
Spatial Field Reconstruction with Distributed Kernel
Least Squares in Mobile Sensor Networks

Ban-Sok Shin, Henning Paul, and Armin Dekorsy
Department of Communications Engineering

University of Bremen, Bremen, Germany
Email: {shin, paul, dekorsy}@ant.uni-bremen.de

Abstract—Reconstructing spatial fields by sensor networks is
a common problem in environmental monitoring applications.
Usually, this task requires nonlinear techniques due to the
underlying physical process. The so-called KDiCE algorithm is
able to estimate such a spatial field in a distributed fashion by a
nonlinear regression using kernel methods. To further enhance its
reconstruction performance we consider a mobile sensor network
in this paper. We utilize an iterative distributed scheme based
on centroidal Voronoi tessellation where the sensors move to the
center of mass of their Voronoi region. We include this sensor
movement into the KDiCE algorithm and provide performance
results regarding a distributed reconstruction of diffusion fields.
Our evaluations show a significant gain in the performance by
including sensor movement.

I. INTRODUCTION

A common task in environmental monitoring is the re-
construction of a physical quantity over a specific area or
space. The quantity of interest can be, e.g., temperature or the
concentration of oil in water. For these applications networks
of spatially distributed sensors have been considered by the
research community [1]–[3]. The sensors measure the physical
process at their positions and based on these measurements,
in the network a reconstruction of the spatial field is desired.
This is a challenging task since most physical processes are
modeled by nonlinear functions and thus require nonlinear
techniques for successful recovery. E.g., the diffusion equation
is commonly used to model the spatial distribution of temper-
ature, gas or oil and results in nonlinear problems. In order to
address this challenge kernel methods can be utilized which
provide nonlinear regression techniques [4], [5]. The approach
is to transform input samples into a high-dimensional space
where the nonlinear function can be described in terms of lin-
ear operations on the transformed input samples. Furthermore,
it is often desired to utilize distributed schemes in a sensor
network (SN) which avoid the use of a central unit and thus
the risk of a single point of failure. Then, a reconstruction of
the spatial field within the SN is possible. These two demands
have been addressed by the kernel distributed consensus-based
estimation (KDiCE) algorithm proposed by the authors in
[6]. Here, a nonlinear regression algorithm based on a kernel
least squares (LS) optimization problem has been developed
and successfully applied to the distributed reconstruction of
diffusion fields.

However, the KDiCE algorithm has been only considered
for a network of stationary sensors. Mobile sensors with

the ability to move and acquire new measurements of the
spatial field could significantly improve the reconstruction
performance. In [7], a coverage control algorithm for an
optimal sensor positioning based on a density function defined
over the considered area is developed. This algorithm aims
at achieving a so-called centroidal Voronoi tessellation (CVT)
iteratively where sensors are eventually located at the center of
mass of their corresponding Voronoi region. In [8] this method
is included in a distributed support vector regression (SVR)
algorithm based on kernel methods. Also here, the task is to
reconstruct a nonlinear spatial field function by mobile sensors.
Nevertheless, in contrast to [6] the corresponding algorithm
is not based on a distributed optimization problem. Instead
calculations which require knowledge from all sensors are
modified such that only information from neighboring sensors
are required.

In this paper, we extend the KDiCE algorithm [6] by a
stage at which sensors change their position based on their
reconstructed field. For this, we include the coverage control
algorithm from [7] into the KDiCE to improve the reconstruc-
tion performance for nonlinear spatial fields. In contrast to [8]
where the distributed SVR is run over several iterations to
estimate the field function, the extended KDiCE only includes
one iteration. Furthermore, we assume noise on the sensors’
measurements while in [8] only the noiseless case has been
considered.

II. SYSTEM MODEL

A SN of J connected sensors placed over a region X
observes a scalar field described by the nonlinear function
f : X → R. The function f(x) maps positions x ∈ X ⊂ RL

to a scalar value in R. E.g., it could model the spatial
distribution of temperature over the region X . Hence, each
sensor j takes the following measurement dj of the function
f(x) at its Cartesian position xj :

dj = f(xj) + nj . (1)

Here, nj is white Gaussian noise of variance σ2
n. We describe

the SN by a graph with a set of nodes J representing the
sensors and a set of edges connecting the nodes. We assume
that the graph is connected, i.e., each node can be reached by
every other node by multiple hops. Moreover, sensors with a
distance less than r to each other are assumed to be connected
by an edge in the graph and can exchange data. Thus for

each sensor j there is a set of neighbors Nj containing those
sensors of the network connected to it. Besides, we assume
that the sensors know their positions, resulting in J data pairs
{(xj , dj)}Jj=1 in the SN. Based on these data pairs our goal
is to approximate the unknown nonlinear function f(x) to
predict the field value at arbitrary positions x within the area
covered by the SN.

III. DISTRIBUTED NONLINEAR REGRESSION

A. Problem Formulation

We consider a positive-definite kernel function κ : X×X →
R being the dot product between two transformed samples in
the reproducing kernel Hilbert space (RKHS) H. Input sam-
ples x are assigned to kernel functions κ(x, ·) in the RKHSH
with x 7→ κ(x, ·) by a mapping function Φ : X → H. Thus,
the RKHS enables a richer representation of the input samples
such that a nonlinear function f(x) can be approximated in
terms of linear combinations of transformed samples κ(x, ·).
Based on the data pairs {(xj , dj)}Jj=1 available in the SN our
goal is to find a function f̂(x) in the RKHS H which fulfills
the following LS optimization problem:

f∗ = arg min
f̂∈H

J∑
j=1

(dj − f̂(xj))
2. (2)

We can make use of the representer theorem stating that there
exists at least one function f̂(·) minimizing the cost (2) which
can be described by a linear combination of kernel functions
weighted by coefficients w` [4]:

f̂(·) =

J∑
`=1

w`κ(x`, ·), (3)

where the set {κ(x`, ·)}J`=1 is called the dictionary D
containing kernel evaluations based on all sensor positions
in the network. With this representation of f̂(·) we can
reformulate the LS optimization problem with respect to
(w.r.t.) the weight vector w = [w1, . . . , wJ]T and the vector
κD(xj) = [κ(x1,xj), . . . , κ(xJ ,xj)]

T correlating xj to the
entries in the dictionary D:

w∗ = arg min
w∈RJ

J∑
j=1

(dj −wTκD(xj))
2. (4)

Thus, problem (2) is modified such that the optimal weight
vector w∗ needs to be found rather than the function f∗(·)
itself.

B. Kernel DiCE Algorithm

In order to solve the LS optimization problem (4) in a
distributed manner we introduce local weight vectors wj per
sensor j and add a consensus constraint on the weight vectors
among neighboring sensors:

{w∗j |j ∈ J } = arg min
{wj |j∈J}

J∑
j=1

(dj −wT
j κD(xj))

2 (5a)

s.t. wj = wi, ∀j ∈ J , i ∈ Nj . (5b)

By the consensus constraint we achieve that all weight vectors
converge to the same solution, namely the central kernel LS
solution. Due to a direct coupling between neighboring weight
vectors wj and wi in the consensus constraint solving this
problem will not result in an algorithm that enables a parallel
update of the weight vectors. Thus, the auxiliary variable
zj per sensor j is introduced and the constraint is modified
such that wj = zi,wj = zj ,∀j ∈ J , i ∈ Nj . Then, the
alternating direction method of multipliers [9] can be used to
solve this constrained optimization problem resulting in the
iterative algorithm KDiCE. Details regarding the derivation of
the KDiCE can be found in [6], [10]. We achieve the following
update equations for the variables wj , zj and λji per iteration
k with N ′j = Nj ∪ {j}:

zkj =
µ

|N ′j |
∑
i∈N ′

j

1

µ
wk−1

i − λk−1
ij (6a)

λk
ji = λk

ji −
1

µ

(
wk−1

j − zki
)

(6b)

wk
j =

(
κD(xj)κD(xj)

T +
|N ′j |
µ
IJ

)−1
·

djκD(xj) +
∑
i∈N ′

j

1

µ
zki + λk

ji

 . (6c)

The variables are initialized as w0
j = λ0

ij = λ0
ji = 0 for all

nodes, while µ is a positive step size. Following (6a)-(6c), each
sensor j first calculates its auxiliary variable zkj and broadcasts
it to its neighbors. After receiving the auxiliary variables from
its neighbors, each sensor updates its Lagrange multipliers
λk
ji and transmits them to its neighbors. Note that for each

neighboring sensor i ∈ Nj a different Lagrange multiplier
λk
ji needs to be transmitted, so that no broadcast transmission

is possible. After receiving the Lagrange multipliers from
its neighbors each sensor finally updates its weight vector
wk

j . The updated weight vector wk
j is again broadcast to the

neighboring sensors and the next iteration is initiated.
Per iteration k, each sensor j is able to reconstruct the

unknown field f(x) at arbitrary positions x using its individual
weight vector wk

j and the representer theorem (3):

f̂kj (x) =

J∑
`=1

wk
j,`κ(x`,x) = (wk

j)TκD(x) (7)

where wk
j,` is the `-th entry of the vector wk

j . Then each
sensor j can estimate the field f(x) over the region covered
by the SN.

IV. MOBILE SENSOR POSITIONING

As shown above, the KDiCE algorithm is able to reconstruct
the nonlinear field function f(x) in a distributed fashion.
In order to improve its reconstruction performance we now
consider the case of mobile sensors which can acquire new
measurements of the field f(x) as they change their position
xj . The question that arises is how the sensors need to
move in order to increase the reconstruction performance.

To address this question we utilize the work of [7] where
a distributed algorithm for sensor positioning based on CVT
[11] is developed.

A. Problem Formulation

Following the work in [7], we define the locational cost
function over all J sensors w.r.t. the set of partitions W =
{W1, . . . ,WJ}, which separate the considered area and the
set of sensor positions X = {x1, . . . ,xJ}:

H(X,W) =

J∑
j=1

∫
Wj

1

2
||x− xj ||2f(x)dx. (8)

In general, f(x) is a density function defined over the consid-
ered area X . In our case f(x) is the unknown field function
which is used for the following derivations. Later we replace
f(x) by its estimation f̂kj (x) for each sensor which is provided
by the KDiCE algorithm. The choice of f(x) is reasonable
since it gives higher weight to significant areas of the unknown
field function where we assume that f(x) is non-negative. The
term ||x−xj ||2 in H(X,W) is used to indicate a higher cost
the greater the distance from the sensor position xj is. This
is due to the assumption that the sensing performance of a
sensor degrades with a greater distance from its location. To
findW and X the cost H(X,W) needs to be minimized w.r.t.
the J regions in the partition set W and the sensor positions
in X .

B. Centroidal Voronoi Tessellation

For fixed sensor positions the optimal partition W is given
by the Voronoi tessellation V = {V1, . . . , VJ} [7]. A Voronoi
region Vj with the sensor position xj being its generating
point is defined as

Vj = {x ∈ X | ||x− xj || ≤ ||x− xi||, ∀i 6= j}. (9)

Thus, a Voronoi cell contains those positions x which lie closer
to the generating point xj than to any other generating point
xi ∈ X\{xj}. Furthermore, to determine a Voronoi cell Vj at
sensor j knowledge of sensor positions xi from neighboring
sensors is sufficient. Thus, a distributed calculation of the
Voronoi partition is possible assuming that neighboring sen-
sors share a communication link. With the Voronoi partition
V(X) on the sensor positions X , the set of partition W is
determined and the locational cost function (8) reads

HV = H(X,V(X)) =

J∑
j=1

∫
Vj

1

2
||x− xj ||2f(x)dx. (10)

Hence, based on the Voronoi tessellation of the sensor posi-
tions V(X) the optimal sensor positions minimizing HV need
to be found. To find these positions, the derivative of the cost
function HV w.r.t. the sensor position xj needs to be calculated
and set to zero. For this, we first define the mass mVj and the

centroid (center of mass) cVj , respectively, regarding a region
Vj and a scalar field function f(x) over this region:

mVj
=

∫
Vj

f(x)dx (11)

cVj
=

1

mVj

∫
Vj

xf(x)dx (12)

The derivative of the cost function HV w.r.t. the sensor position
xj is then calculated as

∂HV
∂xj

=
∂

∂xj

J∑
j=1

∫
Vj

1

2
||x− xj ||2f(x)dx

= −
∫
Vj

xf(x)− xjf(x)dx

= −mVj (cVj − xj).

From the above equation it is obvious that setting xj = cVj

minimizes the cost function (10), i.e., the sensors should be
positioned at the centroids of their corresponding Voronoi
cell. In the literature, such a constellation is called centroidal
Voronoi tessellation. Accordingly, sensors need to move into
the direction of the centroid of their Voronoi cell to improve
their positioning based on the function f(x).

C. Distributed Lloyd Algorithm

To achieve such a CVT the Lloyd algorithm from [12]
can be utilized. The Lloyd algorithm is an iterative approach
which based on the current generating points Xk at iteration
k determines the Voronoi regions V(Xk) and calculates the
centroids {ckVj

}Jj=1 of each region. These centroids are then set
as the new generators of each region as Xk+1 = {ckVj

}Jj=1 and
the Voronoi regions and corresponding centroids are updated.
This process is repeated until the generating points correspond
to the centroids in each cell resulting in the desired CVT.

For a realization of the Lloyd algorithm in the SN we let
the sensors move into the direction of their cell’s centroid. The
sensors change their position xj by ∆xj following a gradient-
descent step with a step size β [7]:

∆xj = −β ∂HV
∂xj

= βmVj
(cVj

− xj). (13)

This gradient is calculated in each iteration k based on the
current Voronoi cells V(Xk), the current mass mVj

and the
current centroid cVj

. Then each sensor j moves into the
direction of its centroid by

xk+1
j = xk

j + ∆xk
j (14)

and the next iteration is initiated by updating the Voronoi
partition based on the new sensor positions Xk+1. Eventually,
a CVT is achieved where the sensors’ positions correspond to
the centroids of the Voronoi cells [13].

Regarding a distributed implementation of the Lloyd algo-
rithm we note that the determination of the Voronoi region Vj
(9) at each sensor j requires information from neighboring

sensors only, namely their sensor positions xi, i ∈ Nj .
Once the Voronoi cells are determined, the mass mVj , the
centroid cVj

and the gradient step ∆xj can be computed
locally at sensor j based on the knowledge of f(x). Detailed
distributed implementations can be found in [7]. Hence, the
Lloyd algorithm can be performed in a distributed manner
within a SN and can therefore be combined with the KDiCE
algorithm.

V. COMBINING CVT AND KDICE

For a combination of the KDiCE with the distributed Lloyd
algorithm from above we adapt the system model (1) such
that at each iteration k based on the current position xk

j each
sensor j takes the following measurement:

dkj = f
(
xk
j

)
+ nkj . (15)

Then with dkj each sensor j performs the KDiCE algorithm
according to (6a)-(6c) where dj in (6c) is replaced by dkj .
After that each sensor j performs a reconstruction of the field
function by (7) to achieve f̂kj (x):

f̂kj (x) =

J∑
`=1

wk
j,`κ(xk

` ,x) = (wk
j)TκD(x) (16)

Note that this step requires knowledge of all current sensor
positions {xk

` }J`=1 at each sensor j per iteration k. Hence, we
need to update the dictionary with D = {κ(xk

` , ·)}J`=1 based
on the new sensor positions. For this step we assume that each
sensor can acquire the updated dictionary by efficient flooding
algorithms [14]. Then, after determining the Voronoi partitions
V(Xk) the mass mV k

j
and the centroid cV k

j
are calculated by

each sensor j based on its reconstruction f̂kj (x):

mV k
j

=

∫
V k
j

f̂kj (x)dx (17a)

cV k
j

=
1

mV k
j

∫
V k
j

xf̂kj (x)dx. (17b)

With the mass mV k
j

and the centroid cV k
j

each sensor j

computes the gradient ∆xk
j according to (13) and changes its

position by it. Then the next iteration is initiated by sampling
the function f(x) at the updated sensor positions {xk+1

j }Jj=1

and performing the above described steps. Algorithm 1 sum-
marizes the CVT-KDiCE algorithm.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the CVT-KDiCE algorithm
with regard to the reconstruction of static diffusion fields
which are known to be highly nonlinear. A diffusion field
f(x) at position x with M instantaneous and localized sources
each having intensity cm and fixed position vector pm can be
described by [15]

f(x) =

M∑
m=1

cm
4πν

exp

(
−||x− pm||

2

4ν

)
, (18)

Algorithm 1 CVT-KDiCE

1: Initialize w0
j = λ0

ij = λ0
ji = 0

2: for iteration k and sensor j do
3: acquire measurement dkj at xk

j

4: compute zkj with (6a) and broadcast to current neigh-
bors i ∈ N k

j

5: compute λk
ji with (6b) and transmit to current neighbors

i ∈ N k
j

6: compute wk
j with (6c) based on dkj and broadcast to

current neighbors i ∈ N k
j

7: reconstruct field by f̂kj (x) with (16)
8: determine Voronoi region V k

j with (9)
9: compute mass mV k

j
(17a) and centroid cV k

j
(17b)

10: compute ∆xk
j with (13) and move sensor to new

position
11: update dictionary D with new sensor positions, flood
12: end for

0 50 100 150 200 250 300
−30

−25

−20

−15

iteration k

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

CVT-KDiCE
KDiCE
KDiCE random mvmt.

Fig. 1. MSE of the KDiCE and CVT-KDiCE for a static diffusion field with
M = 1 source and J = 20 sensors.

where ν is the diffusion constant of the medium. For the fol-
lowing evaluations we assume a diffusion constant of ν = 0.01
and white Gaussian noise with power σ2

n = 0.01 on the sensor
measurements. For the reconstruction stage by the KDiCE
algorithm we use the Gaussian kernel given by

κ(xj ,xn) = exp

(
−||xj − xn||2

2ζ2

)
, (19)

where ζ is the kernel bandwidth which we adapt to the
diffusion constant by setting ζ =

√
2ν. We assume that the

diffusion constant ν can be estimated properly beforehand
since the environment of the SN is known. Furthermore, the
step-size of the KDiCE is set to µ = 8 and of the CVT
to β = 10. This choice of parameter values led to a good
performance with stable behavior in our evaluations. Regard-
ing the topology of the network, sensors are placed randomly
on the unit-square, where an error-free communication link
is established between sensors having a distance less than
r = 0.22 to each other. Note that through the movement of the
sensors the individual neighborhoodN k

j per node j can change

0 50 100 150 200 250 300
−30

−25

−20

−15

−10

iteration k

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

CVT-KDiCE
KDiCE
KDiCE random mvmt.

Fig. 2. MSE of the KDiCE and CVT-KDiCE for a static diffusion field with
M = 2 sources and J = 30 sensors.

over the iterations. For each evaluation 100 trials with different
realizations of noise and network topologies are performed.

Fig. 1 depicts the reconstruction MSE over 300 iterations
for M = 1 source at p1 = [0.5, 0.5]T with c1 = 1 and
J = 20 sensors. We show the KDiCE, CVT-KDiCE and
KDiCE with a random sensor movement where the movement
step is based on a normal distribution of variance σm = 0.01.
We compute the reconstruction MSE as described in [6]. For
the first approximately ten iterations all algorithms perform
similarly before the movement of the sensors significantly
increases the reconstruction performance of the CVT-KDiCE.
We observe that it clearly outperforms the KDiCE and the
random movement in terms of steady-state error by a gain of
7 dB. Note that by the required update of the dictionary with
the new sensor positions the generated communication over-
head will be increased in CVT-KDiCE. Comparison over the
communication overhead will be covered in future research.

In Fig. 2 the reconstruction performance for M = 2
sources with positions p1 = [0.3, 0.3]T,p2 = [0.8, 0.6]T

and intensities c1 = 1, c2 = 0.7 is compared among the
algorithms. Since one further source is present we increase
the number of sensors to J = 30. Also here a significant
performance gain for the CVT-KDiCE over the KDiCE and
the random movement can be seen. Nevertheless, due to the
additional diffusion source the performance of both algorithms
slightly degrades compared to Fig. 1. Corresponding surface
and contour plots for a reconstruction by the CVT-KDiCE
for one sensor node after 300 iterations are shown as an
example in Fig. 3. As mentioned before, we observe a high
reconstruction performance of the unknown field function
f(x). The two peaks caused by the two diffusion sources are
clearly visible in the reconstruction. Furthermore regarding
the positioning of the sensors we notice that these move to
the regions of interest which lie around the diffusion sources
due to the included CVT stage. The specific movement of the
sensors is illustrated in Fig. 4 with the trajectories and Voronoi
regions of the sensors.

Fig. 5 depicts the reconstruction MSE over the number

0
0.5

1

0

0.5

1

0

0.5

1

true field f(x)

0
0.5

1

0

0.5

1

0

0.5

1

reconstructed field f̂(x)

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0.1

0.1

0.1

0
.20

.2

0
.2

0.30.30.4

0.
4

0.5

0
.5

0.
6

0.6

0
.7

0.
7

0.8
0
.9

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

0.
1

0.10.20.2

0.2

0.3
0.30.4

0.
4

0.5
0.5

0.
6

0
.6

0
.70.8
0
.9

Fig. 3. Surface and contour plot of true and reconstructed field after 300
iterations for one sensor. Red circles indicate the sensor positions and the
measured field values. Black crosses indicate the position of the diffusion
sources.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

x-coordinate

y
-c

oo
rd

in
at

e

sensor
source

Fig. 4. Sensor trajectories and Voronoi regions of the CVT-KDiCE algorithm
for a static diffusion field with M = 2 sources and J = 30 sensors.

of sensor nodes for both algorithms with different numbers
of iterations. As expected, the CVT-KDiCE outperforms the
KDiCE. Specifically, it requires only 30 iterations in order
to achieve the same performance as the KDiCE algorithm
with 100 iterations. Furthermore, we observe significant per-
formance gains for the CVT-KDiCE if more than 20 sensors
are used. For more than 40 sensors the gain lies between
5 dB and 7 dB. For the previous performance evaluations we
assumed that the dictionary D is updated at every sensor j per
iteration k based on the new sensor positions. As mentioned
before, we assume that this step in Algorithm 1 is processed
by efficient flooding algorithms which distribute the current
sensor positions Xk to each sensor. However, such algorithms

10 20 30 40 50
−30

−25

−20

−15 CVT-KDiCE
KDiCE

No. of sensors J

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

k = 30

k = 50

k = 100

Fig. 5. MSE of the CVT-KDiCE over no. of sensors J for a static diffusion
field with M = 2 sources.

0 50 100 150 200 250 300
−30

−25

−20

−15

−10

iteration k

R
ec

on
st

ru
ct

io
n

M
SE

in
dB

KDiCE
CVT-KDiCE
CVT-KDiCE w/ RG

Fig. 6. MSE of KDiCE, CVT-KDiCE and CVT-KDiCE with regular grid
dictionary for a static diffusion field with M = 2 sources.

increase the communication overhead in the network. In order
to avoid this drawback, we initialize the dictionary D at each
sensor j with a set of fixed positions instead of updating it
in each iteration. For the dictionary we choose a set of J
distributed positions building a regular grid (RG) over the unit-
square area. Then each sensor j uses this dictionary during
the execution of the CVT-KDiCE algorithm. Obviously, we
expect the reconstruction performance to decrease since the
dictionary based on the true sensor positions at each iteration
is not used by the sensors. This is depicted in Fig. 6 where
we can observe a loss of 4 dB w.r.t. the CVT-KDiCE with
the true dictionary. Nevertheless, for the first 50 iterations
both algorithms show the same performance. Note that with
a pretuned dictionary the overhead is lower such that a
comparison over the communication exchanges against the
CVT-KDiCE should show a faster convergence. Furthermore,
compared to the KDiCE we still see a gain of 4 dB in the
MSE. Of course, depending on the position of the sources
this gain may vary. Although the dictionary D is not updated
with the new sensor positions the CVT-KDiCE outperforms
the KDiCE while keeping the same communication overhead

per iteration.

VII. CONCLUSION

In this paper, we presented the CVT-KDiCE as a dis-
tributed scheme to reconstruct a nonlinear spatial field function
combining kernel regression techniques with a CVT-based
sensor movement. We showed its performance gains compared
to the KDiCE algorithm with fixed sensors. Regarding the
update of the dictionary we proposed a fixed dictionary to
avoid a higher communication overhead caused by flooding
algorithms. The fixed dictionary outperformed the KDiCE
algorithm while keeping the same communication overhead.
Future work involves a distributed update of the dictionary per
sensor node as well as a mutual optimization of the LS and
the locational cost function.

ACKNOWLEDGMENT

The work leading to this publication was partially funded
by the German Research Foundation (DFG) under grant
Pa2507/1.

REFERENCES

[1] S. N. Simic and S. Sastry, “Distributed environmental monitoring
using random sensor networks,” in Proc. of the 2nd Int. Workshop on
Information Processing in Sensor Networks, 2003, pp. 582–592.

[2] V. Schwarz and G. Matz, “Distributed reconstruction of time-varying
spatial fields based on consensus propagation,” ICASSP, pp. 2926–2929,
2010.

[3] J. Murray-Bruce and P. L. Dragotti, “Estimating localized sources
of diffusion fields using spatiotemporal sensor measurements,” IEEE
Transactions on Signal Processing, vol. 63, no. 12, pp. 3018–3031, 2015.

[4] B. Schölkopf and A. J. Smola, Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2001.

[5] W. Liu, J. C. Prı́ncipe, and S. Haykin, Kernel Adaptive Filtering. John
Wiley & Sons, 2010.

[6] B.-S. Shin, H. Paul, and A. Dekorsy, “Distributed kernel least squares
for nonlinear regression applied to sensor networks,” in EUSIPCO,
September 2016.

[7] J. Cortés, S. Martı́nez, T. Karatas, and F. Bullo, “Coverage control
for mobile sensing networks,” IEEE Transactions on Robotics and
Automation, vol. 20, no. 2, pp. 243–255, 2004.

[8] B. Lu, D. Gu, and H. Hu, “Environmental field estimation of mobile sen-
sor networks using support vector regression,” IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pp. 2926–2931,
2010.

[9] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed Op-
timization and Statistical Learning via the Alternating Direction Method
of Multipliers,” Foundations and Trends R© in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2010.

[10] H. Paul, J. Fliege, and A. Dekorsy, “In-network-processing: Distributed
consensus-based linear estimation,” IEEE Commun. Lett., vol. 17, no. 1,
pp. 59–62, 2013.

[11] Q. Du, V. Faber, and M. Gunzburger, “Centroidal voronoi tessellations:
Applications and algorithms,” SIAM Review, vol. 41, no. 4, pp. 637–676,
1999.

[12] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Transactions
on Information Theory, vol. 28, no. 2, pp. 129–137, 1982.

[13] Q. Du, M. Emelianenko, and L. Ju, “Convergence properties of the
Lloyd algorithm for computing the centroidal voronoi tessellations,”
SIAM Journal on Numerical Analysis, vol. 44, no. 1, pp. 102–119, 2006.

[14] H. Liu, P.-J. Wan, X. Jia, X. Liu, and F. F. Yao, “Efficient flooding
scheme based on 1-hop information in mobile ad hoc networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 18, no. 5, pp.
1–14, 2007.

[15] Y. M. Lu, P. L. Dragotti, and M. Vetterli, “Localizing point sources in
diffusion fields from spatiotemporal samples,” in Proc. of Int. Conf. on
Sampling Theory and Applications (SampTA), May 2011.

