
An optimized GFDM software implementation for future Cloud-RAN and field
tests

Johannes Demel DEMEL@ANT.UNI-BREMEN.DE
Carsten Bockelmann BOCKELMANN@ANT.UNI-BREMEN.DE
Armin Dekorsy DEKORSY@ANT.UNI-BREMEN.DE

Department of Communications Engineering, University of Bremen,
Bremen, Germany

Andrej Rode ANDREJ.RODE@STUDENT.KIT.EDU
Sebastian Koslowski SEBASTIAN.KOSLOWSKI@KIT.EDU
Friedrich K. Jondral FRIEDRICH.JONDRAL@KIT.EDU

Communications Engineering Lab, Karlsruhe Institute of Technology,
Karlsruhe, Germany

Abstract
5th Generation (5G) and Industry 4.0 (I4.0)
cellular systems have many different use-cases
which impose a diverse set of requirements on
a candidate Multi-Carrier System (MCS). These
requirements demand high flexibility and recon-
figurability from any candidate waveform. In this
paper we present gr-gfdm a Software-Defined
Radio (SDR) implementation of the waveform
candidate Generalized Frequency Division Mul-
tiplexing (GFDM) in GNU Radio, discuss the de-
tails of our implementation and show how the
SDR flexibility can be employed for use in sim-
ulations and field trials. With a careful design
the same implementation can be used in testing,
simulation, field trials and interfaces to other pro-
gramming languages are easily added. Further-
more we facilitate an over-the-air transmission
with our implementation in order to demonstrate
its capabilities, where we could achieve sample
rates of up to 25MS/s.

1. Introduction
Current implementations of waveform candidates are fo-
cused on investigations of their performance in an aca-
demic setup or they are implemented in hardware with
Field Programmable Gate Arrays (FPGAs) (Danneberg
et al., 2015). This results in rather high performance losses
in the software implementation or missing flexibility in
the hardware implementation. For further analysis of new

Proceedings of the 7 th GNU Radio Conference, Copyright 2017
by the author(s).

waveforms a performant SDR implementation which can
be used in both, simulation and field trials, is desirable
since it retains its flexibility without suffering much per-
formance losses. Additionally, an SDR implementation is
crucial for Cloud Radio Access Network (Cloud RAN) in
order to move the computing away from the Remote Radio
Heads (RRHs). Thus, we present the GFDM sofware im-
plementation gr-gfdm that offers the required performance
and flexibility (Rode, 2017).

1.1. Waveform

For upcoming 5G and I4.0 applications new MCS candi-
dates are proposed. These waveforms try to overcome Or-
thogonal Frequency Division Multiplexing (OFDM) short-
comings, such as high Out-Of-Band (OOB) emissions
while retaining its advantages.

One of the goals of the upcoming 5G standard is to pro-
vide a common communication standard for all types of
modern communication. This includes data driven appli-
cations for end users where high data rates are required
but also Machine-type-Communication (MTC) for indus-
trial applications where latency and reliability are crucial.
Each type of communication imposes its own requirements
on the physical layer, but the waveform does not have to
meet requirements for all communication types at the same
time. This is an opportunity to introduce a flexible wave-
form implemented in software which can be reconfigured
on the fly for different types of communication.

For I4.0 closed loop control the waveform can be param-
eterized to meet low latency and robustness requirements
and for high data throughput the parameters can be changed
to achieve maximal spectrum efficiency and throughput.
For the envisioned cooperative environment new wave-



An optimized GFDM software implementation for future Cloud-RAN and field tests

forms require low OOB emissions in order to coexist in
a heterogeneous environment.

Current 4th Generation (4G) systems rely on OFDM which
is a simple and effective MCS. However, several shortcom-
ings with regards to OFDM were identified (Schaich &
Wild, 2014). As the spectrum becomes more and more
crowded while bandwidth demands increase, the coexis-
tence properties of new waveforms need to be improved
too. Aside of poor OOB emission properties, strict syn-
chronization requirements and poor spectral efficiency are
further OFDM shortcomings.

Several MCS candidate waveforms exist which offer differ-
ent approaches to overcome OFDM shortcomings (Sahin
et al., 2014). Filter-Bank Multi-Carrier (FBMC) minimizes
OOB emissions by filtering each subcarrier but introduces
large filter delays (Schaich & Wild, 2014). Universal Fil-
terbank Multi-Carrier (UFMC) groups multiple subcarriers
and then filters each group jointly in order to decrease filter
delays, though it still only considers timeslots individually
(Vakilian et al., 2013).

GFDM goes beyond symbol-based modulation by modu-
lating entire frames (Michailow et al., 2014). Generally,
GFDM is a highly flexible non-orthogonal waveform. Cir-
cular filters retain the option to use a Cyclic Prefix (CP) and
a Cyclic Suffix (CS) for whole frames. Furthermore, these
filters avoid large delays and can minimize OOB emissions.
The parametrization can then be adjusted for either low la-
tency requirements or high data throughput and spectral
effiency.

1.2. Software Defined Radio

Straight forward MCS implementations often suffer from
very heavy computational demands which makes their
implementation on General Purpose Processor (GPP) in-
tractable for SDR applications. Efficient software imple-
mentations for simulations and field tests are crucial to ver-
ify the performance of these new MCS. This enables pa-
rameterization of the waveform during run-time and bay be
performed in a computation center in the Cloud RAN. This
further stresses the need for an optimized software imple-
mentation of the used waveform.

In (Danneberg et al., 2015) a GFDM implementation in
LabView targeting the Universal Software Radio Periph-
eral (USRP) X310 is presented. All relevant parts of the
signal processing chain are implemented for this specific
hardware and run on an FPGA. This contradicts the target
to use the same codebase for simulations and field trials as
well as its portability. An SDR implementation for simula-
tions and field tests requires more portability and flexibility
in order to adapt the communication system for its current
purpose.

Resource
Mapper

GFDM
Modulator

Cyclic Prefix
Insertion

Preamble
Insertion

d x

Figure 1. Transmitter processing steps

1.3. Main Contribution

The main contribution of this paper is a presentation of
the open source SDR GFDM implementation gr-gfdm in
GNU Radio (Rode, 2017). The implementation aims to
fill the gap between slow software simulation implementa-
tions and inflexible hardware implementations. We discuss
the theoretical background as well as the implementation
with its design concepts. The paper is concluded with a
presentation of over-the-air transmission capabilites of the
implementation.

2. GFDM system description
This Section introduces the concepts of Generalized Fre-
quency Division Multiplexing (GFDM). It is split into a
transmitter and receiver subsections, depicted in Fig. 1 and
2, which detail the specifics of the system. A stream of
complex symbols d ∈ C goes into the transmitter and a
stream of estimates for the transmitted symbols d̂ is pro-
duced by the receiver. In contrast to OFDM, GFDM fo-
cuses on whole frames instead of individual timeslots in or-
der to optimize its transmission properties. This approach
introduces more flexibility and thus, GFDM can be better
matched to individual use-cases. Also, latencies may be
minimized by designing a system accordingly.

2.1. Transmitter

The transmitter portion of a GFDM system is composed of
three stages depicted in Fig. 1. In this paper we do not con-
sider channel coding but we expect it to be part of a com-
plete system. Multiple complex symbols d are grouped into
a frame and assigned to their point on the time-frequency
plane, or lattice (Sahin et al., 2014). The modulator trans-
forms this frame into a complex baseband signal vector. A
CP is added in order to obtain the cyclic channel properties
at the receiver and thus enable simple one-tap Frequency-
Domain Equalization (FDE).

MCS waveforms modulate symbols such that each symbol
in a frame with M timeslots and K subcarriers is located
at its unique point on the lattice. Thus, a maximum of N =
KM points may be transmitted. The lattice for a GFDM
frame is represented by the matrix D ∈ CM×K where each
element dm,k corresponds to a symbol in the mth timeslot
on the kth subcarrier (Michailow et al., 2012). Often, some
subcarriers are not used for transmission but only Kon ≤ K
are used.



An optimized GFDM software implementation for future Cloud-RAN and field tests

In case Kon < K, subcarriers which are unused correspond
to columns in D which are filled with zeros and conse-
quently the occupied bandwidth is reduced. Thus, the re-
source mapper groups MKon complex symbols together
with M(K − Kon) zeros into D. Stacking D’s columns
dk according to

d =
[
dT0 dT1 . . . dTk . . . dTK−2 dTK−1

]T
(1)

returns a symbol vector d ∈ CN×1 containing all symbols
of a GFDM frame.

GFDM modulation is a linear operation which can be de-
noted in matrix notation

x = Ad (2)

where x is the transmit vector and A ∈ CN×N is a modula-
tion matrix containing the filter coefficients for one symbol
in each column (Michailow et al., 2014). This modulation
matrix A can be written as

A =
[
g0,0 g0,1 . . . g1,0 . . . gK−1,M−1

]
(3)

where the columns represent filters derived from a proto-
type filter g ∈ CN×1. The n-th element of the derived
filter for the k-th subcarrier in the m-th timeslot is obtained
by modulating and circularly shifting the prototype filter

gk,m[n] = g[(n−mK) mod N ] · ej2πn k
K . (4)

From (2) it can be observed that GFDM is a linear, frame-
based multicarrier modulation scheme. The desired spec-
tral properties can be matched by means of the chosen pro-
totype filter g, e.g. Root-Raised-Cosine (RRC) or Gaussian
filters. The chosen prototype filter may constitute orthog-
onal or non-orthogonal modulation and thus controls how
much self-interference is present in a specific GFDM sys-
tem. Appropriate prototype filter design may be performed
with the aid of ambiguity functions (Matthias Woltering
et al., 2015; Du, 2008). In general, non-orthogonal modu-
lation must be assumed and self-interference must be con-
sidered.

Due to the cyclic filter shift in (4), a GFDM frame is cyclic.
Thus, a CP can be employed to obtain a cyclic channel at
the receiver and one-tap FDE is feasible. In contrast to
OFDM, only one CP per frame is necessary which can be
exploited to shorten frames and thus in turn reduce latency.

Matrix multiplication is an expensive operation, especially
when N tends to be large. Frequency domain modulation
and thus demodulation promises to drastically reduce com-
plexity (Gaspar et al., 2013). Therefore, (2) can be rewrit-
ten to

x = F−1
N

K−1∑
k=0

P
(k)
N×MLGML×MLRML×MFMdk (5)

where dk denotes the complex symbols modulated onto
one subcarrier. First, these symbols are transformed to fre-
quency domain with an M -point Fourier transform FM .
Next, upsampling in frequency domain is performed by
means of a repetition matrix RML×M , where L ≤ K is the
overlap factor. GML×ML is a diagonal filter matrix with
the ML prototype filter taps on its diagonal. P (k)

N×ML per-
forms subcarrier modulation by shifting the samples into a
vector of size N at the corresponding position of the kth
subcarrier. For K = L, (5) is an alternative representation
of (2). If the prototype filter is chosen such that its OOB
leakage decays outside its subcarrier bandwidth L can be-
come smaller than K. In case RRC filters are used, only
adjacent subcarriers overlap. Typically L = 2 in this case
and it becomes clear that L controls the modulators com-
putational complexity.

From (5), it becomes apparent that M and K should both
be a power of two in order to exploit the efficient Cooley-
Tukey Fast Fourier Transform (FFT) algorithm. However,
M is chosen such that it is an odd number because GFDM
systems exhibit bad performance if both M and K are even
numbers because Zero-Forcing (ZF) receivers do not exist
(Matthe et al., 2014).

The next transmitter stage performs CP insertion. This is
possible on a per frame basis because of the chosen cyclic
shift in filter taps. Also, a CS may be inserted. Having
only one CP and CS, of size NCP and NCS respectively,
per frame improves spectral efficiency while still enabling
simple one-tap FDE at the receiver.

Apart from CP insertion, frame windowing is performed in
this stage in order to reduce OOB emissions (Michailow
et al., 2014). Here frame windowing is applied to whole
frames similar to (IEEE, 2012) where it is employed on a
per-symbol basis. In accordance with (IEEE, 2012), usu-
ally a Raised-Cosine (RC) filter is applied. For the frame
window Nw samples at the beginning and end of each
frame are considered.

Before a GFDM frame is transmitted, a preamble is
prepended as depicted in Fig. 1. This preamble is used
for synchronization in the receiver but may also be used for
an initial channel estimate.

2.2. Synchronization

A GFDM receiver must first locate a received frame y
in the received sample stream before it can be demodu-
lated. In (Demel et al., 2015), it has been shown that frame
synchronization is a computationally expensive operation.
Thus, we consider multiple synchronization stages in order
to bound complexity.

The receiver processing chain, depicted in Fig. 2, is split
into two stages. In the initial energy-based synchronization



An optimized GFDM software implementation for future Cloud-RAN and field tests

Energy-based
Sync

Preamble-based
Sync

Cyclic Prefix
Removal

GFDM
Demodulator

Resource
Demapper

y

d̂

Figure 2. Receiver processing steps

stage, a coarse frame start is detected by detecting a rise
in energy. The energy-based synchronization stage may
be skipped if coarse synchronization is already achieved.
Afterwards a high precision synchronization stage follows
which also facilitates tracking. This preamble-based syn-
chronization stage only searches in a window around the
detected coarse frame start for the known preamble.

This fine synchronization is performed with an improved
Schmidl&Cox algorithm (Awoyesila et al., 2008) which is
adopted for GFDM (Gaspar et al., 2014). The synchroniza-
tion algorithm requires the preamble to consist of two iden-
tical parts which are transmitted consecutively. In (Gaspar
et al., 2014) a short GFDM frame with M = 2 timeslots is
proposed with identical pseudo-random symbols in the first
and second timeslot. The algorithm first performs a fixed-
lag autocorrelation of length subcarriers K which yields
a frame timing estimation with moderate accuracy. Fur-
thermore, the fixed-lag autocorrelation is used to estimate
a Carrier-Frequency-Offset (CFO).

In a window around this moderately accurate timing esti-
mation a crosscorrelation with the received samples and the
known preamble is performed. In this window, element-
wise multiplication of the fixed-lag autocorrelation and
crosscorrelation values results in a high precision timing
synchronization. Eventually, synchronization yields a re-
ceived frame vector including its CP and CS.

2.3. Receiver

A GFDM receiver must perform equalization and demod-
ulate a received frame. Since GFDM is a non-orthogonal
modulation scheme, Interference-Cancellation (IC) might
be performed in order to remove self-interference.

Considering Fig. 2 after the synchronization stages,
the modulated received frame y = Hx + n is ob-
tained by removing the CP and CS with H being a
cyclic block fading channel matrix and n being Addi-
tive White Gaussian Noise (AWGN). A ZF receiver with
GZF = A−1 would remove all self-interference, intro-
duced by the non-orthogonal waveform, at the expense
of noise-enhancement. In order to maximize Signal-to-
Noise-Ratio (SNR) a Matched-Filter (MF) receiver with
GMF = AH is used but does not remove self-interference.

Unlike OFDM, GFDM enables to control self-interference
by means of filter design. In case of RRC filters, only adja-
cent subcarriers need to be considered.

Similar to (5), demodulation is performed in frequency do-
main with GML×ML = GMF. First, the frame y is par-
tially demodulated per subcarrier k

y0
RX,k = (RML×M )

T
GML×ML

(
P

(k)
N×ML

)T
HH

F FN y

(6)
where the diagonalized frequency domain channel matrix
HF = FH is employed for one-tap channel equalization.
y0

RX,k suffers from interference from adjacent subcarriers.
This interference is combated with J IC iterations where
j ∈ {0, . . . , J − 1} (Gaspar et al., 2013). In each iteration
j

d̄jk = q{F−1
M yjRX,k} (7)

is performed to obtain hard symbol decisions. Then, the
interference to adjacent subcarriers

yjI,k = GIFM (d̄j(k+1) mod K + d̄j(k−1) mod K) (8)

is calculated where GI accounts for the weighted interfer-
ence derived from the used filters. Eventually, the next IC
iteration j + 1 is performed with updated receive vectors

yj+1
RX,k = y0

RX,k − yjI,k. (9)

This process from (7) onwards is repeated J-times in or-
der to minimize self-interference. After J iterations the
demodulator returns interference-reduced soft decisions
d̂k = F−1

M yJ−1
RX,k for all subcarriers k.

3. Software Defined Radio
SDR is a term coined by Joseph Mitola (Mitola, 1992). The
concept describes how formerly fixed hardware for signal
processing is moved to the software domain. GNU Radio
provides a powerful framework for SDR implementations
(GNU Radio, 2017). It enables myriads of new applications
and use-cases and offers unprecedented flexibility.

Research and development may be accelerated with soft-
ware development techniques, e.g. rapid prototyping, in-
troduced with the SDR concept (Otterbach et al., 2013).
Field tests and simulations which share a common code
base drastically improve technology verification and enable
deeper investigation of the system of interest. Also, soft-
ware development techniques help to improve code quality.
Preferably, the switch from simulation to field test is per-
formed by only switching out drivers as opposed to mov-
ing to a different implementation. A SDR implementation
offers the advantage to combine these features and it can
reveal feasibility in real world scenarios in regard to di-
verse requirements formulated by future 5G and I4.0 ap-
plications. Wireless Networks in-the-Loop (WiNeLo) is an



An optimized GFDM software implementation for future Cloud-RAN and field tests

implementation that enables this easy switch from simula-
tions to field tests.

Additionally, future Cloud RANs will benefit from a soft-
ware implementation (Rost et al., 2015) which will enable
more efficient use of available hardware. This could enable
moving the signal processing away from the Radio Access
Network (RAN) to centralized and virtualized computing
resources. This also helps to capture challenges arising
during research and development. Thus, development of
new waveforms can be accelerated. Additional abstrac-
tion layers could also motivate borrowing techniques like
heterogeneous computing from other industries with high
computing requirements.

In this paper we focus on SDRs which are implemented in
software and target GPP hardware but consider radio hard-
ware constraints. Moreover, programming hardware logic
is excluded from SDR because it contradicts with the target
to virtualize signal processing for Cloud RAN.

Cooperative development of new waveforms is fostered
with open-source tools, frameworks and waveforms. This
is underlined for example in (Bloessl et al., 2013). While
multiple implementations for WiFi exist, open-source im-
plementations offer the possibility to investigate the pro-
posed algorithms and collaboratively extend the basic sys-
tem. This stands in contrast to proprietary software which
requires extended efforts in terms of collaboration. Again,
the presented approach to the mentioned WiFi implementa-
tion emphasizes the importance of a software development
cycle approach to waveform development.

4. Implementation
In this Section we introduce the current implementation of
gr-gfdm. The project was started in 2015 and heavily op-
timized since then. An analysis of expected implementa-
tion latencies for the underlying algorithms can be found in
(Demel et al., 2017).

The implementation follows the division into logical seg-
ments of operation described in Sec. 2. Most of gr-gfdm
is implemented in C++ for optimized code where function
kernels separate optimized GFDM C++ functions from the
GNU Radio interface as shown in Fig. 3. Apart from ab-
stracting implementation details from the GNU Radio in-
terface they enable reuse of the same implementation for
other signal processing frameworks such as Python with
NumPy and SciPy. Also, Python is used for implementa-
tion validation and initialization during start-up. All blocks
in the transmitter and receiver can be parameterized with
total number of subcarriers and timeslots. Most blocks are
designed to be flexible and thus can be customized with
more parameters depending on the blocks role.

Python
code

C/C++
kernels

GNU Radio
interface

Cython
interface

fast,
multi-threaded,
HW interface

easy-to-use,
accessible

(e.g. Python,
Matlab)

Figure 3. function kernel design concept

Using GNU Radio with the function kernels abstraction
provides necessary flexibility to prototype and verify code
in GNU Radio and Python in a timely manner. Addition-
ally, the implementation is easily extendable with inter-
faces for other programming languages.

Licensing GNU Radio and Vector-Optimized Library of
Kernels (VOLK) are freely available under the terms of the
GPLv3 and Fastest Fourier Transform in The West (FFTW)
is freely available under the terms of the GPLv2. The usage
of libraries available under the terms of a GPL license has
a huge advantage above propietary libraries. Performance
impact of used algorithms can be examined and improved
by modifying the source code. Reproducability of the im-
plementation is ensured by checking used libraries for side
effects.

4.1. Libraries and frameworks

This Subsection introduces the most important libraries and
frameworks which are used in gr-gfdm (Rode, 2017).

GNU Radio A modular, multi-threaded framework for
rapid-prototyping of SDR applications (GNU Radio,
2017). It offers a variety of basic tools for signal pro-
cessing, visualization and infrastructure in order to develop
new waveforms. A developer may focus on the actual al-
gorithms at hand while GNU Radio provides a framework
to deal with software design implications. This is particu-
larly interesting when dealing with multi-threading because
GNU Radio manages threads and data and allows writing
thread-safe applications by default. GNU Radio provides
a C++ API for developing performance critical parts of
the algorithm. To speed up development prototyping GNU
Radio also provides a Python API and the resulting flow
graph representing the signal flow between signal process-
ing blocks is generated using Python.

VOLK A library of math functions on vectors which are
typically used in signal processing (VOLK, 2017).



An optimized GFDM software implementation for future Cloud-RAN and field tests

Figure 4. Transmitter in GNU Radio

It makes use of Single-Instruction-Multiple-Data (SIMD)
extensions which are present in many modern GPP hard-
ware architectures such as Streaming SIMD Extensions
(SSE), Advanced Vector Extensions (AVX) or NEON. It
abstracts individual implementations for specific hardware
and provides a canonical interface to all of them. VOLK
enables developing a platform independent software which
enables increased performance through usage of SIMD
without being limited to a single hardware architecture.

FFTW One of the fastest known software implementa-
tions for Fourier transforms (Frigo & Johnson, 2005). It is
a de facto standard for many software projects, both com-
mercial and open-source.

4.2. Transmitter

This subsection introduces the transmitter signal process-
ing blocks. It is assumed that data is provided in form of
complex symbols. The GFDM transmitter first maps these
symbols to a frame lattice, then performs GFDM modula-
tion and finally adds a CP and or CS together with window-
ing. This is split into three steps illustrated in Fig. 4. Fi-
nally, a preamble is inserted before each modulated frame.

The Resource Mapper takes in blocks of MKon sam-
ples and maps them onto a block with MK samples. The
output vector contains the samples grouped subcarrier-wise
for modulation. Unused subcarriers and unused lattice
points are filled with 0 + j0. Unused subcarriers can be
determined by setting the number of active subcarriers and
a subcarrier map during initialization of the block. The sub-
carrier map specifies the used subcarriers in each frame.

The Modulator expects vectors with MK samples
which are then modulated. This block consumes the most
transmitter resources and was optimized using the VOLK
and FFTW libraries. The algorithms are implemented ac-
cording to (5). To make sure the implementation works
as expected tests compare the implemented algorithm with
(2). These tests may be run after each compilation to en-
sure conformity. Customization of this block is allowed by
specifying the overlap between subcarriers and the taps of
the prototype subcarrier FIR filter in the frequency domain.
With this implementation different subcarrier filters can be
switched out very easily. This allows easy testing and sim-
ulation of the waveform.

Figure 5. Energy-based synchronization

The CP block adds a CP and CS and performs a window-
ing operation. It expects input vectors of size N = MK
and puts out vectors of size N +NCP +NCS . Afterwards
frames are ready to be transmitted over-the-air. Parameteri-
zation of this block is allowed by specifying the CP and CS
length. The window ramp length Nramp and window taps
can be specified as well.

4.3. Synchronization

Synchronization is typically a computationally heavy op-
eration as shown in (Demel et al., 2015). We decided to
match synchronization specifically to our system. Since
we expect to work in a high SNR region, we start off with a
coarse energy-detection-based synchronization stage. Fine
synchronization is then performed with a simplified algo-
rithm introduced in Section 2.2.

The energy-based synchronization stage is comprised of
standard GNU Radio blocks as shown in Fig. 5. A ris-
ing edge over a certain threshold in the sample energy con-
tent is detected within a window. This synchronization
stage has low complexity and provides a rough frame de-
tection. The number of samples which are expected in a
frame can be extracted and passed on to the next synchro-
nization stage based on a detected peak.

The preamble is expected to be located within a window
Npw at the beginning of a frame. This narrows the search
region for the preamble to a fixed window. In order to meet
a high throughput, this synchronization stage is optimized
with VOLK and FFTW. The fine synchronization stage
emits a vector containing exactly one synchronized frame.
Furthermore, CFO compensation as well as Automatic-
Gain-Control (AGC) may be performed with only a small
overhead.

4.4. Demodulation

GFDM is generally a non-orthogonal waveform and thus
self-interference must be expected. For demodulation a
simple demodulator without IC, ignoring self-interference,
and an advanced demodulator with IC are implemented.
The implemented receiver flowgraph is shown in Fig. 6.
The demodulation algorithms are implemented according
to (6) which uses the optimized operation in the frequency
domain. Unit tests ensure the implementation works as ex-
pected.



An optimized GFDM software implementation for future Cloud-RAN and field tests

Figure 6. RX flowgraph in GNU Radio

The IC implementation is particularly necessary if higher
order modulation is desired for the transmission and thus
self-interference degrades performance more significantly.
Using properties of the self interference, it is possible to
significantly improve the quality of received symbols.

The demodulator may be provided with an initial chan-
nel estimate for equalization. This is especially necessary
for field trials and simulations with channels other than
AWGN, otherwise IC may degrade the performance of the
system. A preamble based channel estimation algorithm is
implemented in order to provide an initial channel estimate.

Figure 7. Hardware setup with Laptop, USRPs and signal gener-
ator

5. Field Trial
A major advantage of GNU Radio is its ability to serve as
both, a simulation environment as well as a SDR. In this
section we present the results of our efforts to use the im-
plementation for over-the-air transmissions.

The hardware setup for this field trial is shown in Fig. 7
and summarized in Tab. 1. It consists of a laptop for trans-
mit and receive signal processing in GNU Radio, USRPs
as hardware frontends and a signal generator for frequency
synchronization between the USRPs via their 10MHz ref-
erence clock input. The GFDM system is parameterized
as described in Tab. 2. The subcarrier filters have Root-
Raised-Cosine shape, while the windowing function uses a

Software Ubuntu 16.04
GNU Radio 3.7.11

Hardware Intel Core i7-6700HQ with 16Gb RAM
Frontend 2×USRP2 with RFX2400 daughterboards

HP 33120A signal generator

Table 1. Software and hardware for field trial

Timeslots M 9
Subcarriers K 64

Active subcarriers Kon 52
Cyclic Prefix length NCP 32
Cyclic Suffix length NCS 16

Window ramp length NCP 16
Number of IC iterations J 2

Table 2. GFDM system parameters

Raised-Cosine. Packets are transmitted every 1ms with a
sample rate of 3.125MS/s. This results in a packet length
of 256 µs including a preamble. The corresponding receiver
flowgraph is shown in Fig. 6.

The receiver chain is tapped during multiple stages in order
to monitor the current state of the flowgraph with a GUI as
shown in Fig. 8. A receiver symbol constellation shows
the demodulated symbols, Quadrature Phase Shift Keying
(QPSK) in this case. The channel estimate with its real and
imaginary component is shown right next to it. Further-
more, the synchronization is facilitated in multiple stages
with the corresponding output shown in the ”Synchroniza-
tion” part of the GUI. An energy-based burst detection is
shown first and afterwards the time-synchronized bursts.
The GNU Radio stream tag feature is used to indicate the
start of a burst as detected by the receiver.

The presented field trial runs without underflows and over-
flows. Its resource requirements are measured with htop
and indicate a load of approximately 90%, thus only one
Central Processing Unit (CPU) core is occupied. Higher



An optimized GFDM software implementation for future Cloud-RAN and field tests

Figure 8. RX flowgraph GUI, showing a constellation, channel estimate and time samples for different synchronization stages

bandwidth may only affect the synchronization portion of
the flowgraph. Thus, even at a sampling rate of 25MS/s
the load increases to approximately 250% while USRP
source and sink consume more than 50% load.

6. Conclusion
In this paper we presented gr-gfdm, a GFDM implementa-
tion in GNU Radio. We made heavy use of GNU Radio’s
features in order to simplify the implementation efforts. It
includes VOLK usage for massive speed-ups. This is, to
the best of our knowledge, the first open source GFDM im-
plementation in GNU Radio. The gr-gfdm can be used for
simulations as well as field trials and its capabilities were
demonstrated in a field trial. We showed the overall imple-
mentation is ready to be used for field trials and may run in
real-time even at a sampling rate of 25MS/s. We believe
open source SDR implementations of new waveforms con-
tribute to faster exploration of their capabilities. Thus they
foster the adoption of new multicarrier waveforms because
interested parties are free to use and contribute to the code.

Acknowledgment
This work was partly funded by the German ministry of
education and research (BMBF) under grant 16KIS0263K
(HiFlecs).

References
Awoyesila, Adegbenga B., Kasparis, Christos, and Evans,

Barry G. Improved preamble-aided timing estimation for
OFDM systems. IEEE Communications Letters, 2008.
ISSN 10897798. doi: 10.1109/LCOMM.2008.081054.

Bloessl, Bastian, Segata, Michele, Sommer, Christoph,
and Dressler, Falko. Towards an Open Source IEEE
802.11p stack: A full SDR-based transceiver in GNU
Radio. In IEEE Vehicular Networking Conference, VNC,
2013. ISBN 9781479926879. doi: 10.1109/VNC.2013.
6737601.

Danneberg, Martin, Michailow, Nicola, Gaspar, Ivan,
Matthé, Maximilian, Zhang, Dan, Mendes, Lu-
ciano Leonel, and Fettweis, Gerhard. Implementation of
a 2 by 2 MIMO-GFDM Transceiver for Robust 5G Net-
works. In International Symposium on Wireless Commu-
nication Systems (ISWCS), Brussels, 2015.

Demel, Johannes, Koslowski, Sebastian, and Jondral,
Friedrich K. A LTE receiver framework using GNU
Radio. Journal of Signal Processing Systems, 78(3),
2015. ISSN 19398115 19398018. doi: 10.1007/
s11265-014-0959-z.

Demel, Johannes, Bockelmann, Carsten, and Dekorsy,
Armin. Evaluation of a Software Defined GFDM Imple-
mentation for Industry 4.0 Applications. In Proceedings



An optimized GFDM software implementation for future Cloud-RAN and field tests

of the 2017 IEEE International Conference on Industrial
Technology, Toronto, Canada, 2017.

Du, Jinfeng. Pulse Shape Adaptation and Channel Esti-
mation in Generalised Frequency Division Multiplexing
Systems. KTH, Stockholm, 2008. ISBN 978-91-7415-
187-9.

Frigo, Matteo and Johnson, Steven G. The design and im-
plementation of FFTW3. In Proceedings of the IEEE,
2005. ISBN 0018-9219. doi: 10.1109/JPROC.2004.
840301.

Gaspar, Ivan, Michailow, Nicola, Navarro, Ainoa, Ohlmer,
Eckhard, Krone, Stefan, and Fettweis, Gerhard. Low
complexity GFDM receiver based on sparse frequency
domain processing. In IEEE Vehicular Technology Con-
ference, 2013. ISBN 9781467363372. doi: 10.1109/
VTCSpring.2013.6692619.

Gaspar, Ivan S, Mendes, Luciano L, Michailow, Nicola,
and Fettweis, Gerhard. A synchronization tech-
nique for generalized frequency division multiplexing.
EURASIP Journal on Advances in Signal Processing,
2014. URL http://asp.eurasipjournals.
com/content/2014/1/67.

GNU Radio. GNU Radio website. http://gnuradio.
org/, 2017. Accessed: 2017-06-28.

IEEE. IEEE Standard for Information technology–
Telecommunications and information exchange between
systems Local and metropolitan area networks–Specific
requirements Part 11: Wireless LAN Medium Ac-
cess Control (MAC) and Physical Layer (PHY)
Specifications. Technical report, IEEE, 2012. URL
http://ieeexplore.ieee.org/servlet/
opac?punumber=6178209.

Matthe, Maximilian, Mendes, Luciano Leonel, and Fet-
tweis, Gerhard. Generalized frequency division multi-
plexing in a gabor transform setting. IEEE Communi-
cations Letters, 2014. ISSN 10897798. doi: 10.1109/
LCOMM.2014.2332155.

Matthias Woltering, Dirk Wübben, Armin Dekorsy,
Stephan Schedler, and Volker Kühn. Physical Layer
Network Coding Using Gaussian Waveforms: A Link
Level Performance Analysis. In 10th International ITG
Conference on Systems, Communications and Coding
(SCC 2015), Hamburg, 2015. URL http://www.
scc2015.net/.

Michailow, Nicola, Krone, Stefan, Lentmaier, Michael, and
Fettweis, Gerhard. Bit Error Rate Performance of Gen-
eralized Frequency Division Multiplexing. In IEEE Ve-
hicular Technology Conference (VTC Fall), Quebec City,
2012.

Michailow, Nicola, Matthe, Maximilian, Gaspar,
Ivan Simoes, Caldevilla, Ainoa Navarro, Mendes,
Luciano Leonel, Festag, Andreas, and Fettweis, Ger-
hard. Generalized frequency division multiplexing for
5th generation cellular networks. IEEE Transactions
on Communications, 2014. ISSN 00906778. doi:
10.1109/TCOMM.2014.2345566.

Mitola, J. Software Radios Survey, Critical Evaluation
and Future Directions. 1992. doi: 10.1109/NTC.1992.
267870.

Otterbach, Nico, Braun, Martin, and Jondral, Friedrich K.
Wireless Networks In-the-Loop: Creating an SDR De-
velopment Environment. In IEEE International Sympo-
sium on Wireless Communication Systems (ISWCS), Il-
menau, 2013.

Rode, Andrej. gr-gfdm. https://github.com/
kit-cel/gr-gfdm, 2017. Accessed: 2017-06-28.

Rost, Peter, Berberana, Ignacio, Maeder, Andreas, Paul,
Henning, Suryaprakash, Vinay, Valenti, Matthew,
Wübben, Dirk, Dekorsy, Armin, and Fettweis, Gerhard.
Benefits and challenges of virtualization in 5G radio
access networks. In IEEE Communications Magazine,
2015. doi: 10.1109/MCOM.2015.7355588.

Sahin, Alphan, Guvenc, Ismail, and Arslan, Huseyin.
A survey on multicarrier communications: Prototype
filters, lattice structures, and implementation aspects.
IEEE Communications Surveys and Tutorials, 2014.
ISSN 1553877X. doi: 10.1109/SURV.2013.121213.
00263.

Schaich, Frank and Wild, Thorsten. Waveform contenders
for 5G - OFDM vs. FBMC vs. UFMC. In ISCCSP
2014 - 2014 6th International Symposium on Commu-
nications, Control and Signal Processing, Proceedings,
2014. ISBN 9781479928903. doi: 10.1109/ISCCSP.
2014.6877912.

Vakilian, Vida, Wild, Thorsten, Schaich, Frank, Ten Brink,
Stephan, and Frigon, Jean Francois. Universal-filtered
multi-carrier technique for wireless systems beyond
LTE. In 2013 IEEE Globecom Workshops, GC Wk-
shps 2013, 2013. ISBN 9781479928514. doi: 10.1109/
GLOCOMW.2013.6824990.

VOLK. VOLK website. http://libvolk.org/,
2017. Accessed: 2017-06-28.


