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Abstract—Industrial radio communication is identified as a
new use case in the Industry 4.0 (I4.0) initiative as well as in
the 3rd Generation Partnership Project (3GPP). 5th Generation
(5G) Ultra Reliable Low Latency Communication (URLLC)
requirements comprise high reliability and burst error resilience
for short packets as well as low latency for I4.0 communication
systems. We consider a Cloud Radio Access Network (Cloud
RAN) architecture with distributed Radio Access Points (RAPs)
that are connected via a rate limited fronthaul to a General
Purpose Processor (GPP) cloud-platform. Thus, we can flexibly
balance fronthaul data rates and joint processing gains to fully
leverage spatial diversity. Here, we conduct an investigation on a
functional split within the PHYsical layer (PHY) to harvest these
benefits in the uplink while maintaining moderate data rates
on the fronthaul for joint decoding. We investigate how data
compression according to the Information Bottleneck Method
(IBM) on the fronthaul link affects system performance for
Generalized Frequency Division Multiplexing (GFDM) as well
as OFDM. We show that 3 bit IBM quantization already
achieves close to floating point performance in frequency-selective
channels.

Index Terms—Industry 4.0, 5G, NR, URLLC, multicarrier,
polar code, IBM, functional split, fronthaul, quantization

I. INTRODUCTION

Industrial radio communication is identified as a new use
case in the Industry 4.0 (I4.0) initiative as well as in the
3rd Generation Partnership Project (3GPP) [1]. 5th Generation
(5G) Ultra Reliable Low Latency Communication (URLLC)
spawns a new set of requirements with highly reliable short
packets, low latency and resilience to burst errors for I4.0
communication systems.

To achieve low latency as well as high reliability, we exploit
spatial diversity in the uplink. We achieve spatial diversity in
an Ultra Dense Network (UDN) where multiple Radio Access
Points (RAPs) observe the same message through different
channels. Further, we consider these distributed RAPs in a
Cloud Radio Access Network (Cloud RAN) architecture [2],
[3]. A Cloud RAN offers the flexibility to execute prepro-
cessing on distributed RAPs that are connected via fronthauls
to a centralized General Purpose Processor (GPP) cloud-
platform. Joint signal processing on a cloud-platform promises
to leverage spatial diversity and thus improve reliability. While
full IQ sample forwarding drastically increases fronthaul data
rates, we propose a functional split within the PHYsical layer
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(PHY) after the demapper step. With this architecture we can
leverage joint processing gains in the upper PHY on a cloud-
platform while distributed preprocessing in the lower PHY
ensures achievable data rates on rate limited fronthauls [2].

Recently polar codes were adopted for 5G mobile commu-
nication systems [4]. Especially control channels and URLLC
are anticipated use cases for polar codes as they promise good
error correction performance for short packets. Further, low
latency decoders for polar codes are available [5], e.g., Fast
Simplified Successive Cancellation (Fast-SSC). We consider
5G Orthogonal Frequency Division Multiplexing (OFDM)
multicarrier modulation. Further, we consider Generalized
Frequency Division Multiplexing (GFDM) because it promises
to reduce latency with only one Cyclic Prefix (CP) per frame
and offers greater flexibility than OFDM [6]. Also, low latency
GFDM implementations are known in literature [7].

Without further measures, we would need to forward Log-
Likelihood Ratios (LLRs) with high resolution and thus high
data rate over a fronthaul. Here, we investigate how to reduce
this data rate burden by coarser quantization. Our approach
is an offline design of scalar quantizers for the RAPs via
Information Bottleneck Method (IBM) [8] to reduce the rate
on the fronthaul link and to have a minimum loss in the
e2e performance. In common quantizer design based on rate-
distortion theory the objective is to obtain a compressed
representation of the observation which does not exceed a
predefined distortion between the input and the output of the
quantizer such as Mean Square Error (MSE) . In contrast, IBM
based quantizer design is a pertinent design approach which
considers a suitable distortion measure for the communication
setup, namely, the mutual information between the quantizer
output and the original transmitted source signal. The IBM has
been successfully utilized in different communication areas,
such as the design of channel quantizers [9], polar code
construction [10], relay networks [11], and advanced discrete
decoder design [12]–[14].

Our main contribution is the investigation of IBM based
quantization of multicarrier signals in order to reduce the fron-
thaul data rate in a Cloud RAN architecture. We demonstrated
that the application of 3 bit IBM quantizers for eight different
SNRs are sufficient to leverage most diversity in a frequency
selective Rayleigh fading scenario.
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Fig. 1. Cloud RAN setup with fronthaul

II. CLOUD RAN

A. Architecture

In order to fulfill URLLC requirements in the uplink a
Cloud RAN setup is considered to enable high reliability. In
Fig. 1 we outline our architecture with distributed RAPs that
are connected to a cloud-platform via a fronthauls to leverage
spatial channel diversity from mobile units [2]. In case all
RAPs forward their IQ samples as they are digitized, the
fronthaul data rate would be very high and possibly infeasible
for rate-limited fronthauls. In order to leverage joint processing
gains to improve reliability while maintaining a moderate
fronthaul data rate, we focus on a functional split within the
PHY as indicated in Fig. 2. In each RAP we perform lower
PHY processing distributedly, including synchronization and
multicarrier demodulation. Next, a symbol demapper produces
LLRs with high resolution that we want to forward to our
cloud-platform which are then used for decoding. In Fig. 2 we
indicate this functional split. We propose to use IBM in the
RAPs to drastically reduce resolution and thus fronthaul data
rates while preserving relevant information for joint decoding.
On the cloud-platform we use Look-Up-Tables (LUTs) to
obtain representative LLRs for joint upper PHY processing,
mainly polar decoding. As a first step we consider one RAP
and show that 3 bit IBM quantization is sufficient to almost
achieve high resolution floating point decoding performance.

B. Polar Codes

Polar codes are first presented in [15]. Here, we want to
summarize prior research that is relevant to our work. We
consider a bit vector u ∈ FNc

2 of size Nc and obtain the
codeword

c = u ·BNc ·G with G = F⊗ log2(Nc) (1)

where BNc is a bit reversal matrix and F⊗ log2(Nc) is the
log2(Nc)th Kronecker product [15], [16]. The bit vector u
consists of Nu information bits uI ∈ FNu

2 and so called frozen
bits uFr ∈ 0Nc−Nu . The set of frozen bit positions AFr, with
|AFr| = Nc − Nu, in a bit vector u is determined via polar
channel construction. We refer to [17] and references therein
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Fig. 2. PHY receiver processing where the demapper location is quantizer
dependent

for an in-depth discussion on possible strategies to obtain
frozen bit positions AFr. We opt for the Bhattacharyya Bounds
method because of its simplicity and good performance. Polar
codes are then defined as (Nc, Nu,AFr) codes. Further, we
consider systematic polar codes in our work [16].

Polar code codeword sizes are inherently restricted to a
power of 2. We circumvent this obstacle with Frozen Quasi
Uniform Puncturing (Frozen-QUP) [18] to obtain a punctured
codeword cP ∈ BNP . We employ a standard random interleaver
to leverage diversity in order to obtain an interleaved bit vector
b ∈ BNP from the punctured codeword cP [19]. In this paper,
we consider QPSK where D = 2 bits are mapped to a symbol
d from the symbol alphabet D, |D| = 2D. Here, Gray labeling
is assumed in order to optimize the Hamming distance between
neighboring symbols. For the sake of simplicity we assume the
mean signal power to be σ2

d = E{|d|2} = 1.
In our work, we consider a Successive Cancellation (SC)

polar decoder [15]. This SC decoder may be optimized to the
Fast-SSC decoder in order to improve throughput and reduce
latency [5].

C. Multicarrier Modulation

We consider Generalized Frequency Division Multiplexing
(GFDM) and Orthogonal Frequency Division Multiplexing
(OFDM) as multicarrier modulation schemes. We discuss the
transmitter and detail the receiver as depicted in Fig. 2.

A frame with N = MK elements spans over M times-
lots and K subcarriers with Kon active subcarriers used for
transmission. The resource grid for a multicarrier frame is
represented by the matrix D ∈ DM×K where each element
dm,k corresponds to a symbol in the mth timeslot on the
kth subcarrier [6]. With dk ∈ DM×1 we denote all elements
on subcarrier k in a frame. In case Kon < K, subcarriers
which are unused correspond to columns in D which are
filled with zeros and, consequently, the occupied bandwidth
is reduced. Thus, the resource mapper groups Nd = MKon
transmit symbols together with M(K −Kon) zeros into D.

The GFDM modulator computes

x̃ = AN×Nd (2)

where d is obtained by stacking D’s columns and AN×N
is the modulation matrix [6]. Matrix multiplication is an



expensive operation, especially when N tends to be large.
We perform efficient frequency domain GFDM modulation
and demodulation to drastically reduce complexity [20] and
achieve low latency processing [7]. Therefore, we rewrite (2)
to

x =

K−1∑
k=0

P
(k)
N×MNov

GMNov×MNovRMNov×MFMdk (3)

and further transform this frame x into time domain

x̃ = F−1N x . (4)

First, the symbols dk are transformed to frequency domain
with an M -point Discrete Fourier Transform (DFT) matrix
FM . Next, upsampling in frequency domain is performed by
means of a repetition matrix RMNov×M with overlap factor
Nov ≤ K. GMNov×MNov is a diagonal filter matrix with the
MNov prototype filter taps g ∈ CMNov×1 on its diagonal.
P

(k)
N×MNov

performs subcarrier modulation by shifting the
samples into a vector of size N at the corresponding position
of the kth subcarrier. For K = Nov, (3) is an alternative
representation of (2). If the prototype filter is chosen such that
its Out-Of-Band (OOB) leakage decays outside its subcarrier
bandwidth, Nov can become smaller than K. We use Root-
Raised-Cosine (RRC) filters with roll-off factor α = 0.5 and
thus Nov = 2 is sufficient. In this case, GFDM is a non-
orthogonal modulation scheme and thus we must expect self-
interference. OFDM is a special case of GFDM with M = 1
timeslot and the prototype filter is fixed to a rectangular filter
in time domain. With GFDM we shorten the frame duration
and thus latency because we only use one CP per frame in
contrast to OFDM where we use one CP per timeslot.

D. Channel model

The signal x̃ in time domain is transmitted with a CP over
the channel. At the receiver, after CP removal and a DFT, we
denote the received signal

y = Hx+ n (5)

in frequency domain where H is a N × N diagonal matrix.
Further, n ∼ CN (0, σ2

n ) is Additive White Gaussian Noise
(AWGN) and we denote our Signal-to-Noise-Ratio (SNR) as

SNR =
E{|d|2}
E{|n|2}

=
σ2

d

σ2
n
. (6)

At the receiver we perform one-tap Zero-Forcing (ZF)
frequency domain channel equalization. In case of GFDM,
and thus a non-orthogonal modulation, we demodulate and
employ Interference-Cancellation (IC) in order to mitigate self-
interference after equalization [20]. After demodulation and a
subsequent resource demapper, we obtain the soft estimate d̂
which is fed into a quantizer or symbol demapper, detailed in
Sec. III.

We introduce the equivalent subcarrier channel

d̂ = hkd+ n (7)

and denote the per subcarrier Carrier-to-Noise-Ratio (CNR) as

CNRk =
|hk|2σ2

d

σ2
n

(8)

for a fixed channel realization. CNRk characterizes the equiv-
alent channel (7) on subcarrier k with transition probability
pk(d̂|d) for designing the subsequent processing steps in
Sec. III.

Industrial radio measurement campaigns [21] show that all
time-domain channel taps |h̃|, regardless if they are Line-Of-
Sight (LOS) or Non-Line-Of-Sight (NLOS), are Rayleigh dis-
tributed. Also, the Power Delay Profile (PDP) p of the channel
follows an exponential distribution with a maximum channel
delay τmax < τCP. Thus, we obtain a time domain channel real-
ization h̃ with its elements h̃i drawn from CN (0, p2i ). Finally,
frequency-domain channel taps are obtained as h = FN h̃ with
E{|hk|2} = 1. We assume perfect system synchronization and
a block fading channel with perfect channel knowledge, i.e. the
channel is constant over the duration of a frame and thus over
all frame timeslots. Thus, each subcarrier in our frequency-
domain channel model is affected by only one channel tap
hk.

III. FRONTHAUL SIGNAL GENERATION

A. Log-Likelihood Ratios

After processing the received signals in the RAP the soft
estimates d̂ have been calculated and need to be forwarded
to the cloud-platform for joint decoding. Instead of forward-
ing corresponding IQ samples, we may exchange the LLRs
determined by symbol demapping [2]. With given statistic
pk(d̂|d) of the complex channel for subcarrier k and assuming
equiprobable symbols d, the LLR for a corresponding codebit
bi is given by

L(bi|d̂) = ln

∑
d∈D0

i
pk(d̂|d)∑

d∈D1
i
pk(d̂|d)

, (9)

where Dνi is the set of symbols where the i-th bit is ν =
{0, 1}. Here, we assume that the complex channel pk(d̂|d) is
determined by the equivalent channel for each subcarrier k
with fading coefficient hk and noise variance σ2

n as defined in
(7) with the CNRk in (8). After forwarding all LLRs L(b|d̂)
to the cloud-platform, they are deinterleaved and depunctured
to obtain the codeword LLRs L(c).

Forwarding the LLRs (9) in floating point precision to the
cloud-platform would result in a very high data rate on the
fronthaul. Thus, in order to reduce the fronthaul rate it is
common to transmit quantized LLRs by the RAP [2]. Here,
we assume uniform quantization of (9) in the intervall [−8, 8]
with NZ = {3, 4} bit, i.e., using 8 or 16 quanitzation levels.

B. Information Bottleneck based Quantizer Design

In order to improve the e2e performance, we propose to
use the more sophisticated IBM quantization to generate the
message to be forwarded by the fronthaul. To this end, we
describe subsequently the offline design of CNR dependent



quantizers per subcarrier in the RAP via IBM, where we
assume an AWGN model for the design with CNR = SNR.
Similar to the calculation of LLRs in (9) this design approach
requires knowledge about the CNR dependent joint distribu-
tion pk(d, d̂).

For Quadrature Amplitude Modulation (QAM) constella-
tions with Gray labeling, the real and imaginary part are
independent of each other and can be quantized separately.
Subsequently, we use the variables da and d̂a to denote
either the real or the imaginary part of d and d̂, respectively,
with the same conditioned probability pk(Re{d̂}|Re{d}) =
pk(Im{d̂}|Im{d}) = pk(d̂a|da) with noise variance 0.5σ2

n .
The underlying optimization task of IBM based quantizer
design is to optimize a quantizer mapping z = Q?k(d̂a) from
the noisy observation d̂a into a compressed representation
z ∈ Z containing a maximum amount of relevant information
I(z; da) for the original source signal da ∈ {− 1√

2
, 1√

2
}, i.e.

Q?k = argmax
Qk

I(z; da) s.t. |Z| ≤ Z . (10)

Notice, that the value of the compressed variable z is not of
importance at all as only its probability measures. Thus, we
simply assume unsigned integer values, Z = {0, 1, ..., |Z|−1}.
The optimization problem (10) is a special case of the IBM
optimization problem (β → ∞ in [8]). For the system
under investigation we can utilize the optimum quantizer
design for binary input signals [22] with the joint distribution
pk(da, d̂a) = pk(d̂a|da)pk(da) and equiprobable pk(da) to
obtain the quantizer mapping Q?k(d̂a). In this case, we limit
the compression rate I(d̂a; z) and the resulting fronthaul rate
by a small number of bits NZ = log2(|Z|) with NZ = {3, 4}.

Since the IBM based quantizer design depends on the CNRk
of the subcarrier k, we design the quantizers offline for a
uniform grid of CNRk values (e.g. NQ = 32 quantizer map-
pings from −4.5 dB to 11 dB in 0.5 dB steps). The RAP has
to transmit the representative z (or its binary representation)
together with log2(NQ) bits of overhead information about
the used quantizer mapping to the cloud-platform. We assume
that the cloud-platform has a CNRk dependent LUT for each
subcarrier k with the LLRs given by

L(bi|z) = ln
pk(z|bi = 0)

pk(z|bi = 1)
. (11)

At the cloud-platform, the discrete LLRs are deinterleaved and
depunctured for further decoding. Alternatively, IBM-based
discrete decoder implementations similar to [23] could be
applied directly on the compressed variables z.

As already pointed out, the RAP needs to inform the cloud-
platform about the used quantizer per subcarrier, i.e., about
the CNRk. In order to reduce this overhead, we investigate
the performance with a reduced number of CNRk dependent
quantizer mappings (i.e. NQ ∈ {32, 16, 8, 4, 2}) per subcarrier
in Section IV.

IV. NUMERICAL RESULTS

We evaluate the proposed Cloud RAN architecture through a
series of simulations. Here, we focus on the impact of coarser
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quantization on system performance. A lower resolution eases
the data rate burden and also contributes to lower latency on
rate limited fronthauls. All simulations are run with K = 64
subcarriers, Kon = 50 active subcarriers, M = 5 timeslots,
Nu = 256 information bits, Np = 500 punctured code bits,
and Quadrature Phase Shift Keying (QPSK) modulation under
the assumption that one RAP is used.

First, we want to learn about the expected performance
in an AWGN channel serving as a benchmark where the
CNR is identical on all subcarriers. In Fig. 4 we observe
that OFDM outperforms GFDM by 0.5 dB in an AWGN
scenario due to non-orthogonal GFDM. Moreover, we observe
that even a 3 bit IBM quantizer only incurs a minor 0.15 dB
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performance hit compared to LLR forwarding with floating
point (fp32) precision. This result indicates that a fronthaul
data rate reduction is possible while maintaining performance.

Next, we evaluate the performance of different quantization
strategies in an AWGN channel. In Fig. 5 we focus on OFDM
and note that the results are also valid for GFDM. We observe
that 4 bit IBM quantization only incurs a minimal performance
loss compared to fp32 LLR forwarding. Further, we observe
that 3 bit IBM quantization delivers better performance than
4 bit uniform quantization. With 3 bit uniform quantization
we observe a larger 0.75 dB performance loss.

As a first result, we conclude that IBM clearly outperforms
uniform quantization. Further, we conclude that 3 bit IBM
quantization performs close to fp32 LLR forwarding and
thus enables lower fronthaul rates. 4 bit IBM quantization is
sufficient to close this performance gap.

In Fig. 6 we compare different IBM quantizers for GFDM
and OFDM with frequency-selective Rayleigh fading. We
observe that 3 bit and 4 bit IBM quantization deliver almost
the same performance unlike in an AWGN channel. We reckon
that the observed performance loss is caused by the used
quantization tables that only go up to 11 dB and will be
the subject of future research. Further, we observe the same
minor performance loss for GFDM compared to OFDM due to
self-interference. We note that GFDM offers better efficiency
compared to OFDM and potentially lower latency [6].

Further, we analyze the impact of different quantizers in
a frequency-selective Rayleigh fading setup for GFDM. In
Fig. 7 we observe a 0.4 dB performance loss at FER 10−3 for
4 bit IBM quantization. Further, 3 bit IBM compared to 4 bit
IBM quantization only cause another 0.05 dB performance
loss. Again, we reckon that this tiny gap will widen if we
employ quantization tables that go beyond 11 dB. Further, we
observe that IBM quantization clearly outperforms uniform
quantization.
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Distributed RAPs need to signal the employed quantization
table indices to the cloud platform per subcarrier which
causes overhead. In our setup with Kon = 50 active sub-
carriers and NQ = 32 quantization table indices this causes
log2(NQ)Kon = 250 bit overhead together with NpNZ =
1500 bit for quantized symbols per frame. In case of 4 bit
uniform quantization, a quantizer yields 2000 bit per frame
and thus a 3 bit IBM quantizer is advantageous because it
requires a lower data rate and shows better performance.

We want to minimize this overhead by reducing the num-
ber of indices NQ. In Fig. 8 we observe that NQ = 8
indices are sufficient to achieve a similar performance as
with NQ = 32 quantization tables. 2 quantization tables are
insufficient but 4 quantization tables only constitute a minor
performance loss. Fewer quantization tables, e.g. 8 and thus
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only log2(NQ)Kon = 150 bit frame overhead, further ease the
fronthaul data rate burden. In a future work we will consider
quantization tables for groups of subcarriers instead of per-
subcarrier to further reduce this overhead.

V. CONCLUSION

We propose IBM quantization for multicarrier systems in
a Cloud RAN architecture with rate limited fronthauls. As a
first step we investigate a PHY split for Cloud RAN with
a quantizer after the demapper step to reduce fronthaul data
rates. We conclude that coarse 3 bit IBM quantization for a
rate limited fronthaul is sufficient to achieve a performance
close to a high resolution LLR forwarding. This observation
holds for both AWGN as well as frequency-selective Rayleigh
fading channels. Thus, we deduce that IBM quantization is a
superior choice to lower data rates on fronthauls in a wireless
communication system. Especially URLLC communication
which is mainly limited by shadowing and fading can ben-
efit from a Cloud RAN architecture with multiple spatially
separated cooperating RAPs.
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[2] D. Wübben, P. Rost, J. S. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and impact of cloud computing
on 5G signal processing: Flexible centralization through cloud-RAN,”
IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 35–44, 2014.

[3] P. Rost, I. Berberana, A. Maeder, H. Paul, V. Suryaprakash, M. Valenti,
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