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ABSTRACT

In this paper, we address the problem of distributed state es-
timation, where a set of nodes are required to jointly esti-
mate the state of a linear dynamic system based on sequential
measurements. In our distributed scenario, all the nodes 1)
are interested in the full state of the observed system and 2)
pursue a consensus-based state estimate with high accuracy.
We exploit the equivalent relation between the maximum-a-
posteriori (MAP) estimation and the Kalman filter (KF) in the
minimum mean square error (MMSE) sense under the Gaus-
sian assumption. Utilizing this relation, a distributed Kalman
filtering algorithm is derived, which ensures consensus-based
state estimates among nodes and converges to the optimal
central KF solution.

Index Terms— Distributed state estimation, consensus-
based, Kalman filtering, MAP

1. INTRODUCTION

Distributed estimation is one of the most fundamental appli-
cations of cooperative networks like sensor networks. Using
a network of nodes to collect discrete-time samples and to es-
timate a non-stationary state of a dynamic system is a popular
research topic, as demanded by distributed tracking or con-
trol system. In this work, we assume that a dynamic system is
monitored by a sensor network and each sensor intends to es-
timate the global system state making full use of all available
measurements. Due to the different local noise levels, sensing
capabilities and possibly types of sensors, the observations on
the state will be totally different from sensor to sensor. To en-
sure an accurate state estimate and avoid the disadvantages
of centralized processing, e.g., a single point of failure, an
alternative distributed signal processing scheme is preferred,
where each node performs peer-to-peer communication with
its neighbors and processes data locally.

In previous works, many distributed Kalman filtering
schemes were proposed in [1]-[7] to estimate the state of a
linear dynamic system. The algorithms in [1]-[5] are all sub-
optimal in the sense not achieving the central Kalman filter
(KF) solution [8]. Nevertheless, the concept of micro-KF [1]

is a good starting point to decompose the centralized scheme
inspiring the subsequent works such as [6] and [7], in which
different iterative consensus schemes, i.e., alternating direc-
tion method of multipliers and average consensus, are used
to ensure the algorithms converge to the optimal solution, but
the consensus is not enforced on state estimate directly.

Different from the other works on distributed Kalman fil-
tering, we firstly consider the problem from another point of
view by solving an equivalent maximum-a-posteriori (MAP)
estimation problem. Next, to ensure a consensus-based solu-
tion, consensus constraints on state estimate are introduced.
This kind of constrained optimization problem can be solved
by numerical approaches in a distributed way, e.g., the method
of multipliers. Analytical and experimental results show that
our proposed algorithm asymptotically approaches the opti-
mal centralized performance. Even with little consensus it-
erations, simulations show that our algorithm is still robust
and provides a more accurate and consensus-based solution
compared to other schemes using average consensus.

2. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the following state space model of a discrete-
time linear dynamic system

xk+1 = Akxk + wk, (1)

where xk ∈ Rm is the state vector of the system, wk ∈ Rm

denotes the process noise and Ak ∈ Rm×m is the system
matrix. Here the index k is the discrete time instant.

Now the state vector in (1) is observed by J sensors,
which are connected through assumed error-free links, form-
ing a time-invariant network topology described by a geomet-
ric graph G = {J , E}. Here, J := {1, · · · , J} and E denote
the set of nodes and edges, respectively. These sensor nodes
are assumed to have sensing, processing and communication
capabilities. At each time k, a local measurement yj,k ∈ Rn

is obtained by each node j ∈ J , following

yj,k = Hj,kxk + vj,k, (2)

where Hj,k ∈ Rn×m and vj,k ∈ Rn denote the measurement
matrix and measurement noise, respectively. wk and vj,k are
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assumed as zero mean white Gaussian noise with covariances
Qk and Rj,k, respectively, with the following relation

E


[

wk

vj,k

][
wp

vi,p

]T =

[
Qk 0
0 Rj,k

]
δjiδkp.

Here, δcd is the Kronecker delta, i.e., δcd = 1 only if c = d.
Then we further define the collective sensor measure-

ments of the entire sensor network as yk = [yT
1,k, · · · , yT

J,k]
T

∈ RnJ , the stacked block measurement matrix as Hk =
[HT

1,k, · · · ,HT
J,k]

T ∈ RnJ×m and the global measurement
noise as vk = [vT1,k, · · · , vTJ,k]T ∈ RnJ . The global mea-
surement model of the whole network can be formulated
as yk = Hkxk + vk by stacking all local measurements
yj,k. The global measurement noise has covariance Rk =
blkdiag [R1,k, · · · ,RJ,k] ∈ RnJ×nJ . Let x̂k|k−1 be the a-
priori estimate, which denotes the estimate of the true state
xk given measurements up to time k−1, and let x̂k|k be the a-
posteriori estimate containing the new measurement at time k.
Then, we define the estimation errors ek|k−1 = x̂k|k−1 − xk,
ek|k = x̂k|k − xk and further calculate the corresponding
error covariance matrices Pk|k−1 = E[ek|k−1eTk|k−1] and
Pk|k = E[ek|keTk|k] related to x̂k|k−1 and x̂k|k, respectively.

The main objective of this work is to make every node j ∈
J in the network achieve an accurate and consensus-based
estimate x̂j,k on the entire true state xk at each time k based
on a set of all collective sensor measurements {y1, · · · , yk}
from time 1 to time k, denoted by Yk.

3. KALMAN FILTER

Based on the system model introduced in Section 2, the KF
[8] is an optimal filter in the minimum mean-square-error
(MMSE) sense by minimizing the trace of Pk|k. It obtains
the optimal estimate of state xk given all measurements from
1 to k. The KF has two steps, namely, measurement update
and time update. When initial values on x̂0|−1 and P0|−1 are
given, the algorithm runs recursively. Referring to [1], [5],
[9], an equivalent information form of the conventional KF
will be discussed here by defining the inverses of Pk|k−1 and
Pk|k as information matrices. The KF iterations in the infor-
mation form are summarized as

Measurement update:

P−1k|k = P−1k|k−1 + HT
k R−1k Hk (3)

x̂k|k = x̂k|k−1 + Pk|kHT
k R−1k (yk −Hkx̂k|k−1) (4)

Time update:
x̂k+1|k = Akx̂k|k (5)

Pk+1|k = AkPk|kAT
k + Qk. (6)

For the remaining of the paper, (3)-(6) can be regarded as the
centralized KF (CKF) approach.

4. DISTRIBUTED CONSENSUS-BASED KALMAN
FILTER (DCKF)

In this section, we firstly decompose the measurement update
of CKF in a distributed way using the equivalent relation be-
tween KF and MAP estimation. Next the time update steps
are involved considering the state dynamics.

4.1. Centralized MAP

According to [10], the KF can be also derived using Bayesian
framework, leading to a MAP solution, i.e.,

x̂MAP
k|k = argmax

xk
p(xk|Yk). (7)

This means we like to find the xk which maximizes the prob-
ability density function (pdf) p(xk|Yk). Because the noise
vectors wk and vk are both Gaussian, xk and yk can also be
assumed Gaussian. Using Bayes rule and reconstructing the
corresponding pdfs in Gaussian domain illustrated in [10], we
can reformulate the general criterion (7) by minimizing the
cost function with two Mahalanobis norms1:

x̂MAP
k|k = argmin

xk

(
‖yk −Hkxk‖2R−1

k

+ ‖xk − x̂k|k−1‖2P−1
k|k−1

)
.

(8)
Since the cost function (8) is (strictly) convex on xk, it can be
minimized w.r.t. xk. Then we get the unique MAP solution as

x̂MAP
k|k =

(
HT

k R−1k Hk + P−1k|k−1

)−1
·
(

HT
k R−1k yk + P−1k|k−1x̂k|k−1

)
, (9)

which is equal to the a-posteriori state estimate of the KF in
(4), i.e., x̂MAP

k|k = x̂k|k, with error covariance matrix Pk|k =

(HT
k R−1k Hk+P−1k|k−1)

−1 [10]. Hence, the optimization prob-
lem in (8) is equivalent to the MMSE problem which the KF
solves under the Gaussian assumption.

4.2. DCKF

Here, we define Nj is the set of neighboring nodes directly
connected to node j ∈ J . To solve the problem (8) in a
distributed way, we decompose (8) into J local estimation
problems coupled with the consensus constraints xj,k = xi,k,
∀j ∈ J , i ∈ Nj on the state estimate and further conditions
x̂j,k|k−1 = x̂i,k|k−1, Pj,k|k−1 = Pi,k|k−1. We firstly focus
on the consensus constraints and discuss how to fulfill further
conditions later. Thus, (8) can be equivalently written into

{x̂j,k|k|j ∈ J } = argmin
{xj,k|j∈J}

J∑
j=1

f(xj,k)

s.t. xj,k = xi,k, ∀j ∈ J , i ∈ Nj , (10)

1The Mahalanobis norm is defined as a weighted norm: ‖a‖2G = aTGa.
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with f(xj,k) = ‖yj,k−Hj,kxj,k‖2R−1
j,k

+ 1
J
‖xj,k−x̂j,k|k−1‖2P−1

j,k|k−1

.

This kind of distributed consensus-based problem in (10) can
be solved by different in-network-processing (INP) algo-
rithms proposed in [11]-[13]. Here, we refer to the idea in
[13] and apply the augmented Lagrangian (AL) method [14]
to solve (10). By introducing Lagrange multipliers λji ∈ Rm

to associate the constraints, the AL cost function can be built
over all the nodes:

L(x,λ) =
J∑

j=1

1

2
f(xj,k)−

∑
i∈Nj

λT
ji(xj,k − xi,k)

+
1

2µ

∑
i∈Nj

‖xj,k − xi,k‖2
 =

J∑
j=1

Lj(x,λ),

(11)

where x and λ denote the sets of variables xj,k and λji, re-
spectively, and µ is a penalty parameter. Then, the AL func-
tion of the whole network L(x,λ) is split into the sum of J
AL sub-functions Lj(x,λ) which can be minimized locally
w.r.t. xj,k at each node j ∈ J by performing an inner loop at
each time instant k. To enable the parallel update of variable
xj,k among all nodes, decoupling is needed. Here we force
the newest update xl

j,k at inner iteration l equal to the last up-
date xl−1i,k at inner iteration l − 1 from the neighboring nodes,
i.e., xlj,k = xl−1i,k , ∀j ∈ J , i ∈ Nj . When l→∞, the consen-
sus constraints xj,k = xi,k can be fulfilled through the whole
network. Then we calculate xl

j,k by minimizing the convex
local cost function Lj(xj,k, xl−1i,k ,λ

l−1
ji ) with respect to xj,k.

Further the gradient descent method is applied to deal with
Lj(λji, xl−1j,k , x

l−1
i,k ,λ

l−1
ji ) on λji to obtain the update of mul-

tipliers λl
ji. The update equations of xlj,k and λl

ji are shown
as follows at inner iteration l:

xlj,k =

(
HT

j,kR−1j,kHj,k +
1

J
P−1j,k|k−1 +

|Nj |
µ

I
)−1

·
[

HT
j,kR−1j,kyj,k +

1

J
P−1j,k|k−1x̂j,k|k−1

+
∑
i∈Nj

(
xl−1i,k

µ
+ λl−1

ji

) , (12)

λl
ji =λl−1

ji −
1

µ

(
xl−1
j,k − xl−1i,k

)
, ∀j ∈ J , i ∈ Nj . (13)

At each time k, we set the initial value of x0j,k to the previ-
ous a-priori state estimate x̂j,k|k−1 and multiplier λ0

ji = 0.
After update steps (12) and (13), each node j ∈ J will share
the local temporary state estimate xlj,k to its neighbors prepar-
ing for the next update. The update of λji can be performed
locally without information exchange. If we set the number
of inner iteration to L, the a-posteriori state estimate of each
node j ∈ J is obtained by x̂j,k|k ← xLj,k. We have proved
that the equivalent problem of (8) is (10), when l → ∞ the

following relation will be fulfilled

x̂j,k|k = x̂i,k|k = x̂MAP
k|k = x̂k|k. (14)

Next, we take state dynamics (1) into account. Similar
to the time update steps (5) and (6) in CKF, in our approach,
each node j ∈ J will perform a local prediction:

x̂j,k+1|k = Akx̂j,k|k, (15)

Pj,k+1|k = AkPj,k|kAT
k + Qk. (16)

Then we will discuss how to meet the conditions x̂j,k+1|k =
x̂i,k+1|k and Pj,k+1|k = Pi,k+1|k for the decomposition of the
centralized objective function at next time instant k + 1. We
define S0

j,k = HT
j,kR−1j,kHj,k which is locally available at each

node j ∈ J . By transmitting Sl−1
j,k ∈ Rm×m to the neighbors

i ∈ Nj at every inner iteration l, each node j ∈ J performs
an average consensus algorithm [15] in an inner loop as

Sl
j,k ← Sl−1

j,k + ε
∑
i∈Nj

(
Sl−1
i,k − Sl−1

j,k

)
(17)

to asymptotically approach the global average

lim
l→∞

Sl
j,k =

1

J

J∑
j=1

HT
j,kR−1j,kHj,k. (18)

Here, ε in (17) is a step size in the range 0 < ε < 1
Dmax

,
where Dmax is the maximum degree of the network graph
G. The larger ε is, the faster convergence will be achieved.
In the centralized form for the error covariance matrix (3),
HT

k R−1k Hk =
∑J

j=1 HT
j,kR−1j,kHj,k holds. When l → ∞, we

can reformulate (3) using (18) and each node j ∈ J has the
same error covariance matrix, identical to the central one

Pj,k|k = lim
l→∞

(
JSl

j,k + P−1j,k|k−1

)−1
= Pk|k. (19)

Here, Pj,k|k−1 = Pi,k|k−1 holds, based on the calculation
from the previous time instant k− 1. Then according to (16),
Pj,k+1|k = Pi,k+1|k holds. When l → ∞, x̂j,k|k = x̂i,k|k is
obtained via inner iterations on the state estimate. According
to (15), asymptotically x̂j,k+1|k = x̂i,k+1|k will be achieved.

Definitely, we can not perform an infinite number of in-
ner consensus iterations. When only L inner iterations are
processed, an approximate form of (19) is

P̃j,k|k =
(
JSL

j,k + P−1j,k|k−1

)−1
≈ Pk|k, (20)

and the state estimate x̂j,k|k = xLj,k will also be an approx-
imation of the central solution. Hence, when considering a
limited number of inner iterations, DCKF is suboptimal.

Based on the derivation above, the DCKF algorithm can
be summarized in Algorithm 1. Note that two kinds of con-
sensus operations (12), (13) as well as (17) can be performed
in parallel. DCKF converges to the central solution with an
infinite number of inner iterations.
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Algorithm 1 Distributed consensus-based KF (DCKF)
1: Initialization: for all j ∈ {1, ..., J}, x̂j,0|−1 = x0,

Pj,0|−1 = P0,
2: for k = 1, · · ·K, sensor j do
3: set initial values: S0

j,k = HT
j,kR−1j,kHj,k, x0

j,k =

x̂j,k|k−1, λ0
ji = 0

4: for l = 1, · · · , L do
5: transmit the previous matrix Sl−1

j,k and the estimate
xl−1
j,k to neighbors i ∈ Nj , then perform (12), (13) as

well as (17) in parallel
6: end for
7: obtain the a-posteriori state estimate x̂j,k|k ← xLj,k and

calculate the error covariance matrix according to (20)
8: predict for the next time instant k + 1 by calculating

(15) and (16)
9: end for

5. PERFORMANCE EVALUATION

In this section, we perform numerical simulations to eval-
uate the performance of DCKF and compare the results to
CKF [8], information-weighted consensus filter (ICF) [7] and
distributed Kalman filter algorithm 2 (DKF2) with consen-
sus step on the estimate [2]. For the sake of fairness, we
also process L average consensus iterations on estimate in
DKF2. It can be shown that the communication overhead,
i.e., transmitted scalars, of DCKF and ICF are the same at
each time k, which is slightly larger than that of DKF2. Con-
sider a 2-dimensional dynamic system with matrices Ak =
[0.992,−0.1247; 0.1247, 0.992], Qk = I2, ∀k. We randomly
deploy 20 sensors connected in a network topology shown
in Fig. 1 (a), to observe the state vector. The measurement
matrix Hj,k is chosen to be either [1, 0] or [0, 1] randomly,
but it is ensured that every element of the state vector can be
measured by sensors. The measurement noise covariance ma-
trices Rj,k collapse to scalars of value

√
j, j = 1, · · · , J . We

evaluate the performance by calculating an approximation of
the average mean square error (aMSE) among J nodes

aMSE =
1

J

J∑
j=1

E{‖xk − x̂j,k|k‖2}, (21)

averaging over 1000 Monte Carlo experiments with random
realizations of wk, vj,k and Hj,k. We set the average step size
ε = 1/(Dmax + 0.1) and the penalty parameter µ = 3.

Fig.1 (b) presents an example of aMSE performance for
a specific time instant k. We observe that DCKF asymp-
totically approaches CKF with increasing inner iteration l.
With large l, DCKF is able to reach the optimal CKF per-
formance. When a limited number of inner iterations, e.g.,
L = 20, is performed at each time instant k, we get Fig.1 (c)
and (d). Fig.1 (c) depicts the aMSE for different algorithms
over J nodes w.r.t. time instant k. Compared to the other
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Fig. 1. (a) A random network topology, Dmax = 6; (b) An
example of aMSE performance for our proposed DCKF by
varying inner iteration l; (c) aMSE over the whole network as
a function of time instant k when L = 20; (d) Steady-state
MSE for different nodes after time instant 100 when L = 20

algorithms, DCKF has a better aMSE performance which is
close to the centralized performance. Because DKF2 is al-
ways suboptimal [2], increasing consensus iteration will not
help it converge to the central solution. Considering the trans-
mitted scalars of different algorithms at each k, a small L in-
dicates low communication overhead. Hence, Fig.1 (c) can
also reflect that to reach the same aMSE performance, DCKF
can save communication overhead compared to ICF. Fig.1
(d) shows the steady-state MSE over different nodes. It can
not only confirm the better MSE performance of DCKF but
also illustrate that DCKF has consensus-based state estimates
among nodes compared to the other distributed algorithms.

6. CONCLUSION

In this paper, we propose a distributed consensus-based
Kalman filtering algorithm for the state estimation in linear
dynamic systems, utilizing the equivalent relation between
KF and MAP estimation. It can be shown analytically and
experimentally that our proposed DCKF converges to the
optimal central solution. With a limited number of inner it-
erations, DCKF has great potential to outperform the other
state of the art algorithms, since it achieves a better MSE per-
formance and consensus-based state estimates among nodes.
The choice of penalty parameter and network topology will
influence the convergence behavior of DCKF, so further in-
vestigations need to be performed to finalize the analysis.
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