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Abstract—Wireless Sensor Nodes communicating measure-
ments to a base station is one of the scenarios in the emerging
field of Machine-Type-Communication. Those systems rely on low
complexity of the nodes, due to cost and energy consumption.
The main idea of this paper is to employ a low complexity
analog modulation scheme in the node, and combine it with
state of the art digital signal processing in the base station.
Specifically, we focus on Amplitude Modulation in a point to
point scenario facing noise and hardware offsets. We show that
under certain assumptions this transmission can be described by
a linear model. Subsequently we utilize payload (measurement)
signal structure, namely sparsity, to estimate the payload signals
as well as the hardware offsets using a dictionary learning
algorithm. Numerical simulations show, that for realistic noise
assumptions the algorithms are able to reconstruct payload
signals and estimate hardware offsets.

Index Terms—machine type communication, wireless sensor
networks, analog sensor communication, amplitude modulation,
hardware offsets, dictionary learning, K-SVD

I. INTRODUCTION

Machine-type-communication (MTC) is expected to grow
tremendously in the next years [1]. One important scenario
of MTC is Wireless Sensor Networks (WSN) where physical
measurements are to be transmitted from multiple sensor
nodes to a base station for further processing. One important
requirement for such systems is low complexity entailing
low system cost and energy consumption which is especially
important e.g. for battery-driven systems or those relying on
Energy Harvesting [2].

Commercially available systems almost always employ dig-
ital signal processing and communication. An abstract block
diagram of such a system consisting of a single sensor
node transmitting to the base station is shown in Fig. 1a).
Independent of the used protocols or standards it first converts
the sensors analog signal x(t) into the digital domain using
Analog-to-Digital-Converters (ADC). The digital signal is then
further processed, e.g. for source or channel coding and finally
mapped onto discrete symbols. These are converted back to
the analog domain using Digital-to-Analog-Converters (DAC),
mixed to the used frequency band in the analog front end
(FE) and emitted via antennas. In the base station the received
signal is mixed to baseband, converted to digital domain and
processed to estimate the payload signal. This signal path from
node to base station is referred to as Uplink (UL). Usually
sensor nodes do not operate continuously with the same

settings but are controlled by base station via the Downlink
(DL). The DL is also used to synchronize the node to the
base station to deal e.g. with carrier-frequency offsets (CFO)
and time offsets (TO). To establish the DL the node has to
provide a receiver path, including FE and ADC, scaling up its
technical complexity.

Fig. 1. a) Digital sensor node like in many commercially available systems.
Payload signal x(t) is converted into digital domain in which the commu-
nication signal is generated and transmitted via Uplink (UL). Those systems
usually also provide a Downlink (DL) for system control and synchronization.
In b) the proposed fully analog sensor node is depicted. Signal processing is
done in analog domain (ASP) and the DL is spared.

A promising topic in current research is reducing system
complexity using the structure of signals. One concept of
describing signal structure is sparsity: the possibility of repre-
senting a signal by very few coefficients way below Nyquist
rate [3].In [4] and [5] for example the sparsity of communi-
cation signals is used for Multiuser-Detection in WSN with a
very large number of nodes. But also the concept of all-digital
systems like in Fig.1a) is questioned. [6] for example uses
low power analog signal processing (ASP) to compress the
sensors signal x(t) before it is sampled, reducing its bandwith
and thus relieving the requirements for the following digital
signal processing. This is only possible due to payload signals
structured beyond bandlimitation. However, all these concepts
still employ digital communication.

In this paper we propose a fully analog sensor node depicted
in Fig 1b). We transmit using Analog Modulation whereas the
base station is still digital trying to reconstruct the payload
signal x(t). Note that in this structure the downlink is omitted,
further reducing complexity but imposing additional problems:
Since no synchronization is possible, hardware offsets like the
above mentioned CFO and TO have to be compensated by
other means.



Among the various possibilities to realize a fully analog
sensor node we focus on Amplitude Modulation (AM) of
the payload signal. Further we only consider a point-to-point
scenario where a single node is transmitting to the base station.
It will be shown that the above mentioned concept of sparsity
can help us finding reconstruction methods for the base station
to recover the payload signal. Of further interest in this paper
is the estimation of hardware offsets which we will provide
algorithms for.

The remainder of this paper is organized as follows: First we
will provide a system model in section II that breaks down to a
linear model under certain assumptions. Signal reconstruction
at the base station can then be interpreted as a ’dictionary
learning problem’ which we will tackle in section III. Also
in this section we present methods to estimate the hardware
offsets using the results generated by the dictionary learning.
In section IV we show that the algorithms work fairly well
under realistic noise assumptions using a numerical simulation
for an exemplary setup. In sections V and VI we will conclude
our results and present ideas for further research.

II. SYSTEM MODEL

A. Analog modulation and digital reception

In this paper we focus on a specific realization of an analog
sensor node based on Amplitude Modulation (AM) shown in
Fig.1. The node is shown in Fig. 2 together with the assumed
channel model and base station. AM in the node is realized

Fig. 2. Supposed structure of sensor node utilizing Amplitude Modulation,
channel consisting of propagation delay and additive noise and the base
station using IQ demodulation, anti aliasing lowpasses and analog-to-digital
converters

by multiplying the payload signal x(t) with a cosine carrier
of angular frequency ω1. The physical channel is assumed to
impose a propagation delay of ∆̃t and additive white gaussian
noise (AWGN). Note that in this subsection noise will be
neglected for the derivation of the system model. The base
station applies a classical IQ demodulation using a carrier of
angular frequency ω0. The demodulated continuous signal in
baseband representation

y(t) = yI(t) + j · yQ(t) (1)

is then sampled using standard Nyquist ADC generating a
sequence

y[k] = yI [k] + j · yQ[k]. (2)

The task of the base station is the reconstruction of the nodes
payload signal x(t) applying DSP on the sampled receiver

signal y[k]. Based the model shown in Fig. 2 we derive the
connection between the payload signal x(t) and the digital
baseband representation y[k]. As a first step we formulate the
connection between x(t) and y(t)

y(t) = x(t− ∆̃t) · cos(ω1t− ω1∆̃t) · e−jω0t (3)

The IQ demodulation produces two frequency components:
one at the difference of the carrier frequencies ∆̃ω := ω1−ω0,
the other at the sum of the two frequencies. The latter part
will be cancelled out by the anti aliasing filters in the front
end resulting in the signal

y(t) =
x(t− ∆̃t)

2


���

���
��:0

ej(ω1+ω0)t+jω1∆̃t + ej∆̃ωt+jω1∆̃t

 .

(4)

It can be seen that x(t) is multiplied with a complex
exponential function with angular frequency ∆̃ω starting at
phase ω1∆̃t. However, the phase at t = 0 in real systems is not
only determined by the propagation delay ∆̃t but also by the
antennas and other phase perturbing elements in the FE. For
this reason we assume the starting phase to be independent of
the propagation delay and name it ∆̃φ. After a proper scaling
we get

y(t) = x(t− ∆̃t) · ej(∆̃ωt+∆̃φ) (5)

at the ADCs input. To enable proper sampling of the signal,
we assume a bandlimitation of x(t) and consequently of y(t).
If x(t) is limited to bandwidth BTx it can be written as a sum
of delayed sinc functions also known as the cardinal series
[7]. We additionally assume an approximate time limitation
of x(t), which leads to a finite cardinal series

x(t) =

N−1∑
n=0

x[n]sinc (BTxt− n) . (6)

Note that this definition is strictly speaking not equal to
approximately time- and bandlimited functions [8] but it is
common practice to assume so [7]. So x(t) has N degrees
of freedom and is described by the finite sequence x[n]
with n ∈ [0, N − 1]. From Eq. 5 follows that y(t) has the
same bandwith since its only shifted in frequency not scaled.
Following the Shannon-Nyquist Sampling Theorem we have
to sample y(t) at rate TRx := 1

BTx
. If we now put Eq. 6 in Eq. 5

and evaluate it at t = kTRx with k ∈ N we get a sequence
describing our sampled signal

y[k] = ej(∆̃ωkTRx+∆̃φ)
N−1∑
n=0

x[n]sinc
(
k − n− ∆̃tBTx

)
. (7)

For reasons of better legibility we normalize ∆̃ω, ∆̃φ and ∆̃t

and call them

Carrier Frequency Offset (CFO): ∆ω =
∆̃ω

2πBTx
, (8)

Phase Offset (PO): ∆φ =
∆̃φ

2π
, (9)

Time Offset (TO): ∆t = BTx∆̃t. (10)



Because they are representing a complex phase, ∆ω and ∆φ

are now in the restricted range from − 1
2 to 1

2 . In this paper
we focus on the case where the same holds for the TO ∆t.
In practice |∆t| can be greater than 1

2 but this case is not
considered here.

B. Formulation in linear algebra

So far we have derived the relation between the sampled
receive signal and the payload signal. The task of the base
station in Fig. 2 is to reconstruct x(t) just with the knowledge
of y[k]. To fulfill this task in finite time, k has to be in a finite
range. Since x(t) is assumed to have N degrees of freedom
(Eq. 6) we will set k = {0, 1, ..., N−1}. Using this limitation,
we can formulate a linear equation system which completely
describes y[k] in dependence of x[n]. For our derivation we
define sinc∆t(t) := sinc(t−∆t): a time-shifted sinc function.
Moreover we subdivide y[k] in the sequences c[k] and z[k]:

y[k] = ej2π(∆ωk+∆φ)︸ ︷︷ ︸
=:c[k]

N−1∑
n=0

x[n]sinc∆t
(k − n)︸ ︷︷ ︸

=:z[k]

. (11)

Since all the sequences are of length N , we can put them in
vectors. For x[k] we define

x =
[
x[0] x[1] · · · x[N − 1]

]T ∈ CN (12)

and do the same to get y, c and z, each in CN . The elements
of the sum in Eq.11 only depend on k − n. Subsequently z
can be described by a Toeplitz matrix T left multiplied with
x:

z = Tx. (13)

Since T ∈ RN×N is Toeplitz, its elements can be described
by a vector t ∈ R2N−1 using the toep-operator:

t = [sinc∆t
(1−N) . . . sinc∆t

(0) . . . sinc∆t
(N − 1)], (14)

T = toep(t)⇔ [T ]n,k = [t]k−n+N . (15)

To get from z to y we have to perform an elementwise
multiplication of z with c. This can also be formulated as
left-multiplying a diagonal matrix C with z:

c = ej2π∆φ
[
1 ej2π∆ω · · · ej2π(N−1)∆ω

]
, (16)

C = diag(c) ∈ CN×N . (17)

At this point we introduce noise again. Usually it is assumed
that AWGN in the high frequency domain can be represented
as circular white gaussian noise in baseband representation.
We take that into account by adding a vector n ∈ CN whose
elements are i.i.d. taken from CN (0, σ2):

y = Cz + n = CT︸︷︷︸
D

x + n. (18)

Assuming time invariant offsets multiple transmit signals xl
and respective receive signals yl with l ∈ [0, L− 1] can be
summarized in a matrix equation

Y = DX + N, (19)

where D := CT and X,Y ∈ CN×L containing receive
signals yl respectively payload signals xl as columns. The
elements of N ∈ CN×L are again taken i.i.d. from CN (0, σ2).
For reasons clarified in the following sections, we call D a
dictionary.

C. Sparsity

At this point we have a linear model of the relation between
transmit and receive signals. The task of the base station
is to recover the payload signals respectively their discrete
representation X from the received samples Y. This is only
possible if we assume a certain structure of X which will be
shown in Section III. Luckily many real world signals have
a structure. One way to describe it is sparsity. Namely we
assume that each payload signal can be described by

xl = Ψsl s.t. ||sl||0 ≤ S � N, (20)

where Ψ ∈ CN×N is a basis usually called sparse basis and
sl ∈ CN is the sparse representation only having S ∈ N
nonzero elements. An example for the corresponding sparse
bandlimited signals x(t) is given in [9]. In the next chapter it
will be shown, that recovering X or S from Y is not solvable
in general due to phase ambiguity. To alleviate this problem
we make two last assumptions on X. First we focus on the
canonical sparse basis Ψ = I. So X itself is considered sparse.
Second we assume that the elements of X are from R+. The
generalization for basis elements and sparse coefficients to R
or even C is left for further research.

III. DATA AND PARAMETER ESTIMATION

Primary objective of the base station is to estimate X from
Y. This task is equivalent to factorize the matrix Y into D
and X. Hence it is called a matrix factorization problem and
once we have an estimate X̂, we will also obtain an estimate
D̂. The question arises if we can estimate the hardware
offsets based on the estimated dictionary. This is important
for two reasons: First because it will turn out that we need
an estimate of the TO to process our estimate on X after the
factorization. Second for multiple transmissions it might be
useful to estimate the hardware offsets in the first transmission
and afterwards use the corresponding dictionary to reconstruct
all following transmissions.

The above mentioned matrix factorization problem has
infinitely many solutions in general. In [10] the authors showed
that for sparse X and especially if D is invertible, all sparse
solutions are permuted and scaled versions of each other. This
is called an ambiguity. The mathematical proof of invertibility
of D is spared in this work due to lack of space, but will be
available in future publications. We describe the ambiguity in
scaling and permutation with the equivalence

D̂X̂ =

D̂N︷ ︸︸ ︷
D̂Σ−1 PT︸ ︷︷ ︸

=:D̂P

P

X̂N︷︸︸︷
ΣX̂︸ ︷︷ ︸
X̂P

, (21)

where Σ is an invertible diagonal matrix characterizing the
scaling and P is a permutation matrix. To fulfill Eq. 21,



Σ−1PTPΣ = I must apply. Additionally we assume the
elements of X to be purely positive. This narrows Σ to purely
positive elements as well. In simple words: If we find a X̂P

whose columns are S-sparse, it differs from the right solution
X̂ only in permuted and scaled rows. Same holds for the
columns of D̂.

In subsection III-A we describe how to find a sparse solution
X̂P and D̂P using the well known dictionary learning algo-
rithm K-SVD [11] which is slightly modified. Consequently
in subsection III-B we use a sorting algorithm to remove the
permutation ambiguity and get data and dictionary estimates
that are just scaled by Σ. To find Σ we need an estimate ∆̂t

of the time offset. In subsection III-C the estimation of the
hardware offsets and Σ is described. This estimate is used to
scale the columns of D̂N and rows of X̂N to obtain the final
estimates for dictionary and data

All these steps necessary to obtain estimates on payload
signal and hardware offsets are depicted as a block diagram
in Fig. 3.

Fig. 3. The overall algorithm to estimate payload data and offsets from the
received signal. It consists of a K-SVD (see III-A) sorting algorithm (see
III-B) and a two stage offset estimation (see III-C and III-D).

A. Dictionary learning

To obtain a sparse representation of Y we use the well
known K-SVD algorithm for dictionary learning. It tries to
iteratively solve the minimization problem

{X̂P , D̂P } = argmin
X̃,D̃

||Y − D̃X̃||2F (22)

with the columns of X̃ being sparse and the columns of D̃
having unit length. The first step in each iteration is sparse
coding of Y with respect to the current dictionary. In the
second step the dictionary is updated using a generalization of
K-means algorithm. This procedure is repeated until a stopping
criterion is met. For the first iteration an initial guess of the
dictionary is needed. A detailed description of the algorithm
can be found in [11].

In our work we use an implementation of K-SVD that
works with complex dictionaries and data [12] and modified
it to limit X̂P to strictly positive elements. This is done by
setting the phase of every nonzero element of X̂P in each
iteration to zero after sparse coding. For sparse coding the well
known Orthogonal Matching Pursuit (OMP) is used. For OMP
stopping criterion we assume known sparsity of the columns
of X̃.

As initial dictionary we use a random complex matrix,
each entry drawn from a circular gaussian distribution. Initial
dictionaries with the expected structure of the true dictionary
might seem like a better choice. However, we experienced

that a random initial dictionary gives better results in terms of
convergence speed.

It should be mentioned that there is no guarantee that K-
SVD will reach the global optimum but in many cases it is a
valid approach.

B. Sorting the estimated dictionary and data

As mentioned in the introduction of this section, we have to
find the right permutation matrix P for sorting columns of D̂P

and subsequently rows of X̂P . We make use of the fact that the
true dictionary D attains its per-column maxima at the main
diagonal. This can easily be seen in Eq. 14 where [t]k−n attains
its maximum at k = n corresponding to the main diagonal of
T defined in Eq. 15. To permute the columns of D̂P in the
way that the main diagonal contains maximum values we have
to maximize the trace of its elementwise magnitude (called
traceabs here):

D̂N = max
P

traceabs

(
D̂PPT

)
. (23)

This problem can be efficiently solved using the hungarian
method described in [13]. After obtaining P, we can use it to
sort the Data and the dictionary:

X̂N = PX̂P D̂N = D̂PPT (24)

C. Offset estimation

As mentioned in the introduction of this section we need
to know ∆̂t to scale dictionary and data. In the initial offset
estimation we estimate the TO using D̂N . To estimate the
TO, CFO and PO also have to be estimated. The proposed
procedure for offset estimation is summarized in algorithm 1.

First we estimate ∆ω and ∆φ in steps 1 to 4. The basic
approach is, that the left multiplication of C with T results
in a phase rotation of the rows of T. Also all elements of the
main diagonal of T are given by sinc∆t

(0) which is positive.
It follows that the main diagonal of D contains a sampled
complex exponential function with frequency ∆ω , phase offset
∆φ and magnitude sinc∆t

(0). So to estimate CFO and PO we
perform a spectral estimation on the main diagonal of D̂N . In
this paper we used a zero padded periodogram (step 2 and 3) to
find ∆̂ω and subsequently calculate ∆̂φ (step 4) as suggested
in [14]. The total number of used samples NZP including zero
padding determines the frequency resolution of the estimation.
Using ∆̂ω and ∆̂φ we can compensate the CFO and PO related
phase from D̂ to get an estimate of T in steps 5 and 6. Because
the elements of T are purely real, we discard the imaginary
part of Ĉ−1D̂.

T as defined in Eq. 15 only contains values from the vector
t which are samples of sinc∆t

function. From T̂ an estimate
on t is generated by taking the mean value of each of the
2N−1 diagonals of T̂ (step 7). In t̂ we now have estimates of
sinc∆t

(m) with m ∈ [1−N,N − 1]. At m = 0 the estimates
are based on the N main diagonal elements of T̂ whereas at
m = 1−N the estimate is just based on the single value T1,N .

Now TO estimation is done by a Nonlinear Weighted Least
Squares (NWLS) curve fitting [15]. The weighting specified



Algorithm 1: Proposed algorithm for estimating the
offsets given an estimated dictionary. Parameter NZP
determines the resolution for CFO-Estimation.

inputs : D̂ ∈ CN×N , NZP ∈ N
outputs: Three real scalars ∆̂ω, ∆̂φ, ∆̂t

// CFO and PO estimation
1 d ← diag(D̂);
2 dZP =

[
d 0 · · · 0

]
∈ CNZP ;

3 ∆̂ω ← max(Periodogram(dZP)); // acc. to [14]

4 ∆̂φ ← atan
(

Im
(∑N−1

n=0 dne
−j2π∆̂ωn

)
Re(

∑N−1
n=0 dne

−j2π∆̂ωn)

)
;

// TO estimation
5 Generate Ĉ using ∆̂ω, ∆̂φ and Eq. 16 ;
6 T̂← Re{Ĉ−1D̂};
7 [t̂k+N ]←

[
1

N−k
∑N−k
i=1 T̂i,i+k

]
;

8 w =
[
1 2 · · · N N − 1 · · · 1

]T
;

9 ∆̂t ← argmin
∆t∈[−0.5,0.5]

A∈R+

∣∣∣∑N
i=1 t̂i −A · wi · sinc(i− 1−∆t)

∣∣∣2;

// using NWLS [15] with init. params. ∆t = 0, A = 1 ;

in vector w (step 8) is set according to the number of entries
in T̂ that make up the corresponding entry of t̂.

D. Data and final offset estimation

With the previously estimated time offset ∆̂t,N we can gen-
erate a modeled T̃ according to Eq. 14 and 15. By determining
the euclidian norms of the columns of T̃ we consequently
calculate Σ:

Σk,k =
∣∣∣∣[T̃1,k T̃2,k · · · T̃N,k

]∣∣∣∣
2
, (25)

which is used to scale the rows of X̂N an the columns of D̂N

to obtain the final data and dictionary estimates:

X̂ = Σ−1X̂N D̂ = D̂NΣ. (26)

The latter we use to perform a final offset estimation by using
the procedure described in sec. III-C. This time D̂ is used as
input to generate the final offset estimates ∆̂t, ∆̂ω and ∆̂φ.

IV. NUMERICAL EXPERIMENTS

A. Defining error measures

The base stations main objective is to recover the payload
signals respectively its discrete representation X. To measure
the reconstruction error we use the Normalized Mean Squared
Error (NMSE)

NMSE(X̂) =
1

L

L∑
l=1

||xl − x̂l||22
||x||22

. (27)

Secundary objective of the base station is to estimate the
hardware offsets. Since the effects of the CFO and PO are

cyclic, we also have to use a cyclic distance function to
measure estimation errors:

E∆ω,φ
=

∣∣∣∣∣∣
atan

(
sin(2π(∆ω,φ−∆̂ω,φ))

cos(2π(∆ω,φ−∆̂ω,φ))

)
2π

∣∣∣∣∣∣ , (28)

where ∆ω,φ and ∆̂ω,φ represent CFO/PO and their estimates.
The maximum error for CFO and PO is 1

2 . For TO we can
measure the distance E∆t =

∣∣∣∆t − ∆̂t

∣∣∣ directly producing a
maximum error of 1.

B. Simulation setup

In a toy example we will show that the proposed algorithm
gives good results at least for the assumed model and algo-
rithm parameters summarized in Table I. We use a total of

TABLE I
USED MODEL AND ALGORITHM PARAMETERS.

Fixed parameter Value Random parameter Range/Value
N 64 ∆ω (−0.5, 0.5)
S 6 ∆φ (−0.5, 0.5)
L 1024 ∆t (−0.5, 0.5)

SNR [dB] {0, 6,∞} Entries of N CN (0, σ2)
NZP 1024

1000 simulation runs per SNR. In each run an X is generated:
nonzero elements are randomly placed on S of the N possible
indices. The nonzero values are taken from a folded normal
distribution to keep them purely positive. We also simulated
using uniformly distributed values but the results did not show
a qualitative difference. After X is generated, it is perturbed
by randomly chosen offsets and noise according to section II.
The proposed algorithm is then applied on the receive signals
for 100 K-SVD iterations including offset estimation. The
resulting error measures defined in the previous subsection are
then averaged over the 1000 simulation runs. As a benchmark
for NMSE we also apply the OMP on the true dictionaries,
which we call Oracle-OMP. By using NZP = 1024 we have a
resolution for ∆̂ω of approximately 10−3.

C. Results

The NMSE of the reconstructed payload signals for the
chosen SNRs is depicted in Fig. 4. The errors are decreasing
over the iterations seemingly converging to the oracle-OMP.
As expected, the saturation level respectively the oracle-OMP
error is smaller for higher SNRs. Not shown in Fig 4 is the
oracle-OMP for the noiseless case which is at about 10−31,
which can only be explained by numerical effects.

Since CFO and PO error only show changes in the first three
iterations in any SNR setting, we present them in Table II. It
can be seen, that the estimation already gives good results in
the first iteration. CFO estimation error quickly converges to
the expected error given by 1

4·NZP ≈ 0.24 · 10−3. E∆ω and
E∆φ

are slightly higher in the noiseless case. This somewhat
unlikely result could not be explained so far. However, the
absolute values of CFO and PO errors are nearly at the
resolution of the periodogram and not expected to cause
significant errors in X̂.
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Fig. 4. Normalized mean squared error of the estimated payload matrix X̂
versus iterations for different noise levels.

TABLE II
ESTIMATION ERROR OF CFO AND PO FOR DIFFERENT SNRS.

0dB SNR 6dB SNR Noiseless
Iteration 1 > 2 1 > 2 1 > 2
E∆ω · 103 0.40 0.24 0.26 0.24 0.29 0.25
E∆φ · 103 13.0 7.7 8.5 7.7 9.7 8.0

The time offset estimation error E∆t
is depicted in Fig. 5.

It can be seen that in the first 20 iterations the TO estimation
does not benefit from SNRs above 6 dB. After 20 iterations
the curves become unsteady. This can be explained by the
simulation runs where the TO estimation did not converge.
This is the case for approximately 0.1 % of the simulations
probably caused by a TO |∆t| ≈ 0.5.
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Fig. 5. Mean error of the Time Offset estimation ∆̂t for different SNRs versus
iterations. Maximum is given by the cyclic error measure for fractional Time
Offsets.

V. CONCLUSION

A model for a fully analog sensor node communicating
to a digital base station using Amplitude Modulation was
proposed. It was shown that for the assumptions of signal
sparsity the base station can recover the payload signals and
estimate the occuring hardware offsets between node and base
station. The algorithms for signal reconstruction and hardware
offset estimation based on dictionary learning were presented

and evaluated in a numerical simulation using realistic assump-
tions on SNR. The results indicate that estimation of carrier
frequency offset and phase offset is not a big issue for the
algorithm since they already converge after three iterations.
The estimation of the time offset needs about 20 Iteration
to converge. In general, dictionary learning algorithms like
K-SVD seem to be valuable for estimating payload signals
transmitted using analog modulation if additional measures
are taken.

VI. FUTURE WORK

To lead the proposed concepts to a more practical direction,
the model restrictions have to be resolved. A major advantage
would be the possibility to use arbitrary sparse bases. For this,
an additional phase ambiguity in dictionary learning rather
than just scaling and permutation has to be considered.

Another enhancement of the proposed model is to allow
time variant hardware offsets. Whereas carrier frequency off-
sets in real life systems can often be considered time invariant
the same does not hold for time offset and phase offset.
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