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ABSTRACT
The sampling of neural signals plays an important role in
modern neuroscience, especially for prosthetics. However,
due to hardware and data rate constraints, only spike trains
can get recovered reliably. State of the art prosthetics can
still achieve impressive results, but to get higher resolutions
the used data rate needs to be reduced. In this paper, this is
done by expressing the data with exponential and sinusoidal
splines. As these signals have a finite number of degrees of
freedom per unit of time, they can be analyzed and recon-
structed with the Finite Rate of Innovation (FRI) framework.
We show, that we can reduce the needed data rate by 90% to
achieve the same resolution as without compression. Addi-
tionally, we propose analytic boundaries for the reconstruc-
tion of these splines and present an algorithm that guarantees
the reconstruction within these boundaries. Furthermore, we
test the algorithm on real neural stimuli.

Index Terms— FRI,exponential,sinusoidal,splines,neural

1. INTRODUCTION

Progress in modern neuroscience lead to highly functioning
prostheses that can be controlled directly by observing and
interpreting spike trains of neural signals [1],[2]. Today, sam-
pling spike trains is sufficient, but resolutions should be in-
creased for next generation products. This way, even delicate
movements may be implemented, leading to an overall im-
provement of life for affected persons. This possible advance
inspired us to take the signal processing perspective on this
problem. To solve the resolution problem, two frameworks
come to mind. First, Compressed Sensing (CS), which relies
on sparse representation of the data in question. Sadly, neural
data are not easily representable by common dictionaries, so
the use of CS is limited. Nevertheless, several publications
have been done in this field. For example, Zhang et al. [3]
propose a neural spike reconstruction with a compression rate
of 8 to 16, but are unable to reconstruct the whole neural sig-
nal. Sun et al. [4] use co-sparsity to improve on this result,
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gaining a compression rate of 8 for the complete neural signal,
but rely on learning a dictionary with a significantly higher
number of samples. Second, the Finite Rate of Innovation
(FRI) framework is applicable, as introduced in the paper of
Vetterli et al. [5]. The main task of FRI is the reconstruction
of functions that can be described by a finite number of co-
efficients. Examples include streams of Diracs, nonuniform
polynomial splines and piecewise polynomials [6]. Sadly,
similar to CS, the state of the art FRI algorithms can not be
applied directly, as neural signals can not be described well
with these functions. Due to this, we generalized the recon-
structable functions in the FRI framework to exponential and
sinusoidal spline. As a huge share of natural processes are
decay, growth or oscillation processes these function play an
important role in nature. Especially neural signals are eas-
ily described as a combination of both families. As all of
these signals have finite degrees of freedom, a finite amount
of samples is enough for perfect reconstruction. Hereby a
generalization of the famous Shannon sampling theorem [7]
for bandlimited signals is reached, that helps us in the recon-
struction of neural data with fewer samples then state of the
art algorithms would allow.

1.1. Main Contribution

We present a FRI algorithm, which is capable of reconstruct-
ing exponential and sinusoidal splines and especially neural
signals. The reached compression rate for perfect recovery is
10 and no additional dictionary learning step is needed. For
the easier spike reconstruction task, the compression rate can
be increased to 200. The algorithm is applicable for any non-
zero mean sampling filter design, including localized filters,
that do not fulfill the Strang-Fix conditions [8]. Addition-
ally, the optimal filter design regarding noise suppression is
analyzed and optimal solutions are proposed. Furthermore,
we present an analysis of the reconstruction problem to find
theoretical bounds for the given problem. We show that our
design works with the theoretical minimum of samples (the
rate of innovation of the function), but can exploit arbitrary
many more in order to better cope with noise.



2. RECONSTRUCTION OF FRI SIGNALS

2.1. Exponential functions

For clarification, we first reconstruct single exponential and
sinusoidal functions and then later expand the system to cor-
responding splines. First, let x(t) be an exponential function
of the type

x(t) = a exp(bt) + d (1)

and let
yi = 〈x(t+ iT ),Φ(t)〉 (2)

be the corresponding equidistant samples, using the sampling
filter Φ(t). The rate of innovation ρ is equal to 3 (unknown
a, b and d), thus we only require three samples y1, · · · , y3
for the reconstruction. With known b the reconstruction may
be cast into a linear regression problem, which can be eas-
ily solved [9]. The nonlinearity introduced through b forbids
this direct approach. Luckily, the annihilating filter [10] can
be used to solve this problem, as it can directly find sums of
unknown exponential bases from equidistant samples. The
function x(t) can be described as

x(t) = a exp(b)t + d exp(0)t, (3)

thus equidistant samples x(iT ) can be used to build an anni-
hilating filter for x(t). This way we can reconstruct exp(b) as
part of the sum of exponential bases and thus retrieve b. The
corresponding annihilating filter to fulfill H(t) ∗ x(t) = 0 is

H(t) = (t− exp(b))(t− e0)

= t2 − t (eb + 1)︸ ︷︷ ︸
h1

+ eb︸︷︷︸
h2

.

As the coefficients h1 and h2 ofH(t) can be computed by the
formula (see [10] for more details) y3 y2 y1

...
. . .

...
ym ym−1 ym−2


 1
h1
h2

 =

0
...
0

 (4)

we can rewrite the problem in order to directly find b by in-
serting the known formulas for h1 and h2 as y3 y2 y1

...
. . .

...
ym ym−1 ym−2


 1
−eb − 1
eb

 =

0
...
0

 . (5)

with the solution for the minimal number of three samples
being

b = log

(
y3 − y2
y2 − y1

)
/T. (6)

As we never used any aspect of the filter Φ(t), this recon-
struction formula holds for any filter. After b is computed, a

standard regression can be computed by solving〈e
b(t+1T ),Φ(t)〉 〈1,Φ(t)〉

...
...

〈eb(t+3T ),Φ(t)〉 〈1,Φ(t)〉

(a
d

)
=

y1...
y3

 (7)

to calculate the remaining coefficients and thus reconstruct
the complete function. Note that 〈1,Φ(t)〉 needs to be un-
equal to zero to obtain a full rank system. In other words, this
scheme only works with non zero mean filter designs.

2.2. Sinusoidal functions

Now, let x(t) be a sinusoidal function of the type

x(t) = a cos(bt+ c) + d (8)

and let
yi = 〈x(t+ iT ),Φ(t)〉 (9)

be the corresponding samples for i = 1, . . . , 4. Again, four
samples are sufficient due to the number of unknowns. As
cos(x) = 1

2 (exp(ix) + exp(−ix)) holds, we can create a
similar scheme as before. Note, that the function x(t) can
be described as

x(t) = a exp(ic) exp(ib)t+a exp(−ic) exp(−ib)t+d exp(0),
(10)

therefore the same idea can be used to retrieve the exponential
parts of the function. The corresponding annihilating filter is

H(t) = (t− eib)(t− e−ib)(t− e0)

= (t2 − 2t cos(b) + 1)(t− 1)

= t3 − t2 (1 + 2 cos(b))︸ ︷︷ ︸
h1

+t (1 + cos(b))︸ ︷︷ ︸
h2

− 1︸︷︷︸
h3

As before, the coefficients hi for i = 1, . . . , 3 of H(t) can be
computed by the formula y4 y3 y2 y1

...
...

...
...

ym ym−1 ym−2 ym−3




1
h1
h2
h3

 =

0
...
0

 . (11)

With the definition above, this leads to y4 y3 y2 y1
...

...
...

...
ym ym−1 ym−2 ym−3




1
−1− 2 cos(b)
1 + 2 cos(b)
−1

 =

0
...
0


(12)

with the solution for a minimum of four samples being

b = acos
(

y4 − y1
2(y3 − y2)

− 1

2

)
/T. (13)



After b is computed, we can use the linear regression with

A :=

〈e
ib(t+1T ),Φ(t)〉 〈e−ib(t+1T ),Φ(t)〉 〈1,Φ(t)〉

...
...

...
〈eib(t+4T ),Φ(t)〉 〈e−ib(t+4T ),Φ(t)〉 〈1,Φ(t)〉


(14)

to solve

A

 a
2e

ic

a
2e
−ic

d

 =

y1...
y4

 (15)

to get the remaining coefficients. Additionally, the sinusoidal
reconstruction scheme reconstructs exponential functions as
well, because they can be interpreted as complex sinusoidal
functions. In other words, if given at least 4 samples of the
unknown kind of model, compute b as in (13). If b is imag-
inary, an exponential function was sampled. If b is real, the
corresponding sinusoidal function was sampled.

2.3. Generalization to exponential/sinusoidal splines

Typically, signals (e.g. neural data) only have constant ex-
ponents over short time frames before changing to the next
constant, so an exponential or sinusoidal spline formulation
is useful. Formally an exponential spline is defined as

xi(t) = ai exp(bit) + di for ti ≤t ≤ ti+1 (16)
xi(ti+1) = xi+1(ti) for 1 ≤i ≤ N

Another important type of function is the sinusoidal spline. It
is formally defined as

xi(t) = ai cos(bit+ ci) + di for ti ≤t ≤ ti+1 (17)
xi(ti+1) = xi+1(ti) for 1 ≤i ≤ N

This leads to a new issue, because the switching points ti be-
tween parts are unknown a priori. Luckily, this can be solved
by a piece-wise approach. First, compute the parameters for
the first 4 samples with the above mentioned method. Then,
find the first sample that cannot be expressed by the recon-
structed function within some noise tolerance and then repeat
the parameter identification. Through this scheme every part
of the signal can be reconstructed. As the knots of the spline
typically do not fall together with the sampling points, in-
tersections of the parts have to be computed (e.g. Newton
method) to obtain the full reconstruction of the signal. The
full algorithm is presented in Algorithm 1.

The complexity of the reconstruction of each part is dom-
inated by the solution of one linear equation system of size
4 × 3. In other words for N parts, the complexity of the pa-
rameter estimation in Algorithm 1 is O(423N) = O(N). In
the spline case, the complexity of the intersection search is
added.

Algorithm 1 Spline Reconstruction
Require: y, T,Φ, tol
j = 1 (sample index), i = 0 (part index)
while j ≤length(y) do
bi = acos

(
1
2

(
yj+3−yj

yj+2−yj+1
− 1
))

/T

i = i+ 1
if isreal(bi) then

Solve (14) for ai, ci, di
xi(t) = ai cos(bit+ ci) + di

else
bi =imag(bi)
Solve (7) for ai, di (set ci = 0)
xi(t) = ai exp(bit) + di

end if
Increment j until ||〈xi(t+ jT ),Φ(t)〉 − yj || > tol

end while
for all parts xi(t) do

Find intersections Ij between parts (Newton method)
end for
Reconstruct xwith parameters a1:i, b1:i, c1:i, d1:i and inter-
sections Ij
return x

3. DEALING WITH NOISE

In reality samples are never noise free or the proposed model
did not account for every aspect of the sample, which can be
interpreted as a model mismatch. As shown before, the filter
has no influence on the recovered function at all, but only be-
cause the scheme directly utilizes the exponential/sinusoidal
model. This does not hold true for the noise as it is typically
introduced as

yi = 〈x(t+ iT ) + n(t+ iT ),Φ(t)〉 (18)

Therefore, the question for the optimal filter arises that maxi-
mizes the signal to noise ratio. Assuming a normalized filter
and noise with zero mean and σ2

n variance, the noise power is
only dependent on σ2

n because of

En = lim
T→∞

1

T

∫ T/2

−T/2

(n(iT − t) ∗ Φ(t))2dt
∣∣∣
i=0

(a)
= lim

T→∞

1

T

(∫ T/2

−T/2

N2(−jω))dω

∫ T/2

−T/2

φ2(jω)dω

)
(b)
=σ2

n · 1 = σ2
n

where (a) comes from the Parseval identity and (b) holds,
because of the flat spectrum of n and the normalized filter.
Similarly, the signal power is

Es = lim
T→∞

1

T

∫ T/2

−T/2

(x(−t) ∗ Φ(t))2dt
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Fig. 1. Relative error of the reconstruction of one function for
different filter designs and nlinfit, plotted against the noise
variance

In order to maximize the signal to noise ratio, due to Cauchy-
Schwarz the equation Φ(t) = x(−t) should be fulfilled. As
only the signal class of x(t) is known at the filter stage, an
overall good filter should match every spline part of x(t) in
the mean. In other words, xmean(t) = a cos(0t + c) + d =
a cos(c) + d should be matched as Φopt(t) = xmean(−t) =
const. In conclusion, the best filter to maximize the signal to
noise ratio should be an integrate and dump filter, that adds
up the signal until the next sample begins.

4. NUMERICAL RESULTS

This section will compare the different filter designs with the
MATLAB R© function ’nlinfit’ (nonlinear fit) as benchmark.
Three different filter designs (rectangular, dirac filter, linear
B-spline) are used for the reconstruction of a unknown ex-
ponential or sinusoidal function in the presence of noise. In
Fig. 1, the relative error of the reconstructed function is plot-
ted against the noise variance in dB. It is directly visible, that
filter design has a massive impact on the reconstruction. As
mentioned in the previous section, the rectangular filter out-
performs other filter designs by a vast margin, e.g. 8dB in
comparison to the Dirac filter. The only other filter design ca-
pable of comparable results is the B-spline filter (6 dB gain)
which is still a good match for the original function. As a
comparison the MATLAB R© function ’nlinfit’ is used, which
can be used to fit any given model to data points. Due to
the fact that ’nlinfit’ needs to know the underlying model, we
divided the results into two curves for sinusoidal and expo-
nential fits. In both cases the algorithm was given the correct
model to match to. The results show, that the algorithm is
able to find exponential functions and even performs better
than just sampling and using our proposed algorithm (asymp-
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Fig. 2. Reconstruction of neural data with a rectangular filter
for different sample sizes, plotted against the original data

totically 7dB gain). In comparison to more sophisticated fil-
ter designs it falls short by a large margin. This is due to the
fact, that ’nlinfit’ only works directly with data points and is
thereby unable to cope with noise which a rectangular filter
would allow. The fit of sinusoidal functions does not work
at all due to the non monotonicity of the underlying model
function that makes it extremely ill posed.

Fig.2 shows the reconstruction of neural data of the au-
ditory cortex as it poses the problem of several sinusoidal or
exponential parts with unknown knots but known continuity
between the parts. Here, the reconstruction of a rectangu-
lar filter with three different sample sizes (200, 50 and 10)
is depicted against the original data for the rectangular fil-
ter design. As the data has intrinsic noise, it showcases a
real life application and gives a good test for the algorithm
in a non-simulated scenario. The results show, that a sample
size of 200 samples is enough for perfect reconstruction of
the original data despite already reducing the sample size by
90% in comparison to the 2000 original time instances given.
Reducing even further to 50 samples (97,5% reduction) has
nearly no visible difference, only sharp edges and spikes are
not detected perfectly. The highest reduction of 99,5% (10
out of 2000 samples used) can still be used to obtain the over-
all shape and is more than enough for spike detection, while
not being able to identify fine details.

5. CONCLUSION

We proposed an algorithm, that can reconstruct exponential
and sinusoidal splines in the presence of noise with a very
low amount of samples, outperforming state of the art CS al-
gorithms by a large margin. The algorithm can work with any
sampling filter design, but specific designs (e.g. a rectangular
function) can increase the performance drastically.
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