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Abstract—The general problem of quantizing observation sig-
nals appears in different aspects of data processing, from special
code designs to realization of low-complexity receivers. To this
end, a new framework, known as the Information Bottleneck
method, has recently attracted a great deal of attention. In
this paper, after introducing this framework and providing
the Iterative Information Bottleneck algorithm as the primary
pertinent solution, we also discuss three other heuristics aiming to
solve the similar problem efficiently. Since the resultant solution
of considered approaches is locally optimum, it strongly depends
on the choice of initialization. The main contribution of this work
is to prove the equivalence of these algorithms asymptotically,
i.e., assuming an infinite run of algorithms for the extreme case
of infinitely large trade-off parameter. We also substantiate this
claim by means of computer-based simulations.

I. INTRODUCTION

Regarding communication systems, the quantization of
noisy observations of the original source signal is a funda-
mental task. The Rate-Distortion (RD) theory deals with the
underlying complexity-precision trade-off [1]. Explicitly, for
an upper-bound on the tolerable value of a given distortion
measure, the Blahut-Arimoto algorithm provides the minimal
number of bits per symbol in order to represent the received
signal [2]. This conventional formulation has some drawbacks.
First of all, it does not suggest a systematic way to choose a
proper distortion measure for any case of relevance. Irrespec-
tive of the characteristics of the signals and for the sake of
simplicity, a common choice in many applications is the mean
square error (MSE) between the noisy observation as quantizer
input signal and its representant at the output. Obviously,
this may not be always the best choice. Furthermore, the
stochastic relation between the original data source and its
noisy observation is not considered by traditional design setup.

With the so-called Information Bottleneck (IB), Tishby et al.
have introduced an alternative approach for data compression
[3]. There, the focal idea is to compress the observation in
a way that the quantizer output preserves most of the infor-
mation about the relevant variable, e.g., the original source.
Contrary to the RD theory, the IB formulation obviates the
a priori specification of a distortion measure by considering
the mutual information between the original data source and
the quantizer output. Moreover, purely dealing with entropy
calculations for which only distributions are required results
in an arbitrary choice of the representation set, e.g., a finite

set of integers at the quantizer output. As a result, a compact
representation of the quantizer input signal is achieved that is
highly informative about the actual source of interest.

A major subject in learning theory which comprises a
significant part of techniques dealing with the problem of
unsupervised learning is dimensionality reduction through
clustering [4]. In addition to the learning theory motivations
that led to the advent of the IB concept, similar problems
of quantization/compression arise in different aspects of data
transmission like construction of polar codes [5], analog-to-
digital converter (ADC) at receiver front-ends [6] and many
other potential cases.

This paper is structured as follows: the general IB frame-
work is introduced in Section II. Next, four different algo-
rithmic approaches are presented in Section III. The main
contribution of this work lies in Section IV where we show the
equivalence of all considered algorithms when letting the IB
trade-off parameter grow asymptotically large, i.e., β → ∞.
In the same section, performance results are presented to
corroborate the claimed argumentation. Finally, we conclude
by providing a summary of this work in Section V.

II. INFORMATION BOTTLENECK METHOD

data source quantizerchannel
y ∈ Y z ∈ Zx ∈ X

p(y|x) p(z|y)p(x)

Fig. 1. General system model for the quantization of noisy observations

We consider the system model shown in Fig. 1 comprising
a data source and a transmission channel, both assumed to
be discrete and memoryless, followed by a quantizer. The
source is modeled by the random variable x taking realizations
x ∈ X according to the probability mass function (pmf)
p(x). The channel is characterized by its transition probability
distribution p(y|x) and its output is modeled by the random
variable y with realizations y ∈ Y . Finally, we take the
random variable z with realizations z ∈ Z as the output of
the quantization block that is characterized by the conditional
distribution p(z|y). In what follows, the mutual information
between x and y is denoted by I(x; y) = H(x)−H(x|y) with
the source entropy H(x) and the conditional entropy H(x|y).
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The quantizer design problem would then be as follows:
assume the joint probability distribution p(x, y) = p(x) p(y|x)
is given and x ↔ y ↔ z is a Markov chain. The quantizer
output z shall then be a compact representant of its input
y which keeps most of the information it contains about
the source x. Mathematically, in the design formulation the
present trade-off among the compression rate, I(y; z), and
the relevant information, I(x; z), is established through a
non-negative Lagrange multiplier, β. Therefore, denoting the
allowed number of quantizer output levels by n, the relative
design problem follows as1:

p?(z|y)=argmin
p(z|y)

1

β+1

(
I(y; z)−βI(x; z)

)
for |Z|≤n . (1)

Two important questions must be answered at this point to be
able to find out the entity of the optimization task at hand:

1) What is the event space of the mapping made by the
quantizer p(z|y)?

2) Is the objective function in (1) concave or convex over
the pertinent event space?

To address the first question, one may note that the resultant
p(z|y = y) for each specific value y of the random variable y
is a (|Z| − 1)-dimensional probability simplex, simply due to
the fact that

∑
z∈Z p(z = z|y = y) = 1 holds. Consequently,

the overall event space of the mapping p(z|y) would be the
product set of |Y| of such simplices that is a closed convex
polytope in the |Y| × (|Z| − 1) Euclidean space [7].

To address the second question, we subsequently cover the
entire interval of allowed values of β by considering three
different cases, specifically two extreme cases of β → 0 and
β →∞ and the third case of finite values.

Letting β → 0, the objective function in (1) will be reduced
to the compression rate I(y; z). It is well known that I(y; z)
is a convex function of p(z|y) for fixed p(y) [1]. Thus,
the optimization problem is convex and any valid stochastic
allocation of y to |Z| bins which is repeated for all y ∈ Y
would be a solution. In this fashion, the compression rate
takes its global minimum value of I(y; z) = 0 since y and
z become statistically independent. Evidently, β → 0 is not of
any interest, as no relevant information is kept.

Letting β → ∞, i.e., aiming to keep as much relevant
information as possible, the design problem (1) reduces to

p?(z|y)=argmax
p(z|y)

I(x; z) for |Z|≤n . (2)

Recalling the present Markov chain x ↔ y ↔ z, the
conditional probabilities p(z|x) and p(z|y) are connected
through p(z|x) =

∑
y∈Y p(z|y)p(y|x). This relation is of

affine type which preserves convexity. Since I(x; z) is convex
w.r.t. p(z|x) for fixed p(x), it will also be a convex function
of p(z|y). As a result, the maximization in (2) becomes a
concave optimization problem2 [8]. A well-known proposition

1Note that the mapping p∗(z|y) is independent of the present multiplier
1

β+1
. It is only considered for the sake of mathematical clarity when

investigating the extreme cases of asymptotically small/large values of β.
2Please note that concave optimization is about searching for the maxima of

a convex function (∪) over a feasible region and, thus, is essentially different
from convex optimization that aims for the minima of a convex function.

in concave optimization theory [9] asserts, that a convex
function f : D → R attains its global maximum over D at
an extreme point of D. Thus, it can be shown that there exists
an optimal solution of deterministic type, i.e., p(z|y) ∈ {0, 1}
for all pairs of (y, z) ∈ Y×Z . To this end, one shall note that
extreme points of a convex polytope translate into its vertices.
For the event space of the mapping p(z|y), each vertex
corresponds to the product set of vertices of its constituent
probability simplices, leading to a deterministic mapping for
each y ∈ Y . As the naive exhaustive search over all |Z||Y|
vertices of the event space of quantizer mappings p(z|y) is
evidently intractable for the relatively large cardinality of
elements to be clustered, most heuristics exploit the existence
of a deterministic solution for (2) to solve the problem at
least locally. It is noteworthy, that maximizing the relevant
information I(x; z) in (2) results in the highest achievable rate
between x and z.

In case for which β takes finite values, the objective function
in (1) is the sum of a concave ( −ββ+1I(x; z)) and a convex
( 1
β+1I(y; z)) function of the mapping p(z|y) which in general,

is neither convex nor concave. Therefore, also the present
optimization would be of neither concave nor convex type.
This, in fact, makes the task of finding the optimal mapping
to be very difficult. As a result, a number of heuristics have
been developed aiming to converge to locally optimal solutions
for each value of β. Some of these algorithmic approaches are
presented in Section III. Interested readers are referred to [10]
for more details.

It must be noticed that the present constraint on the cardi-
nality of the representation set |Z| ≤ n in the problem setup
always restricts the compression rate I(y; z). Hence, even for
the extreme case of β → ∞, the compression rate is upper-
bounded by I(y; z) ≤ log2(n) bits.

III. ALGORITHMIC APPROACHES

In this section, we discuss four different algorithms de-
veloped to deal with the IB-based quantizer design problem.
Please note that in what follows, bin and cluster refer to the
same concept and hence are used interchangeably.

A. Iterative Information Bottleneck (It-IB)

In [3], Tishby et al. derived the optimal quantizer mapping
for (1) by means of variational calculus. Explicitly, for a
specific value of β the mapping p(z|y) is a stationary point of
the objective function in (1), if and only if

p(z|y) =
p(z)

ψ(y, β)
e−βDKL

(
p(x|y)‖p(x|z)

)
(3)

is met for all pairs (y, z) ∈ Y × Z . The function ψ(y, β)
normalizes the mapping p(z|y) to ensure a valid distribution
for each y ∈ Y and DKL(· ‖ · ) is the Kullback-Leibler (KL)
divergence3. The derived optimal mapping in (3) has an
implicit form, as the cluster representatives (in a conventional

3The KL divergence, also known as relative entropy, between two proba-
bility distributions p(x) and q(x) over the same event space X of the random
variable x, is defined as DKL

(
p(x)‖q(x)) =

∑
x∈X p(x) log

p(x)
q(x)

[1].
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sense) p(x|z) and the cluster probability p(z) appearing on
the right side of (3), depend on the quantizer mapping p(z|y)
by

p(z) =
∑
y∈Y

p(y)p(z|y) (4)

and
p(x|z) =

1

p(z)

∑
y∈Y

p(x, y)p(z|y) . (5)

The Iterative IB (It-IB) algorithm is initialized by a valid
random mapping p(z|y) and then iterates over (4), (5) and (3),
until a specific convergence criterion is met. It is important
to mention that for finite values of β, the resultant mapping
p(z|y) is of stochastic nature, i.e., each y is mapped to
all bins z with a certain probability. Usually, the iterative
procedure needs to be repeated for different initializations, as
the algorithm converges only to a locally optimal solution.

B. Deterministic Information Bottleneck (Det-IB)

In [11], Strouse and Schwab introduced the generalized
objective function as

Lα = H(z)− αH(z|y)− β I(x; z) (6)

where the parameter α ∈ [0, 1]. The stochastic nature of
the solution provided by the IB algorithm stems from the
presence of the term H(z|y) in the respective functional (1)
that coincides with (6) for α = 1. Letting α→ 0, i.e., trying to
suppress the origin of stochasticity, leads to a solution p(z|y)
which, contrary to the resultant mapping from IB algorithm,
is of deterministic type even for finite values of β.

Exploiting variational calculus once again, for a specific
value of α the optimal mapping is found as

p(z|y) =
1

ψ(y, α, β)
e

1
α

(
log p(z)−βDKL

(
p(x|y)‖p(x|z)

))
(7)

in which the normalization function ψ(y, α, β) ensures a valid
mapping p(z|y) for each y ∈ Y . Clearly, by decreasing the
value of α, the power of the exponential function in (7)
grows asymptotically large. Therefore, letting α → 0 the
mapping p(z|y) for each y ∈ Y degenerates to a delta function
which results in a deterministic quantizer. Mathematically, the
resultant mapping for each y ∈ Y is given by p(z|y) = δz,z?(y)
with the Kronecker function δ and the optimum cluster z?(y)
for quantizer input signal y is obtained as

z?(y) = argmax
z

(
log p(z)− βDKL

(
p(x|y)‖p(x|z)

))
. (8)

Similar to the It-IB (3), the provided solution (7) is of implicit
form. Consequently, to achieve the required quantizer mapping
p(z|y), the Deterministic IB (Det-IB) algorithm is initialized
with a valid random deterministic mapping p(z|y) and iterates
over equations (4), (5), and (8), until a specific convergence
criterion is met. It is important to mention, that in general the
resultant mapping does not use the entire allowed number of
bins, i.e., |Z|<n, as the term log p(z) in (8) encourages the
assignment of elements into already used clusters.

C. KL-means Information Bottleneck (KL-means-IB)

In the extreme case of β →∞ as already discussed, the gen-
eral IB problem (1) is reduced to finding the mapping p(z|y)
that maximizes the relevant information I(x; z). Considering
the definition of mutual information and the Lemma for the
difference of conditioned uncertainties provided in [12], for
the given Markov chain x↔ y↔ z one can write

I(x; z) = I(x; y)−
(
H(x|z)−H(x|y)

)
(9a)

= I(x; y)− Ey,z

{
DKL

(
p(x|y)‖p(x|z)

)}
. (9b)

It is readily seen that the maximization of the relevant infor-
mation I(x; z) corresponds to the minimization of the average
KL divergence Ey,z

{
DKL

(
p(x|y)‖p(x|z)

)}
, since the mutual

information I(x; y) is fixed. With an analogous approach to the
Lloyd-Max algorithm [13], [14], the KL-means-IB algorithm
finds a locally optimal solution by alternating minimization in
the mapping p(z|y) (assignment step) and in the conditional
probability distribution p(x|z) (update step). As a main differ-
ence, the squared Euclidean norm used within the Lloyd-Max
algorithm is substituted by the KL divergence that is the proper
distance measure for the IB setup.

In the initialization, the KL-means-IB algorithm picks ran-
domly n conditional probability distributions p(x|y = y)
corresponding to n different values of y as means of clusters.
Then, through the assignment step the points4 with smallest
KL divergence to each mean, are clustered in the same bin.
Mathematically, let Yz denote the subset of Y mapped to the
cluster z with corresponding mean value p(x|z). For z′ 6= z,
the following holds

Yz =
{
y |DKL

(
p(x|y)‖p(x|z)

)
≤ DKL

(
p(x|y)‖p(x|z′)

)}
.

Subsequently, in the update step, the mean of each cluster is
calculated as its corresponding center of mass [15]. Explicitly,
the corresponding mean for the cluster z is calculated as

p(x|z) =

∑
y∈Yz

p(y)p(x|y)∑
y∈Yz

p(y)
. (10)

The iteration between the assignment and the update steps is
continued until either a specific convergence criterion is met
or a maximum number of iterations is reached.
D. Channel-Optimized Information Bottleneck (Ch-Opt-IB)

channel quantizer
channel
forward

data source
y ∈ Y z̃ ∈ Z̃z ∈ Zx ∈ X

p(x) p(y|x) p(z|y) p(z̃|z)

Fig. 2. The extended system model featuring forward channel

With the underlying assumption of β → ∞, Winkelbauer
et al. extended the quantizer design problem through the
transmission of the quantizer output signals z over a forward
channel [16]. The new model is depicted in Fig. 2. Denoting

4One shall note that each conditional probability distribution p(x|y = y)
can be interpreted as a point in the space of dimension |X |.
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the forward channel output by z̃ with realizations z̃ ∈ Z̃
and characterizing the extra discrete memoryless channel
(DMC) by the transition probability distribution p(z̃|z), the
IB problem in (2) can then be reformulated as

p?(z|y) = argmax
p(z|y)

I(x; z̃) for |Z|≤n . (11)

For the Markov chain x ↔ y ↔ z ↔ z̃, the optimization
in (11) is again of concave type, as I(x; z̃) is a convex
function of p(z̃|x) for fixed p(x) and for a given forward
channel p(z̃|z), p(z|y) and p(z̃|x) are connected by an affine
relation which preserves convexity. Evidently, the problem
(11) becomes equal to (2) for special case of error-free
forward channel, since in this case no loss of information
occurs from z to z̃. With I(x; z̃) = I(x; y) − I(x; y|z̃) and
for a given constant I(x; y), the maximization of I(x; z̃)
in (11) translates to the minimization of I(x; y|z̃). Defining
C(y = y, z̃ = z̃) = DKL

(
p(x|y)‖p(x|z̃)

)
the relation

I(x; y|z̃) = Ey

{
Ez̃{C(y, z̃)|y}

}
(12)

has been derived in [16], in which the conditional expectation
is calculated as

Ez̃{C(y, z̃)|y} =
∑
z∈Z

p(z|y)
∑
z̃∈Z̃

p(z̃|z)C(y = y, z̃ = z̃) .

(13)
Aiming to minimize (13) for each y ∈ Y , the corresponding
mapping is chosen as p(z|y) = δz,z?(y) in which the optimum
cluster z?(y) is obtained by

z?(y) = argmin
z

∑
z̃∈Z̃

p(z̃|z)C(y = y, z̃ = z̃) . (14)

Therefore, the conditional probability distribution p(z̃|y) of
the combination of the forward channel and the quantizer
calculates as

p(z̃|y) =
∑
z∈Z

p(z̃|z)p(z|y) = p(z̃|z?(y)) . (15)

It is clear that in this fashion, the conditional mutual in-
formation (12) is minimized for a given C(y, z̃). The main
idea behind the Ch-Opt-IB algorithm is to adapt the iterative
IB discussed in Section III-A to the new model of Fig. 2.
Precisely, it is initialized by a random C(y = y, z̃ = z̃) for
all (y, z̃) ∈ Y × Z̃ and iterates over the modified versions
of (4), (5) and (15) (substituting z by z̃), until a specific
convergence criterion is met. Obviously, C(y, z̃) is updated
accordingly after each iteration. It is noteworthy that in [17],
the special case of this algorithm, assuming an ideal forward
channel has already been proposed.

IV. ALGORITHMIC STEP COMPARISON

As already mentioned, since the resultant mapping p(z|y)
of the considered heuristics is locally optimal, it strongly
depends on the choice of initialization. In this part we show
that asymptotically, i.e., for an infinite run of algorithms which
are initialized randomly (to assure independence from initial-
ization) and for β →∞, all discussed algorithms in Section
III will perform equivalently. We also provide corresponding
simulation results to confirm our reasoning.

A. Argumentation

We start this part by expressing the line of reason-
ing provided in [18] which proves the equivalence of the
KL-means-IB and the It-IB algorithms. We further investigate
the other two algorithms, namely the Ch-Opt-IB and the
Det-IB algorithms, and clearly show that through convergence
to the resultant mapping p(z|y), they perform equivalent
algorithmic steps. Moreover, we point out that the algorithmic
step equivalence of the Ch-Opt-IB and the Det-IB algorithms is
exactly in the same fashion of the KL-means-IB and the It-IB
algorithms. Hence, in such a way, the asymptotic equivalence
of all four presented approaches is proven.

Starting with the It-IB algorithm and assuming β →∞, for
each observation y ∈ Y , (3) degenerates to a hard clustering
in which the bin with the minimum KL divergence among
all is chosen with probability of 1. To discern this, one may
note that letting β →∞, the exponential term in (3) becomes
asymptotically small for all different values of z but the one
with minutest KL divergence becomes small least. As a result,
after the normalization done by the function ψ(y, β), the
respective values of p(z|y) for all other bins tend to zero.
Mathematically, p(z|y) = δz,z?(y) where the host cluster z?(y)
is chosen as

z?(y) = argmin
z

DKL
(
p(x|y)‖p(x|z)

)
. (16)

This is the same as the assignment step in the KL-means-IB
algorithm, as performing (16) for all observation values y ∈ Y
will be the resultant mapping by Section III-C. Next, we focus
on the corresponding update steps. In the It-IB algorithm, (4)
and (5) together can be regarded as the update step. With
this in mind, comparing the respective steps in the It-IB
algorithm and the KL-means-IB algorithm, it can be deduced
that they are basically the same. This can be seen by noting
the present deterministic mapping p(z|y) for β → ∞ in the
It-IB algorithm. Since for a specific cluster z, p(z|y) = 1 only
for y ∈ Yz and having in mind that p(x, y) = p(y)p(x|y), it
becomes clear at this point that (5) together with (4) reduce
to (10). Consequently, one can conclude that the It-IB and the
KL-means-IB are algorithmically equivalent, as the assignment
(mapping) and the update steps are identical for both.

Now we follow a similar procedure to investigate the
Ch-Opt-IB and the Det-IB algorithms. Before commencing
the analysis, one may note that in order to make these two
algorithms comparable, the forward channel in the Ch-Opt-IB
must be error-free, as only in this case the underlying extended
framework in Fig. 2 reduces to the conventional IB setup in
Fig. 1. In the following, w.l.o.g. we assume an ideal forward
channel, i.e., p(z̃|z) = δz,z̃ . Starting with the Ch-Opt-IB and
following the steps in Section III-D, it can be seen that for the
ideal forward channel, determination of the optimum cluster
z?(y) in (14) degenerates to

z?(y) = argmin
z

C(y = y, z = z) . (17)

Then, we consider the Det-IB for β →∞. In this case, as the
first term in (8) becomes negligible compared to its second
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term, determination of the optimum cluster z?(y) reduces to

z?(y) = argmin
z

DKL
(
p(x|y)‖p(x|z)

)
(18)

where the minus sign is dropped by changing the maximization
to minimization. As the minimization task at hand is irrelevant
to β, it has been dropped, too. At this point, one may observe
that the cluster assignment step for each y ∈ Y is identical
for both algorithms, since C(y = y, z = z) in (17) is
DKL

(
p(x|y)‖p(x|z)

)
by definition. Hence, to prove the overall

equivalence of both algorithms, it suffices to show that the
respective update step is also the same for both approaches.
One may note that both algorithms iterate over the same
equations. Specifically, they use (4) and (5) to update their
distributions with the minor difference that for the Ch-Opt-IB,
z is substituted by z̃. But bearing in mind that for an ideal
forward channel, z̃ and z are basically the same, one notices
that this step is also completely equal for both approaches.
As a result, it becomes apparent that although these two
algorithmic approaches appear to be different at first glance,
they are algorithmically equivalent when β →∞.

All in all, comparing the assignment and the update steps of
the four discussed approaches, one can deduce that they all are
algorithmically equivalent in an asymptotic sense of β →∞.
Explicitly, the equivalence of the respective assignment step
is readily seen by comparing (16) with (18). Moreover, con-
cerning the update step, it must be noticed that (4) together
with (5) is used for all heuristics. As a result, one infers that
running all algorithms with the same initialization, e.g., taking
the deterministic mapping at the end of the first iteration of the
Ch-Opt-IB algorithm as the starting point of the other three
algorithms, the resultant mapping would be the same for all.
B. Performance Assessment

For the numerical evaluations we apply equiprobable bipolar
4-ASK with σ2

x = 5 as input signal and assume AWGN
channel with noise variance σ2

n = 1. Furthermore, to ac-
quire the channel transition distribution p(y|x), the continuous
channel output values with the absolute value of less or equal
than 6 (to set the border guard interval of 3 times the noise
standard deviation) is uniformly discretized to |Y| = 128
values. In particular, we investigate the accuracy by the mutual
information loss ∆I = I(x; y) − I(x; z) and the complexity-
precision trade-off by the corresponding compression rate
I(y; z) for different values of β over varying the allowed
number of clusters n. Moreover, to get an impression about
the complexity of the considered algorithms their required
runtime in MATLAB (C source MEX files) has been provided.
Finally, based on statistics of the pertinent performance of
the presented algorithms over a relatively large number of
runs with random initialization, their average required time
to acquire precision-specific results are also calculated.

Fig. 3 a) visualizes the mutual information loss ∆I over
varying the allowed number of bins n in case of β →∞ with
the exception of the It-IB for which β is set to 400 to preserve
numerical stability. Different algorithms are run for different
numbers of initializations, U , to investigate their performance
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Fig. 3. a) Information loss ∆I and b) compression rate I(y; z) over varying
the allowed number of bins n

sensitivity to the size of the event space of their initialization5.
One may observe that for U = 105, the performance of the
It-IB and the KL-means-IB are almost the same. Furthermore,
regarding the corresponding curves of the Ch-Opt-IB, it can be
seen that by increasing the number of runs, the respective per-
formance curve of the It-IB and the KL-means-IB is swept for
higher number of bins. This clearly indicates, that irrespective
of the chosen number of clusters, these three algorithms end
up to the same performance and the only difference between
them is about their required number of runs to achieve a
precision-specific result. Considering the corresponding curves
for the Det-IB, it is seen that by increasing the number of runs
from U = 10 to U = 106, the respective performance does
not change significantly. The observed non-smooth behavior
is due to the fact, that usually the provided mapping by the
Det-IB does not use the entire allowed number of bins, i.e.,
|Z|<n. As an example, considering the corresponding curve
for U = 10, increasing the allowed number of bins from
n = 4 to n = 6 does not provide a significant gain, since
the used number of clusters remains the same. Nevertheless,
to rigorously check the algorithmic equivalence of the Det-IB
and the Ch-Opt-IB, instead of initializing the Det-IB by any
random deterministic mapping, we took the resultant mapping
at the end of the first iteration of the Ch-Opt-IB, as the
starting point of the Det-IB. As a result, identical curves to
the Ch-Opt-IB were achieved6. This signifies that compared
to the Ch-Opt-IB, performance sensitivity of the Det-IB to the
size of the event space of its initialization is much less, i.e.,
significantly higher numbers of trials (in a sense of random
initialization of the algorithm) are required for the Det-IB to
sweep the performance curve of the Ch-Opt-IB for n > 4.
The respective compression rate I(y; z) of the investigated
approaches over varying the allowed number of clusters n is
shown in Fig. 3 b). Considering both subfigures, the main
message inferred is the higher the accuracy, the higher would
also be the corresponding compression rate.

Next, to investigate the convergence behavior of the algo-
rithms, their average runtime per execution over varying the

5Since all heuristics converge to local optima, by increasing the number of
runs more local optima are searched and consequently better result is expected.

6To avoid overloading the legend in Fig. 3, the explicit mention is dropped.
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Fig. 4. a) Average runtime per execution and b) precision-specific average
required time over varying the allowed number of bins n, 0.9 precision ( )
and 0.95 precision ( )

allowed number of clusters is provided in Fig. 4 a). To achieve
the required runtime per execution for each algorithm, the
corresponding arithmetic mean is calculated for U = 103

runs. It can be noticed that by increasing the number of
clusters, the required time to converge to a local solution also
increases for all approaches. One may note, that in Fig. 4 a)
the precision of the resultant solution is not conditioned. In
the next step, we investigate the average required time for
each approach to produce precision-specific results. To do so,
assuming a sufficiently large number of runs, one shall also
take the statistics of the performance of different approaches
into account. The corresponding results demonstrating the
average required time for each algorithmic approach when
keeping 90 and 95 percent of the available mutual information,
I(x; y) = 1.2187 bits, is provided in Fig. 4 b).

To obtain these curves, for each specific allowed number
of clusters all algorithms were run U = 105 times and
their resultant mutual information I(x; z) was stored. Then,
counting the number of trials for which the I(x; z) is at
least 0.9I(x; y) and 0.95I(x; y) respectively, one can calculate
the expected number of trials needed for each algorithm
to produce a favorable result. Finally, the average required
time to have a precision-specific performance is derived by
multiplying the expected number of trials with corresponding
average required time per trial. Please note that for the chosen
number of runs, none of the algorithms converge to a solution
with at least 95 percent precision for 6 clusters or less.

As suggested in Fig. 4 b), going from 90 to 95 percent
precision, the average required time is almost the same for
It-IB and KL-means-IB, while it increases for the other two
approaches. The observed time increase stems from the higher
expected number of required trials to reach higher precision
results. Furthermore, it is seen, that in general, for the case
of requiring results of not less than 90 percent precision, the
Ch-Opt-IB can be exploited as the fastest approach. For higher
values of the required precision, the KL-means-IB would
be the favorable choice. Last, comparing the It-IB and the
KL-means-IB, it is noticed that the similar behavior as Fig. 4
a) is still present after requiring both algorithms to provide a
precision-specific result.

V. SUMMARY

In this work, we presented the general IB framework to
quantize an observation variable and provided the mathemat-
ical insight into the optimization task of relevance. Following
that, we presented different approaches as possible solution
candidates. Explicitly, after discussing the It-IB as the primary
offered solution and its variants, i.e., Det-IB and Ch-Opt-IB,
we also considered the KL-means-IB. For the extreme case
of β → ∞, we proved, that these approaches are algorithmi-
cally equivalent. To corroborate our argumentation, we also
provided the corresponding simulation results. Finally, to get
an impression about the complexity of different approaches,
exploiting the statistics of its performance over a sufficiently
large number of runs, we further drew pertinent curves of the
average required time for each algorithm to reach a precision-
specific outcome.
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