
1 ICT Laboratory Overview - CIT Master

1.1 Introduction

The ANT part of the ICT laboratory held in the winter term is meant to be solved
in groups of two in an independent fashion with minimal help from tutors. You are
expected to solve problems on your own and organize your work as you see fit. To
provide time for questions, initial instructions and to evaluate your implementation 4
laboratory dates of approximately 4 hours each and a short setup meeting are scheduled.

CIT masters are expected to implement a baseline receiver that matches the system des-
cribed in this lab description. The transmitter will be provided in form of Matlab p-code
to test and simulate the whole transmission chain. Additionally, a short presentation
about one of the transmitter/receiver blocks has to be presented.

In the following, Section 1.2 discusses the specific goals and requirements of this lab in
more detail. Then, Section 1.3 introduces the lab dates and the general timing of the
lab over the whole winter term. The explanations of the specific tasks for phase 1 and 2
are given in Section 2. Finally, Section 3 explains the evaluation guidelines that will be
used to judge if the lab has been passed successfully or not.

1.2 Goals and Requirements

1.2.1 Requirements

This laboratory is mandatory for CIT master students. Besides different Bachelor back-
grounds we expect you to have certain knowledge and skills at the beginning of the
laboratory. To some degree, it is expected that you will have to research topics less well
known to you, but nonetheless the following is expected:

• Self-motivated working style (researching unknown topics with minimal tutor help)

• Basic communications technology knowledge (equivalent GNT from the German
Bachelor ET/IT)

• Basic knowledge of MATLAB

• Basic knowledge of presentation techniques / software (e.g., LaTeX Beamer or
Powerpoint)

1.2.2 Goals

The following goals are targeted with this laboratory:

1



• Self-motivated problem solution including research and collaboration with other
lab attendees

• Deepening knowledge about all the basic processing steps in communications from
digitization to coding and modulation

• Developing programming skills in Matlab

• Practicing presentation of technical details / procedures (written and oral)

1.3 Time line

Setup
Intermediate

Intermediate

Presentation

23.10.2018

06.11.2018

11.12.2018

15.01.2019

Figure 1: Time line for ICT Lab 1 WS2017/2018.

This laboratory is planned to be running alongside other courses during the whole winter
term with only 5 predetermined lab dates for an overall workload of 1CP or 30h for
CIT masters. Figure 1 shows the specific dates for WS 2017/2018 and their individual
purpose. The first date is mandatory for all students attending the lab and will be used
to clarify the setup, goals and requirements again. It is expected that all students read
this script beforehand and are well prepared. After this initial meeting, intermediate
lab time is offered to continue the work on the task, ask questions and get help with
individual problems. All intermediate dates are offered as supervised implementation
time to help you with problems and give pointers towards helpful material. For CIT
masters attending these dates is not mandatory. However, we strongly advise you to use
this time to solve problems and get feedback!

The final date of the lab is mandatory and will be used to check the fulfillment of
the tasks and to present the findings of each group in a 5-7 minute presentation of
maximum 5 slides. The tutors will test each groups implementation according to the
API requirements described in Section 2.3.2, check the code for proper comments and
fulfillment of the test defined in Section 3.4. Groups who do not pass this test will
have to repeat ICT lab 1 in the following year.

2



Baseband
Transmitter

Bandpass
Processing

Bandbass
Channel

Bandpass
Processing

Baseband
Receiver

Baseband Channel

Figure 2: Overview of a point-to-point communication setup. Shaded and gray marked
blocks will be provided.

2 Task Description

2.1 General Description

The general idea of this lab is the implementation of a complete point-to-point commu-
nication chain as illustrated in Fig. 2, including transmitter, channel and receiver. To
restrict the breadth of this task, CIT masters only have to implement the receiver parts
indicated by white blocks. An equivalent baseband channel model and the transmitter
will be provided to test the overall communication chain. This model summarizes all
channel and hardware effects that are attributed to bandpass processing, including but
not limited to up/down conversion, amplification, antenna patterns, and so on. Howe-
ver, some of the bandpass effects will be included into the lab by equivalent baseband
descriptions as “non-linear hardware” (see the following sections for more details).

Note: Read the transmitter section carefully! You need all information in both trans-
mitter and receiver sections to implement the communication system successfully.

2.2 Transmitter Structure for Reference

2.2.1 Transmitter Model

Analog
Source

AD
Conversion

Source
Coding

Tx FIFO
Buffer

Channel
Coding

ModulationTx Filter
Non-linear
Hardware

Baseband
Channel

Figure 3: General structure of the Baseband Transmitter as introduced in Fig. 2 with
interface to Baseband Channel. The transmitter blocks will be provided as
p-code.

The transmitter of a basic point-to-point communication chain according the the spe-
cifications below is available as p-code. The specifications here are for reference and
to ease implementation of the complete chain as well as the receiver. Fig. 3 shows the

3



building blocks of such a transmitter. Each block is defined by its inputs and outputs
and a short requirements list that describes the functionality in Section 2.2.2. Please
note, that some blocks are marked as “switchable” by a parameter switch_off, which
means that such a block should not change the input data in any way if switched “off”
by switch_off=1, i.e., output=input.

Additionally to functional requirements, e.g., a certain quantization of the data in the
AD conversion block, also optional graphical output may be available. For example, the
quantization error introduced in the AD Conversion may be plotted in a figure. Graphical
output should always be optional, i.e., controlled by a switching variable switch_graph,
to analyze your implementation and the results as needed.

4



2.2.2 API Definitions

a=analog_source(par_no,switch_reset,switch_graph);

Analog
Source

a

Pseudo-analog source providing a highly oversampled sig-
nal for further processing. Repeated calls of this function
will provide consecutive blocks of the signal.
Parameters:
par_no indicates the number of (oversampled)

samples to provide.
switch_reset if equal to 1, the source is reset to the

beginning.

u=ad_conversion(a,par_w,par_q,switch_graph);

AD
Conversion

a u

This block facilitates AD Conversion, i.e., sampling and
quantization.
Requirements:

1. Downsampling by a factor par_w according to the
bandwidth of the input signal a.

2. Quantization of the signal’s amplitude to par_q=8

bits.
3. This function should return the bit representation

as row vector for each sample.

[b,code_tree]=source_coding(u,par_scblklen,switch_off,switch_graph);

Source
Coding

u b

This block facilitates Source Coding according to Huff-
man.
Requirements:

1. This function expects the quantized and sampled
signal in bit representation as row vectors per sam-
ple.

2. Analyze the quantized and sampled signal of length
par_scblklen to build the code tree code_tree.

3. Encode the block of length par_scblklen of the
quantized signal u into a binary representation b.

4. Due to the variable compression rate, the length
of the output sequence b will not be constant and
needs to be stored.

Assume a block length of par_scblklen=100.

5



[b_buf]=tx_fifo(b,par_fifolen,par_ccblklen,switch_reset);

Tx FIFO
Buffer

b bbuf

This block facilitates First-In First-Out (FIFO) buffering
of source coded bits to ensure correct block lengths for
further processing.
Requirements:

1. Internally store bit vectors b in a buffer. If buf-
fer fill equals or exceeds par_ccblklen, return
par_ccblklen bits as vector b_buf and remove
these from the internal buffer. If buffer fill is less,
return an empty vector.

2. Avoid buffer overruns, i.e., make sure that
par_ccblklen is larger than length of b.

3. If switch_reset=1, empty buffer before filling.

c=channel_coding(b_buf,par_H,switch_off);

Channel
Coding

bbuf c

This block facilitates Channel Coding by a [7,4] Hamming
code.
Requirements:

1. Encode the block of length par_ccblklen of the bi-
nary signal bbuf via the [7,4] Hamming block code.

The block length should be a multiple of 16 bits.

d=modulation(c,switch_mod,switch_graph);

Modulation
c d

This block facilitates Modulation of the encoded bit se-
quence to either 16-QAM or 16-PSK.
Requirements:

1. Modulate data to either 16-QAM or 16-PSK with
Gray mapping. switch_mod=0 indicates 16-QAM,
switch_mod=1 16-PSK.

2. Normalize the average symbol power to 1.
The block length should be a multiple of 7 symbols.

s=tx_filter(d,par_tx_w,switch_graph);

Tx Filter
d s

This block facilitates filtering of the digital symbols with
a digital ideal low-pass filter.
Requirements:

1. Filter a block of symbols with an ideal low-pass
filter using an oversampling factor of par_tx_w=8.

2. Normalize the filter output signal appropriately
to ensure distortion free operation considering the
non-linear hardware.

6



x=tx_hardware(s,par_txthresh,switch_graph);

Non-Linear
Hardware

s x

This block models the influence of an amplifier on the
baseband signal by hard thresholding.
Requirements:

1. Implement a simple hard thresholding function that
limits the absolute value of the baseband signal s
such that it is linearly scaled to be smaller than 1
up to values of par_txthresh and clipped to 1 if
greater than par_txthresh.

2. Ensure that the phase of s is not changed by this
block.

3. Analyze distortions by this block if the scaling af-
ter Tx Filtering is suboptimal and switch from 16-
QAM to 16-PSK.

Assume a standard parameter par_txthresh=1.

y=channel(x,par_SNRdB,switch_graph);

Baseband
Channel

x y
This block models a simple baseband channel that adds
white gaussian noise to the signal.
Parameters:
par_¬
SNRdB

will be used to check the performance of the
transceiver chain at different SNRs (in dB).

2.3 Receiver implementation

2.3.1 Receiver Model

Baseband
Channel

Non-linear
Hardware

Rx Filter Demodulation
Channel
Decoding

Rx FIFO
Buffer

Source
Decoding

DA
Conversion

Analog Sink

Figure 4: General structure of the Baseband Receiver with interface to Baseband Chan-
nel. Gray blocks will be provided, white ones are to be implemented according
to the specifications.

The task of this lab comprises the implementation of the baseline receiver for an AWGN
channel and the overall simulation. Fig. 4 shows the building blocks of such a receiver and
Section 2.3.2 details the individual blocks in terms of inputs, outputs and requirements.
To simplify the task some parameters can be assumed as known at the receiver side, i.e.,

7



the code_tree for each Huffman encoded block is known and the scaling of the transmit
signal is also known. This also applies to modulation, channel code and output block
length of source coder.

Your task is the fulfillment of these requirements for each block while adhering to the
specified inputs, outputs and function names. Please note, that some blocks are marked
as “switchable” by a parameter switch_off, which means that such a block should not
change the input data in any way if switched “off” by switch_off=1, i.e., output=input.

In addition to the receiver implementation a simulation environment has to be created
that uses the transmitter and receiver implementations to numerically analyze the per-
formance of the whole point-to-point communication chain. The following requirements
have to be fulfilled:

• Allow simulation of different SNRs, e.g., using an outer loop.
• Save the results in terms of uncoded/coded bit error rate (BER) and mean square

error (MSE) for different SNR choices in a vector.
• Plot the BER and MSE vs. the SNR.

2.3.2 API Definitions

s_tilde=rx_hardware(y,par_rxthresh,switch_graph);

Non-Linear
Hardware

y s̃

This block models the influence of an amplifier on the
baseband signal by hard thresholding.
Requirements:

1. Implement a simple hard thresholding function
block that is transparent and does not change the
signal in any way.

d_tilde=rx_filter(s_tilde,par_rx_w,switch_graph);

Rx Filter
s̃ d̃

This block facilitates filtering of the received signal with
a digital ideal low-pass filter.
Requirements:

1. Filter the received signal with an ideal low-pass fil-
ter using an downsampling factor of par_rx_w=8,
i.e., identical to the transmitter side.

2. Normalize the filter output signal appropriately to
ensure that the power of the signal is not changed.

8



c_hat=demodulation(d_tilde,switch_mod,switch_graph);

Demodulation
d̃ ĉ

This block facilitates hard estimation of the code bits for
either 16-QAM or 16-PSK.
Requirements:

1. Decide the received signal to either 16-QAM and
16-PSK symbols with Gray mapping to estimate
the code bits.

2. Ensure proper processing in terms of the channel
and source encoded blocks afterwards.

b_hat=channel_decoding(c_hat,par_H,switch_off);

Channel
Decoding

ĉ b̂

This block facilitates Channel Decoding of a [7,4] Ham-
ming code.
Requirements:

1. Correct errors in the estimated code words of the
[7,4] Hamming block code by syndrome decoding.

b_hat_buf=rx_fifo(b_hat,par_fifolen,par_sdblklen,switch_reset);

Rx FIFO
Buffer

b̂ b̂buf

This block facilitates buffering and segmentation of de-
coded bits.
Requirements:

1. Collect bit vectors b_hat in an internal buffer
and return them segmented into the correct block
lengths for subsequent source decoding.

2. The correct block lengths of the output b_hat_buf
are determined by the stored source coded mes-
sage b from the source_coding step in the trans-
mitter, which means the correct block length
par_sdblklen = length(b).

u_hat=source_decoding(b_hat_buf,code_tree,switch_off);

Source
Decoding

b̂buf û

This block facilitates Source Decoding of the Huffman
encoded and hard estimated source bits.
Requirements:

1. Decode each block of length par_sdblklen bits of
the quantized signal using the code_tree of the
block.

2. Return the bit representation of the decoded signal.

9



a_tilde=da_conversion(u_hat,par_w,par_q,switch_graph);

DA
Conversion

û ã

This block facilitates DA Conversion, i.e., upsampling
and reconstruction.
Requirements:

1. Upsampling by the factor par_w that has been cho-
sen at the transmitter side.

2. Reconstruct the Pseudo-analog source signal.

[MSE,BER]=analog_sink(a,a_tilde,b,b_hat,...);

Analog Sink
ã

Processing of the reconstructed and original signal to ana-
lyze the errors due to transmission. Here, the analog sink
represents the analysis of the received and reconstructed
signals. Knowledge of all other signals in the system is
implicitly assumed.
Requirements:

1. Calculate the error in terms of the mean square
error (MSE)

2. Calculate the error in terms of the coded and un-
coded bit error rate (BER).

3 Evaluation Guidelines

3.1 General Rules

Besides the solution of the task that is detailed below, we expect you to adhere to some
general rules:

• Solve the tasks by yourselves.

• Write your own code and do not copy!

• Design your own slides and do not copy (pictures, too)!

Group efforts in solving the sub tasks are encouraged and expected, but we will collect
the solutions of all groups at the end of the lab and test your personal knowledge about
your solution. The goal of this lab is to enhance your ability to break down bigger tasks
into smaller steps, organize your work and research for yourself. If you just copy the
solution of other groups, you will simply limit your own benefit.

10



3.2 What to expect from the tutors?

The tutors will help you understand the tasks, may give you help finding the right
information and evaluate your work to judge if you have passed or not.

Most importantly:

• Tutors will not write Matlab code for you!

• Tutors will give you hints and tips to help you to find the solution yourself !

• Tutors will only help you if you follow the guidelines and API descriptions given
in this document!

3.3 Required Performance

To pass ICT lab 1 the following expectations have to be met. Except the compliance
test, which is a hard measure checked in Matlab, compliance is rated by the tutor:

• Compliance with the tests described in Section 3.4 is mandatory to pass the lab.

• We expect you to write clean and well documented Matlab code that is easily
readable by the tutor. Consider this lab to be part of a job that will be carried on
by another team after you finish.

• Additionally to the compliance test, the tutor may ask you questions about your
implementation to test your individual grasp of the solution.

• A short presentation about parts of the baseline transmitter/receiver in front of
all other groups of maximum 5 slides taking 5-7 minutes is expected. Therein, you
should quickly explain: (1) the problem, (2) your approach, (3) the solution and
(4) the final results.

3.4 Receiver Compliance Test

The compliance test for the receiver comprises the following checks:

Non-linear Hardware 1. Correct clipping characteristic
2. Figure of received signal and signal after hardware showing

that no clipping is in effect

Rx Filter 1. Figure of the filter output
2. Figure showing eye pattern

Demodulation 1. Correct demodulation with Grey mapping
2. Figure of the estimated symbols with decision thresholds

Hamming Decoding 1. Correct channel decoding by syndrome decoding

11



2. Figure of exemplary code word indicating corrected errors

Rx FIFO 1. Correct reconstruction of source encoded frames

Huffman Encoding 1. Correct Huffman decoding

DA Conversion 1. Correct upsampling
2. Figure indicating the reconstructed signal

12


