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Abstract— We propose the use of multistratum space-time
codes (MSSTC) for the asynchronous uplink of broadband
MIMO-CDMA systems. This transmission scheme, originally
proposed for single-user systems and flat fading channels, com-
bines the benefits of both space-time block codes and multilayer
transmission, i.e. it exploits transmit diversity and simultaneously
enables high data rates with reasonable decoding complexity.
Though the full potential of multistratum codes can only be
achieved by using adaptive channel coding, we show by simu-
lation results that they are a promising approach even in the
uncoded case.

Index Terms— Multiuser MIMO systems, Space-Time Codes,
CDMA, Uplink.

I. INTRODUCTION

In [1] it was shown, that channel capacity increases dramat-
ically by using multiple transmit and receive antennas in rich
scattering environments. Layered transmission strategies like
D-BLAST [2] or V-BLAST [3] are a practical way to realize a
considerable fraction of the capacity offered by such multiple-
input multiple-output (MIMO) systems. The detection is typi-
cally based on successive interference cancellation (SIC). On
the other hand, the transmission quality may be significantly
improved by making use of spatial diversity. In order to gain
diversity at the transmitter site, space-time coding has to be
applied [4]. A special case are space-time block codes (STBC),
which allow very simple decoding [5], [6].

These two concepts are combined in multistratum space-
time coding (MSSTC) [7]. Here, parallel data streams (called
strata) are individually encoded using a space-time block
code, respectively, and subsequently superimposed. Due to the
STBC, each stratum contains full transmit diversity. In this
paper, we analyze the applicability of multistratum space-time
codes for the asynchronous uplink of MIMO-CDMA systems
with frequency-selective channels. Furthermore, an efficient
detection scheme for this scenario is devised.

In Section II the system model is introduced. V-BLAST
and space-time block codes are reviewed in Section III and
Section IV, respectively, before the multistratum codes are
introduced in Section V. Section VI includes simulation results
and concluding remarks can be found in Section VII.
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II. SYSTEM MODEL

Throughout this paper, we use bold lower (upper) case
letters for vectors (matrices) and an underline to indicate
complex quantities. For an arbitrary complex m × n matrix
M we define the corresponding real 2m × n matrix M, that
alternately contains the real and imaginary part of each row.

We consider a MIMO-CDMA system, where NU users
transmit over NT antennas to a common base station equipped
with NR receive antennas. Each user is assigned a unique
pseudo noise spreading code cu[k] of length NC , such that
cu[k] = 0 for k < 0 or k ≥ NC . The channel between transmit
antenna t of user u and receive antenna r is characterized by
the delay τr,t,u = τu and the time-discrete impulse response in
the equivalent baseband hr,t,u[k] of order NH . Without loss of
generality we assume that τu ≤ τu′ for u < u′ and τ1 = 0. As
the receiver can only observe the linear convolution of channel
and spreading code, we introduce the signature sequences

sr,t,u[k] = hr,t,u[k] ∗ cu[k − τu], (1)

which are zero for k < τu or k ≥ NC + NH + τu. Note that
the signatures may easily be replaced by their oversampled
versions, but here we restrict to chip synchronous situations
for simplicity.

Denoting the i-th transmit symbol (before spreading) of user
u at antenna t by xt,u[i], the receive signal at antenna r is

y
r
[k] =

∞
∑

i=0

NU
∑

u=1

NT
∑

t=1

sr,t,u[k − iNC ] xt,u[i] + nr[k], (2)

where nr[k] represents complex white Gaussian noise of
variance σ2

n.
The system model (2) can be written in more compact form

by making use of matrix notation. To this end, let us define
the NCNR × NUNT signature matrix

S[k] =
(

S
1
[k] S

2
[k] . . . SNU

[k]
)

, (3)

where the NR × NT submatrix

Su[k] =
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contains the contribution of user u at time k. Similarly,
we collect the transmit symbols, receive signals, and noise
samples in the vectors

x[i] = (xT
1
[i],xT

2
[i], . . . ,xT

NU
[i])T (5)

with xu[i] = (x
1,u[i], x

2,u[i], . . . , xNT ,u[i])T ,
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[k], y
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NR

[k])T , (6)

n[k] = (n
1
[k], n

2
[k], . . . , nNR

[k])T , (7)

respectively. With these definitions, the system model becomes

y[k] =

∞
∑

i=0

S[k − iNC ] x[i] + n[k]. (8)

In general, a space-time codeword of one user consists of
NST consecutive transmit vectors and contains KST informa-
tion symbols

du[m] = (du[mKST ], . . . , du[(m + 1)KST − 1])T . (9)

Usually, a codeword also includes conjugate complex informa-
tion symbols. As complex conjugation is not a linear operation,
it is necessary to split du[m] up into real and imaginary part
as described at the beginning of this section. With the resulting
2KST ×1 vector du[m] and the NST code defining generator
matrices G[i] of size NT × 2KST we can express the i-th
symbol of the m-th space-time codeword by

xu[mNST + i] = G[i] du[m] , 0 ≤ i < NST . (10)

Thus, the corresponding vector containing the transmit sym-
bols of all users reads

x[mNST + i] = (INU
⊗ G[i]) d[m] , 0 ≤ i < NST , (11)

where ⊗ denotes the Kronecker product and d[m] contains
the information symbols of all users.

Now, assuming that τNU
+ NH ≤ NST NC , we can stack

all nonzero signature matrices on top of each other in the
(NST + 1)NCNR × NUNT matrix

S =
(

ST [0] ST [1] . . . ST [(NST + 1)NC − 1]
)T

. (12)

Then, after inserting (11) into (8), we find that the whole
contribution of the information symbols d[m] to the receive
signal (after space-time block coding, spreading, and lin-
ear distortion by the channel) is fully determined by the
2NST NCNR × 2NUKST system matrix

A =
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, (13)

where the zero submatrices of the block convolution matrix
have dimension NCNR × NUNT . For frequency-selective
or asynchronous channels, every space-time codeword ex-
periences interference from the previous and the next one.

Therefore, we split A into its upper and lower halve Au and
Al, respectively, and introduce the matrices

Ap =

(

Al

0

)

and An =

(

0

Au

)

(14)

having the same dimension as A, which characterize the in-
terference from d[m−1] and d[m+1]. With these definitions,
the receive signal y[k] for mNST NC ≤ k < (m + 2)NST NC

can be merged in the vector

y = Ap d[m − 1] + A d[m] + An d[m + 1] + n, (15)

where the vector n includes the corresponding noise samples.
Finally, as the symbols d[m] that need to be estimated at the
receiver are real, we also partition y, Ap, A, An, and n into
their real and imaginary parts and arrive at the desired real-
valued linear system model

y = Ap d[m − 1] + A d[m] + An d[m + 1] + n, (16)

which will be used throughout this paper. Note that with
the normalization E

{

tr
{

AT A
}}

= 2NUKST , the average
signal to noise ratio at the receiver for M -QAM is simply

σ2

d

σ2
n

=
σd2

σn2

= log
2
(M)

Eb

N0

, (17)

where Eb is the mean energy per information bit and N0 is
the one-sided spectral power density of the noise.

III. V-BLAST

The aim of V-BLAST is to increase the data rate by using
multiple antennas at both the transmitter and the receiver.
For this purpose, independent data streams (called layers) are
transmitted over the different antennas. Thus, it is possible
to transmit KST /NST = NT symbols per channel use. The
NT × 2NT generator matrix reads

G = G[0] = INT
⊗

(

1 j
)

. (18)
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Fig. 1. V-BLAST system matrix for NU = 2 users with NT = 2 transmit
antennas each, spreading factor NC = 4, channel order NH = 1, delay
τ2 = 3, and NR = 2 receive antennas at the base station



An example of the resulting real system matrix A (to-
gether with Ap and An) is illustrated in Fig. 1 for an
asynchronous two-user system. Here, dark entries correspond
to large absolute values. The dimension of the system matrix
is 4NCNR×2NUNT = 32×8, where the first (last) two pairs
of columns correspond to the antennas of user one (two), and
each chip requires 2NR = 4 rows, so one complete signature
sequence takes 2(NC + NH)NR = 20 rows while the next
symbol starts after 2NCNR = 16 rows.

Fig. 2. Interference after matched filtering by AT

From Fig. 2 it can be observed that after simple matched
filtering there remains strong co-channel interference from all
other antennas as well as intersymbol interference from the
previous and the next symbols. Therefore, more sophisticated
detection techniques are required. The optimum maximum
likelihood sequence estimation would be too complex for real-
time applications, even with efficient implementations like
the sphere decoder [8], that do not require an exhaustive
search. For flat fading channels, a near-optimum detection
algorithm based on lattice reduction was proposed in [9].
However, here we restrict to simple successive interference
cancellation, which in many practical situation comes close
to ML performance with a complexity comparable to linear
detection.

Ignoring the noise for the moment and assuming that
the receiver has already estimated d[m − 1] correctly, the
interference of the previous symbols can be subtracted from
the receive signal. From (16) we get

(

A An

)

(

d[m]
d[m + 1]

)

= y − Ap d[m − 1]. (19)

The interference from yet undetected symbols needs to be
suppressed by linear filtering. To this end, let us define the
QL decomposition of

(

A An

)

= Q L =
(

Q1 Q2

)

(

L11 0

L21 L22

)

, (20)

where the 4NCNR × 4NUNT matrix Q has orthogonal
columns, L is a monic lower triangular matrix1, and the in-
troduced submatrices of Q and L are of identical dimensions,
respectively. As by definition Q1 is orthogonal to Q2, from
(19) and (20) it follows that

L11 d[m] = QT
1

y − QT
1

Ap d[m − 1]. (21)

Now d[m] can be estimated from top to bottom, while sub-
tracting all the interference from previously decided symbols.

1We assume that the system is not overloaded, i.e. NUNT ≤ NCNR.

Fig. 3. Partial interference suppression by QT
11

In [10] it was shown, that a linear minimum mean square
error (MMSE) interference suppression (instead of the just
described zero-forcing, which may lead to strong noise am-
plification) is achieved by considering the extended system
matrix

(

A An

σn/σdI

)

=

(

Q11 Q12

Q21 Q22

) (

L11 0

L21 L22

)

, (22)

and replacing Q1 in (21) by the matrix Q11 of the same size.
Furthermore, a very efficient sorting algorithm to determine
the optimum order of detection was proposed. The result of
the partial interference suppression is shown in Fig. 3.

IV. SPACE-TIME BLOCK CODES

Space-time block codes are a means to exploit spatial
diversity in rich scattering environments in order to improve
the transmission quality when no or only little temporal or
frequency diversity is available. This is typically the case for
indoor scenarios. The most simple example is the well-known
Alamouti scheme [5] for NT = 2 transmit antennas with the
unitary generator matrix

G =

(

G[0]
G[1]

)

=









1 j 0 0
0 0 1 j
0 0 −1 j
1 −j 0 0









. (23)

Here, only KST /NST = 1 symbol is transmitted per channel
use as opposed to V-BLAST, which on the other hand offers
no transmit diversity. Also, due to NST = 2, the number of
rows of the resulting system matrix A is doubled compared
to V-BLAST while the number of columns remains the same.

For a flat fading channel and synchronous users employing
orthogonal spreading it can be easily verified that A has
orthogonal columns. Hence, ML performance is achieved by
simple matched filtering followed by a symbol-wise decision.
However, for the example from the previous section these
conditions are not fulfilled. Thus, the matched filter output
contains residual interference, which is visible in Fig. 4, but
obviously the signal to interference ratio (SIR) is much higher
than for V-BLAST in Fig. 2.

Note that for NT > 2 there exists no linear orthogonal
space-time block code with rate one. For this case, orthog-
onal codes with reduced rate [6], quasi-orthogonal codes
[11], and nonlinear orthogonal codes [12] were proposed.
Furthermore, for frequency-selective channels, special space-
frequency codes have been designed [13]. However, these
codes need to be optimized for the actual power delay profile
of the channel. Therefore, we restrict to the more practical



Fig. 4. Interference after matched filtering for space-time block coding and
system parameters given in Fig. 1

approach to collect frequency diversity separately by the
spreading code.

V. MULTISTRATUM SPACE-TIME CODES

Multistratum space-time codes were first proposed in [7]
for single-user systems and flat fading channels. They are a
special case of the more general linear dispersion space-time
codes [14] and combine the benefits of both space-time block
codes and V-BLAST, i.e. they exploit transmit diversity and
at the same time allow for high data rates while maintaining
low decoding complexity by successive detection.

Similar to V-BLAST, the information symbols are demulti-
plexed into NS parallel data streams

du[m] = (dT
1,u,dT

2,u, . . . ,dT
NS ,u)T , (24)

which are referred to as strata. Instead of directly transmitting
these symbols, all strata are first encoded with the same
space-time block code and afterwards the resulting transmit
vectors are superimposed using an orthogonal transform, e.g.
the discrete fourier transform (DFT). Another interpretation of
this encoding procedure is that every stratum employs its own
characteristic space-time block code defined by

Gl[i] = e−j2πli/NST G′[i] , 1 ≤ l ≤ NS , (25)

where G′[i] is the generator matrix of the common code and
the DFT was used. Then, the whole generator matrix of the
multistratum space-time code becomes

G =







G
0
[0] . . . GNS

[0]
...

. . .
...

G
0
[NST − 1] . . . GNS

[NST − 1].






(26)

For the Alamouti scheme from (23) and NS = 2 strata this
leads to

G =









1 j 0 0 1 j 0 0
0 0 1 j 0 0 1 j
0 0 −1 j 0 0 1 −j
1 −j 0 0 −1 j 0 0









. (27)

Compared to V-BLAST, the number of rows and columns
in the system matrix has doubled. This does not necessarily
mean a large increase of complexity, because for multistratum
space-time codes A may be highly structured. Fig. 5 shows a
simple example for a single user with G from (27) in a flat
fading environment. While symbols of the same stratum do not
interact due to the orthogonality of the space-time block code,
there is strong interference among the strata. The 8×8 matrix

PSfrag replacements
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Fig. 5. Structure of the system matrix for a single user in flat fading

L used for the SIC is depicted in Fig. 5b. Only five different
parameters (the upper left element and the last row) need to
be calculated; for V-BLAST, L would only have size 4 × 4,
but still contain four different values. However, in presence of
intersymbol or multiuser interference this structure gets lost.
This is demonstrated in Fig. 6, where the parameters from the
example in Section III where used.

Fig. 6. Interference after matched filtering for multistratum space-time coding
and system parameters given in Fig. 1

From Fig. 5a it is obvious that all information symbols have
the same SIR. Therefore, in contrast to the layers in V-BLAST,
the strata can be decoded in arbitrary order, so no sorting of
the strata is required. This allows for adaptive coding of the
strata according to the remaining interference, i.e. the stratum
detected first may employ a strong channel code while the code
rate can be gradually increased for the remaining strata due to
the SIC. This is not possible for V-BLAST. Note, however, that
for an uncoded transmission it is advantageous to decide only
one symbol of each stratum at a time and then move on to the
next symbol instead of detecting the whole stratum, because
interference cancellation only improves the performance of all
other strata, but not the current one.

Another important advantage of multistratum codes is, that
they allow for a flexible trade-off between data rate and
error performance by simply switching off strata, which does
not lead to transmission breaks. Note that for NS = 1
the multistratum approach degenerates to ordinary space-time
block coding.

VI. SIMULATION RESULTS

The resulting bit error rates (BER) for uncoded QPSK
transmission of a single user with NT = 2 transmit antennas
and an uncorrelated flat Rayleigh fading channel are shown
in Fig. 7. For detection, the receiver applies SIC with MMSE
interference suppression and optimum sorting as described in
Section III. Surprisingly, for NR ≤ 4, multistratum space-
time codes (MSSTC) perform worse than V-BLAST. This is
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Fig. 7. BER for a single user with NT = 2 antennas in flat fading

because the first stratum experiences strong interference from
the second one. As mentioned in the previous section, this may
be accounted for by adaptive coding. However, with increasing
number of receive antennas, multistratum codes are superior
even in the uncoded case, because then the first stratum can
be detected sufficiently well and the diversity advantage of
space-time coding becomes predominant. Note that in many
practical scenarios the number of transmit antennas will be
rather small due to space and cost limitations of the mobile
unit, while a fixed base station may utilize a large number of
receive antennas.

0 5 10 15
10−4

10−3

10−2

10−1

PSfrag replacements

Eb/N0 in dB

B
E

R

MSSTC
V-BLAST
NH =0, optimum sorting
NH =0, user sorting
NH =3, optimum sorting
NH =3, user sorting

Fig. 8. BER for NU = 8 asynchronous users with NT = 2 transmit
antennas each, spreading factor NC = 4, and NR = 6 receive antennas

In Fig. 8, we analyze the BER performance of a MIMO-
CDMA system with eight asynchronous users. While in the
previous example both transmission schemes were nearly
identical for NR = 6 receive antennas, multistratum space-
time coding now clearly outperforms V-BLAST, especially for
the frequency-selective channel. The reason for this behavior
is, that the high interference between strata of one user, that
caused the performance degradation, is now dominated by the

multiuser (and maybe intersymbol) interference, which is com-
parable for both multistratum codes and V-BLAST. Finally, we
find that the receiver complexity can be significantly reduced
by only optimizing the detection order over the NU = 8
users instead of all 2NUNSKST = 64 real symbols. For
multistratum codes this causes only a small performance loss,
while for V-BLAST using the correct ordering is essential.

VII. CONCLUSIONS

We demonstrated that multistratum space-time codes
can significantly improve the performance of asynchronous
CDMA uplink transmission. Using appropriate adaptive chan-
nel coding, which is not possible for V-BLAST, the gain will
certainly be even larger. For system parameters of practical in-
terest, the devised frequency-selective SIC detection algorithm
based on a QL decomposition of the system matrix is suitable
for real-time applications like e.g. video conferencing. Note
that for NT > 2, linear orthogonal space-time codes always
involve a rate loss. Hence, the application of quasi-orthogonal
codes would be an interesting topic for future work.

REFERENCES

[1] E. Telatar, “Capacity of Multi-antenna Gaussian Channels,” European
Transactions on Telecommunications, vol. 10, no. 6, pp. 585–595,
November-December 2000.

[2] G. J. Foschini, “Layered Space-Time Architecture for Wireless Com-
munication in a Fading Environment when Using Multiple Antennas,”
Bell Labs Technical Journal, vol. 1, no. 2, pp. 41–59, Autumn 1996.

[3] P. W. Wolniansky, G. J. Foschini, G. D. Golden, and R. A. Valenzuela,
“V-BLAST: An Architecture for Realizing Very High Data Rates
Over the Rich-Scattering Wireless Channel,” in Proc. ISSE, Pisa, Italy,
September 1998.

[4] V. Tarokh, N. Seshadri, and A. R. Calderbank, “Space-Time Codes for
High Data Rate Wireless Communication: Performance Criterion and
Code Construction,” IEEE Transactions on Information Theory, vol. 44,
no. 2, pp. 744–765, March 1998.

[5] S. M. Alamouti, “A Simple Transmit Diversity Technique for Wireless
Communications,” IEEE Journal on Selected Areas in Commununica-
tions, vol. 16, no. 8, pp. 1451–1458, October 1998.

[6] V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “Space-Time Block
Codes from Orthogonal Designs,” IEEE Transactions on Information
Theory, vol. 45, no. 5, pp. 1456–1467, July 1999.

[7] U. Wachsmann, J. Thielecke, and H. Schotten, “Exploiting the Data-
Rate Potential of MIMO Channels: Multi-Stratum Space-Time Coding,”
in Proc. IEEE VTC Spring 2001, Rhodes, Greece, May 6-9 2001.

[8] E. Agrell, T. Eriksson, A. Vardy, and K. Zeger, “Closest Point Search
in Lattices,” IEEE Transactions on Information Theory, vol. 48, no. 8,
pp. 2201–2214, August 2002.
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