in reality, other designs like binary or
Rademacher matrices are preferred due to hardware restric-
tions or easier theoretical arguments. The next section will
depict how the same Reed Solomon approach can be used for
arbitrary full spark sensing matrices.

C. Modification to arbitrary sensing matrices

Y = ΦΨC can be reconstructed for the Fourier matrix Φ
and arbitrary Ψ. To change the Fourier matrix to any other
matrix, the change needs to be transferred to Ψ, s.t.

Φ Ψ = ΦΨ (30)

This way, the only step in the algorithm that needs to be
changed is the evaluation of the generalized ELP with some
new Ψ instead of Ψ.
More formally, this means: If the Fourier matrix Φ is changed
to Φ, then

ΦΨ = Φ AA−1︸ ︷︷ ︸
I

Ψ = ΦA︸︷︷︸
Φ

A−1Ψ︸ ︷︷ ︸
Ψ

(31)

The choice

A = pinv(Φ)Φ + null(Φ)null(Φ)> (32)

solves the equation Φ = AΦ, so the corresponding modified
dictionary is Ψ = A−1Ψ.
The next section will now compare our contribution with other
state of the art algorithms.

IV. COMPARISON TO OTHER CS ALGORITHMS

To evaluate our new proposition, we compare it to existing
MMV algorithms, namely SOMP [13] and MUSIC [14].
Figure 2 shows the phase diagram for N = 100 and L = 25
for the range k = 1, . . . , 50 and m = 1, . . . , 50 in the
noiseless case. The plot shows for each m/N the highest
k/m value that lead to an overall recovery success rate of
over 50 percent, averaged over 1000 Monte Carlo trials. This
standard measure is independent of N so the phase diagram is
a valuable comparison tool. As theorem 1 shows, the optimal
line reachable is k/m = k/(k+1) as depicted. As one can see,
the optimal line is reached by both our RSCS approach and the
MUSIC algorithm as long as k ≤ L. Consistent to the theory
this is the range of guaranteed recovery. After this point, as
shown by the red dashed line, no guarantee can be given so the
phase diagram shows a strong decline. The SOMP algorithm
on the other hand does not reach the optimal line at all, always
falling short in comparison to the other competitors.

To better compare our contribution in a more realistic case,
figure 3 shows results for the three different algorithms in
the noisy case. The simulation ran for N = 100, k = 10,
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Fig. 2. Phase diagram, compared for RSCS (our contribution), SOMP and
MUSIC in the setting N = 100, L = 25 for k = 1, . . . , 50 and m =
1, . . . , 50

m = 20 and L = 10. As a measure of performance we
depict the mean number of correctly estimated support entries
averaged over 1000 Monte Carlo trials. As one can see, our
Reed Solomon approach (RSCS) performs best. If the SNR
is above 10dB, the reconstruction is error free every time.
The MUSIC algorithm also achieves perfect reconstruction,
but needs a minimal SNR of 20 dB to guarantee it. The
SOMP algorithm cannot guarantee reconstruction. Even in the
noiseless case, only 70% of the indices can be reconstructed
in the mean. So even in this mild setting and with optimized
tuning parameters, SOMP fails.

V. CONCLUSION

We showed that a generalization of the Reed Solomon
decoding algorithm can be used as a powerful CS algorithm in
the MMV case. It only needs the theoretical minimum number
of k + 1 measurements for guaranteed reconstruction as long
as the amount of simultaneous vectors L is higher than k. The
algorithm even works for sparsely representable vectors that
are sparse in any arbitrary basis. Future work will try to lower
the demand towards L ≥ k even further to transform it into
an universal CS algorithm.
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Fig. 3. Mean number of the reconstructed support indices, compared for
RSCS (our contribution), SOMP and MUSIC in the setting N = 100, k = 10,
m = 20, L = 10 for the signal to noise ratio from -10 to 30.
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