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Abstract— Recently the use of lattice-reduction for signal
detection in multiple antenna systems has been proposed. In
combination with simple successive interference cancellation this
scheme achieves near maximum-likelihood performance. To this
end, the given MIMO channel is transformed into an almost
orthogonal matrix leading to less noise enhancement within
the detection. In this paper, we investigate the performance
of common and lattice-reduction-aided detection schemes for
correlated fading channels. We show, that the new scheme
achieves significant gain in comparison to common algorithms.
Thus, the new algorithm clearly outperforms existing methods
with comparable complexity and is also more robust with respect
to spatial correlation.

Index Terms— MIMO systems, BLAST, lattice-reduction, wire-
less communication, spatial correlation.

I. INTRODUCTION

Within the V-BLAST architecture parallel data streams are
transmitted over nT different antennas in order to increase
the spectral efficiency. Besides linear detection schemes based
on the zero-forcing (ZF) or the minimum mean square error
(MMSE) criterion, successive interference cancellation (SIC)
is a popular way to detect the transmitted signals at the receiver
site. Unfortunately, for ill-conditioned channel matrices all
these schemes are clearly inferior to maximum-likelihood
(ML) detection. However, in spatial correlated environments
the probability of ill-conditioned matrices increases, resulting
in an even higher error rate. Recently, lattice-reduction (LR)
has been proposed in order to transform the system model into
an equivalent one with better conditioned channel matrix prior
to low-complexity linear or SIC detection, e.g. [1]–[3]. The
extension of the LR-aided detection schemes to the MMSE
criterion and a lattice-reduction algorithm with reduced com-
plexity was presented in [4], [5]. In this work we investigate
the performance of common and LR-aided detection schemes
with respect to spatial correlated channels. As the performance
of a MIMO system can significantly degrade when correlation
is present, it is of fundamental importance to investigate this
general behavior of the detection algorithms.

The remainder of this paper ist organized as follows. In
Section II, the system model and notation is introduced.
The basics about lattice-reduction and lattice-reduction based
detection of MIMO systems are explained in Section III and
in Section IV, respectively. The performance for uncorrelated
and correlated channels is than investigated in Section V.
Concluding remarks can be found in Section VI.

II. SYSTEM DESCRIPTION

We consider the multiple antenna system shown in Fig. 1
with nT transmit and nR ≥ nT receive antennas in a flat
fading environment. According to the V-BLAST architecture,
the data is demultiplexed into nT data substreams of equal
length. These substreams are mapped onto M -QAM symbols
and transmitted over the nT antennas simultaneously.
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Fig. 1. Model of a MIMO system with nT transmit and nR receive antennas.

For the mathematical description of the MIMO system
we investigate one time slot of the time-discrete complex
baseband model. Let1 s denote the complex valued nT ×1
transmit signal vector, then the corresponding nR×1 receive
signal vector x is given by

x = Hs + n . (1)

In (1), n represents white gaussian noise of variance σ2
n

observed at the nR receive antennas while the average transmit
power of each antenna is normalized to one, i.e. E

{

ssH
}

=
InT

and E
{

nnH
}

= σ2
nInR

. We assume a flat fading environ-
ment, where the nR×nT channel matrix H is constant over a
frame and changes independently from frame to frame (block
fading channel). In order to simulate the transmission over
correlated MIMO channels we apply the popular Kronecker
model [6]

H = Φ
1

2

R GΦ
1

2

T , (2)

with G consisting of uncorrelated complex gaussian coeffi-
cients gi,j of unit variance. According to the correlation model
presented in [7], the spatial correlation matrix at the transmitter
ΦT = E{HH

H} and at the receiver ΦR = E{HH
H} can

be modelled as a function of the correlation coefficients 0 ≤

1Throughout this paper, (·)T and (·)H denote matrix transpose and
hermitian transpose, respectively. Furthermore, Iα indicates the α×α identity
matrix and 0α,β denotes the α × β all zero matrix. With R{·} and I {·}
we denote the real part and the imaginary part, respectively.



ρT, ρR ≤ 1. Using their definition, the nT × nT correlation
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and a corresponding definition holds for the nR × nR matrix
ΦR with coefficient ρR. The correlation model can further sim-
plified by assuming ρT = ρR = ρ, yielding a single parameter
model [7]. The given model can range form the uncorrelated
case (ρ = 0.0) to the fully correlated scenario (ρ = 1.0).
However, as the investigation of the MIMO detectors does
not take the used correlation model into account, the general
statements can also be adopted to other models. Within this
paper we assume perfect knowledge about the channel state
information (CSI) by the receiver, but no knowledge for the
transmitter.

Treating real and imaginary parts of (1) separately, the
system model can be rewritten as

x = Hs + n , (4)

with the real-valued channel matrix

H =

[

R{H} −I {H}
I {H} R{H}

]

∈ R
n×m (5)

and the real-valued vectors

x =

[

R{x}
I {x}

]

s =

[

R{s}
I {s}

]

n =

[

R{n}
I {n}

]

. (6)

By defining m = 2nT and n = 2nR the dimension of the
real channel matrix (5) is given by n × m = 2nR × 2nT .
Likewise the dimension of the vectors (6) are given by x ∈
R

n, n ∈ R
n and s ∈ Am, where A denotes the finite set of

real-valued transmit signals [4]. In the sequel we will apply
this real-valued representation, as we can now interpret each
noiseless receive signal as a point of a lattice spanned by H.
Additionally, the performance of successive algorithms like
the V-BLAST detection can be improved by separating the
real and imaginary part of each transmit signal.

The optimum maximum-likelihood (ML) detector searches
over the whole set of transmit signals s ∈ Am, and decides in
favor of the transmit signal ŝML wich results in the minimum
euclidian distance to the receive vector x, i.e.

ŝML = arg min
s∈Am

‖x − Hs‖2 . (7)

As the computational effort is of order MnT , brute force ML
detection is not feasible for larger number of transmit antennas
or higher modulation schemes. A feasible alternative is the
application of sphere detector (SD) [8]–[11], which restricts
the search space to a sphere. However, the computational
complexity is still high in comparison to simple but suboptimal
SIC. In the sequel, we apply lattice-reduction in order to
improve the performance of SIC and linear detection. One
advantage of this strategy is, that the computational overhead

caused by the lattice-reduction algorithm is only required once
for each transmitted frame, so for large frame length the effort
for each signal vector is very small.

III. LATTICE-REDUCTION (LR)

By interpreting the columns h` (1 ≤ ` ≤ m) of the real-
valued channel matrix H as the basis and assuming an infinite
m dimensional integer transmit signal space Z

m, the set of
all possible undisturbed receive signals constructs the lattice
L(H) = HZ

m. However, the same lattice L(H̃) = L(H) is
also generated by each matrix H̃ = HT, as long as the m×m
transformation matrix T is unimodular, i.e. T contains only
integer entries and the determinant is det(T) = ±1 [12]. As
both matrices describe exactly the same receive signal space,
we may chose that basis which offers nicer properties for the
detection of MIMO systems [4].

The aim of lattice-reduction is to transform a given basis H

into a new basis H̃ with vectors of shortest length or, equiv-
alently, into a basis consisting of roughly orthogonal basis
vectors. Usually, H̃ is much better conditioned than H and
therefore leads to less noise enhancement for linear detection.
In order to describe the impact of H on the noise enhancement,
we introduce the condition number κ(H) = σmax/σmin ≥ 1,
with σmax and σmin denoting the largest and the smallest
singular value of H, respectively. With ‖H‖2 defining the
spectral norm of H, the condition number corresponds to
κ(H) = ‖H‖2‖H

−1‖2. For ill-conditioned matrices κ(H) is
large, whereas for orthogonal matrices κ(H) = 1, as no noise
enhancement is caused. As the reduced basis H̃ is chosen
to have roughly orthogonal basis vectors, the corresponding
condition number κ(H̃) is usually much smaller than κ(H).
Consequently, a linear detector with respect to this new basis
may achieve better performance results, as the impact of noise
enhancement is reduced.

For further investigation, we introduce the QR decomposi-
tion H = QR with the n × m matrix Q having orthogonal
columns of unit length (QT Q = Im) and the upper triangular
matrix R = (ri,j)1≤i,j≤m. In the same way, the decomposition
H̃ = Q̃R̃ is defined. With respect to this QR decomposition,
the basis vector h̃` is almost orthogonal to the space spanned
by h̃1, . . . , h̃`−1, if the elements |r̃1,`|, . . . , |r̃`−1,`| are close
to zero. An efficient (though not optimal) way to determine a
reduced basis was proposed by Lenstra, Lenstra and Lovàsz
[12] called LLL algorithm. Starting with H = QR this
iterative algorithm achieves a reduced basis H̃ = Q̃R̃ and
the according transformation matrix T. The beneficial impact
of applying the Sorted QR Decomposition (SQRD) [13] to the
computational complexity of the LLL algorithm was presented
in [4], [5].

In order to investigate the influence of the spatial correlation
on the condition of the MIMO channel, Fig. 2 shows the
cumulative distribution function (CDF) of κ(H) for varying
correlation coefficients ρ. As expected the CDFs indicate an in-
creasing probability of large condition numbers for increasing
correlation coefficients. As an ill-conditioned matrix leads to
strong noise enhancement, the performance of common MIMO
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Fig. 2. Cumulative distribution function (CDF) of κ(H) (solid lines) and
κ(H̃) (dashed lines) for various correlations coefficients ρ for a system with
nT = nR = 4 antennas.

detectors degenerates in correlated environments. However, by
investigating the distribution of the condition number κ(H̃)
of the lattice-reduced channel matrix H̃, we observe almost
the same CDF in case of uncorrelated and strong correlated
(ρ = 0.9) channels. Thus, the LR-aided detection schemes
introduced in the next section are supposed to be more robust
with respect to correlation.

IV. LR-AIDED DETECTION ALGORITHMS

A. Lattice-Reduction aided Linear Detection

By using the lattice-reduced channel matrix H̃ = HT and
introducing z = T−1s the receive vector (4) can be rewritten
as

x = Hs + n = HTT−1s + n = H̃z + n . (8)

Note that Hs and H̃z describe the same point in a lattice, but
the LLL-reduced matrix H̃ is usually much better conditioned
than the original channel matrix H. For s ∈ Z

m we also have
z ∈ Z

m, so s and z stem from the same set. However, for
M -QAM, i.e. s ∈ Am, the lattice is finite and the domain of
z differs from Am.

The idea behind LR-aided detection is to consider the
equivalent system model in (8) and perform the detection
with respect to z instead of s. For LR-aided ZF linear
detection (LD) this means that first z̃LR−ZF = H̃+x is
calculated, where the multiplication with the pseudo-inverse
H̃+ = (H̃T H̃)−1H̃ usually causes less noise amplification
than the multiplication with H+ due to the roughly orthogonal
columns of H̃. Therefore, a hard decision based on z̃LR−ZF is
in general more reliable than one on s̃ZF = H+x. However,
as the elements of z are not independent of each other, a
vector quantization would be necessary [4]. A straightforward
(though suboptimal) solution is to perform an unconstrained
element-wise quantization ẑLR−ZF = Q{z̃LR−ZF}, calculate
ŝLR−ZF = TẑLR−ZF, and finally restrict this result to the set
Am. The principle block diagram for a LR-aided detector is
shown in Fig. 3

equivalent system model
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ẑz
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~
x
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T
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for z

Fig. 3. Block diagram of a Lattice-Reduction based detector.

In order to improve the estimate for z, it is meaningful to
implement the LR with respect to the MMSE criterion. To
this end, the LR is performed with respect to the extended
channel matrix2 H = [HT σnIm]T yielding H̃ = HT and
compute z̃LR−MMSE = H̃

+
x. As shown in [4], [5] this MMSE

solution yields a significant improvement in comparison to LR-
aided ZF detectors and is also more meaningful than a MMSE
solution of the LR-system model in (8).

B. Lattice-Reduction aided SIC

As H̃ is only roughly orthogonal, the mutual influence of
the transformed signals zi is small, but still present. Thus,
a successive interference cancellation (SIC) may result in
additional improvements. Applying the QR decomposition of
the reduced channel matrix to the system model from (8) we
get

z̃LR−ZF−SIC = Q̃T x = R̃z + Q̃T n , (10)

where Q̃ and R̃ have already been calculated by the LLL
algorithm. Due to the upper triangular structure of R̃, the
m-th element of z̃ is free of interference and can be used
to estimate zm. Proceeding with z̃m−1, . . . , z̃1 and assuming
correct previous decisions, the interference can be perfectly
cancelled in each step. It is well known, that because of
error propagation the order of detection has a large influence
on the performance of SIC. The optimum order can be
calculated efficiently by the so-called Post-Sorting-Algorithm
(PSA) proposed in [13], which exploits the fact, that the mean
error in each detection step is proportional to the diagonal
elements of R̃−1.

Similar to linear detection, we can consider the lattice-
reduced version of the extended system model with the equiva-
lent channel matrix H̃ = Q̃ R̃. This leads to LR-aided MMSE-
SIC with decision variables given by

z̃LR−MMSE−SIC = Q̃
T
x = R̃z + η , (11)

where the newly defined noise term η also incorporates
residual interference. The detection procedure equals that of
LR-aided ZF-SIC.

2As shown in [13], a common linear MMSE detector corresponds to a
linear ZF detector with respect to the extended system model given by the
(n+m)×m extended channel matrix H and the (n+m)×1 extended receive
vector x

H =

�
H

σnIm � and x =

�
x

0m,1 � . (9)

Thus, the output of the MMSE filter can be written as s̃MMSE =�
HT H + σ2

nIm � −1
HT x = H

+
x, which exactly matches the structure

of a linear ZF detector.



V. PERFORMANCE ANALYSIS

In the sequel, we investigate a MIMO system with nT = 4
transmit and nR = 4 receive antennas and 4-QAM modulation.
Eb denotes the average energy per information bit arriving at
the receiver.
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Fig. 4 shows the achieved BER performance of several
detection schemes versus the condition number κ(H) of the
(uncorrelated) channel matrix and Eb/N0 = 16 dB. Part a)
contains the simulation results for the common and LR-aided
linear detection schemes and ML detection. For κ(H) ≈ 1
all schemes achieve very good performance. However, if the
matrix is ill-condition, the performances of the common ZF
and MMSE linear detector are poor, whereas the LR-aided
linear detectors achieve suitable results. The corresponding
BERs for common SIC and LR-aided SIC are given in part
b) of Fig. 4. The SIC schemes generally outperform the
linear schemes. Thus, we will consider only SIC detection
in the following investigations. Furthermore, LR-MMSE-SIC
achieves almost ML performance for the whole range of
investigated condition numbers.

The performance of common and LR-aided SIC versus the
correlation coefficient ρ is investigated in Fig. 5 for Eb/N0 =
16 dB. As the probability of large condition numbers increases
with ρ and the BER performance degrades with the condition
number, we observe an increase of the BER with stronger cor-
relation. Obviously, the detection with respect to the MMSE
criterion clearly outperforms the corresponding ZF solutions.
Again, the LR-aided MMSE-SIC achieves almost the perfor-
mance of ML detection for the whole range of correlation
coefficients and achieves significant gain in comparison to the
common MMSE-SIC.

After investigating the dependence of the BER on the
condition number and the correlation coefficient for a fixed
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Fig. 5. BER of common SIC, LR-aided SIC and ML versus correlation
coefficient ρ and a system with nT = nR = 4 antennas, 4-QAM modulation
for 16 dB.
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SNR, we will now investigate the performance versus Eb/N0.
Fig. 6 shows the performance of common and LR-aided
MMSE-SIC for ρ = 0.0 and ρ = 0.6. Due to visualization
reason the BERs of ZF-SIC are only included for the correlated
channel. In case of uncorrelated channels, LR-MMSE-SIC al-
most achieves ML performance and outperforms common SIC
by approximately 6 dB for BER = 10−5. As strong correlation
increases the probability of ill-conditioned channel matrices,
the performance of all detectors degrades for ρ = 0.6. The
common ZF-SIC is not able to achieve acceptable performance
and also the common MMSE-SIC results in a large perfor-
mance degradation. The LR-aided detection schemes behave
more robust to correlation, as expected by Fig. 2. The LR-
MMSE-SIC still achieves almost ML performance and obtains
an improvement of approximately 11 dB in comparison to
common MMSE-SIC and yields a gain of 4 dB to the LR-ZF-



SIC scheme. Consequently, the LR-based MMSE-SIC scheme
behaves very robust with respect to spatial correlation and
achieves almost ML performance with small computational
complexity, as indicated by Fig. 4 and Fig. 5. Due to the benefit
of the MMSE solution we will disregard the ZF solution for
the remainder of this paper.
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Fig. 7. BER of common and LR-aided MMSE-SIC in a uncorrelated
(continuous lines, ρ = 0.0) and correlated (dashed lines, ρ = 0.6) system
with nT = nR = 4 antennas and 16-QAM modulation.

The BERs for the same antenna configuration but with 16-
QAM modulation are shown in Fig. 7. Again, LR-MMSE-SIC
achieves very good performance results and leads only to a
degradation of approximately 0.9 dB for the uncorrelated as
well as for the correlated case. It is worth to note, that the
computational effort of LLL does certainly not depend on the
modulation index. In contrast, a brute force ML would require
the comparison of MnT = 65536 hypotheses for each receive
signal vector and is thereby not feasibly anymore. Of course,
ML detection can now only be achieved by sphere detection.

In order to investigate the performance for larger number
of antennas, Fig. 8 shows the corresponding simulation results
for a system with nT = nR = 6 antennas. The LR-MMSE-
SIC scheme outperforms the common MMSE-SIC scheme by
more than 8 dB for a BER of 10−5. Thus, the robustness of
the LR-aided detection has been shown for several system
constellations. As the LR-aided detection does not incorporate
the correlation structure, similar results can also be expected
for other correlation models.

VI. SUMMARY AND CONCLUSIONS

In this paper, we investigated common and lattice-reduction-
aided detection schemes for multiple antenna systems with
uncorrelated and correlated channels. The combination of LR-
MMSE and SIC achieves almost maximum-likelihood per-
formance over the whole range of condition numbers and
thereby also for strong spatial correlation. The new scheme
clearly outperforms common detectors with low computational
complexity.
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