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ABSTRACT (MSE) is addressed. Another source of improvement might
be found by exploring the long term properties of time vary-

In this paper we derive a Bayesian estimator for doubly Cori'ng channels. In [13] it had been observed that the channel

related MIMO channels. The Bayesian estimator has Clea”}fovariance matrix is very slowly changing in time. Thus, the

superior normalized mean squared error performance COr]&%variance matrix may be tracked over a long time and treated

par:ad tolparam;ettrlcdaﬂproaches .espe;ﬁlally whetn tt_he;han a-priori knowledge for the current CE. If the covariance
IS strongly corretated. HOWever, SINCe € COMPUtAonsiE a4y js rank deficient, the channel is constraint on a @erta

may _exceed_ prg_ctical limits we present a c_Iass of fix IOOinIsubspace. Performance improvements as well as computa-
algorithms S|gn|f|car_1tly reduc”.‘g the qumer|c§| effo_rt. erh tional simplification can be achieved by matching the channe
convergence behaylor_of the fixed pom_t algorithm is €XaMynto this subspace as shown in [14]. The gain achieved by in-
ined and a regularization is proposed in order to guarame@orporating covariance knowledge generally depends on the
general convergence. strength of channel correlations. Hence, on the one hand cor
relations are cumbersome in terms of channel capacity,®n th
1. INTRODUCTION other hand channel estimation may benefit therefrom. In this
paper we presume the Kronecker model which is a well veri-
In the last two decades the research on multiple-input plaki  fied assumption for spatially correlated MIMO channels [15]
output (MIMO) systems has attracted a lot of attention due tén [16] on the basis of this model statistical pilot shapiag i
its high channel capacity at comparatively low bandwith-con suggested. However, the computational costs of Bayesian CE
sumption [1]. However, the issue of channel estimation (CEare much higher for correlated than for non-correlated €han
has emerged as one of the bottlenecks in coherent MIM@els. In this paper a class of fixpoint algorithms is presénte
transmission, since the amount of pilot symbols is proparti  having low complexity but delivering estimates close to the
ally increasing with the number of transmit antennas. Thusnaximum a-posteriori probability bound.
especially in rapidly varying environments, where the ehan  The outline of this paper is as follows. In Section 2 we
nelimpulse response has to be tracked in short periodge larintroduce the system model. The basics of parametric and
fraction of the available bandwidth has to be occupied by piBayesian channel estimation are presented in Section 3. Sub
lot symbols. From the information theoretic point of view sequently, a class of fixpoint algorithms is proposed iniSact
the capacity degradation by reason of pilot assisted cthianné, and numerical results are shown in Section 5. Finally, the
estimation was investigated in [2-4]. The impact of inaccupaper is concluded in Section 6.
rate channel state information (CSI) may become even worse
when applying space time signal processing as e.g. beam- 2. SYSTEM MODEL
forming [5] or Alamouti [6, 7].

In order to refine the accuracy of channel estimates withThroughout the paper boldface lowercase letter denote col-
out increasing the training overhead, numerous semibliad Cumn vectors, boldface uppercase letters denote matricks an
methods have been proposed, e.g. [8]. Also noncohererd spdg is the identity matrix of sizé/ x M. The superscriptT™
time coding has been introduced in [9, 10], where the channakands for transpose and™ for Hermitian (conjugate trans-
need not to be explicitly identified. However, most of thesepose). ve¢A) stacks the columns &k in a column vectorp
approaches require a high computational effort or suffanfr is the Kronecker product operatdjA || » denotes the Frobe-

a performance degradation and, thus, are not capable for pranius norm and| A ||, the L2-norm of a matrixA..
tical applications. We consider a MIMO communication link with/ re-

These arguments motivate the need of more advanced teckive andV transmit antennas. L& € CN*X pe the matrix
nigues for pilot assisted CE. In [11, 12] the issue of optimunof transmitted pilot symbols of lengti > N with
pilot constellations in terms of a minimum mean squarederroE{[S]fhk} = 1 is the mean power per symbol. Without loss of



generality we consider an orthogonal pilot design,$8 =  In contrast to parametric methods the Bayesian approaatstre
K1y (Orthogonal pilot design has been shown to be optithe desired parameters as random variable with a-priowwkno
mum for uncorrelated MIMO channels [11,12]. In fact this statistics. Clearly, the a-priori PDF of the chanpéh) is as-

is not necessarily true for correlated MIMO channels.). Thesumed to be perfectly known at the receiver. Thus, we may
received signal is given by find a Bayesian estimator by incorporatipgh) in (6). The
obtained estimator is optimum in the sense of the maximum
a-posteriori (MAP) criterion. The Bayesian approach can be
expressed by

R=HS+V, (1)

whereH € CM*¥ s the channel matrix whose entrid¥],,, ,,
characterize the transmission path from thth transmit an- R -
tenna to then-th receive antenna aid € CM* X is additive hp,y, = argmaxp(h|r,S)
white identically independently distributed (i.i.d.) sei of "

mean powetE{|[V],..x|>} = o2. The channel coefficients = argmaxp(h)p(r|h, S)

e

are assumed to be random variables characterized by = (KLyy +02(®:7 @ ®51)"'8"r. (8)

H =& Hyd: @) ®

where[Hw]n» € CN(0,1)Vm =1,--- ,M; n=1,--- ,N Note that® has only Kronecker structure (i.e. can be ex-
isi.i.d. and®g and®r denote the spatial correlation matrix pressed in terms oA” ® B) if either the transmit or the
at receiver and tr:_:msmitter, res_pectively. _ receive correlation matribr and ®, respectively, is an
In order to derive the Bayesian channel estimator we rewrjgntity matrix. Otherwise Eq8) cannot be converted into

Eq. (1) as ) a compact matrix form similar to (7). In fact, due to matrix
r=Sh+v, (3) inversion of dimensio/ N x M N the computational costs

wherer = vec(R), v = vec(V), h = vec(H) andS = of the Bayesian approach for doubly correlated MIMO chan-

ST © I,; with “®” denoting the Kronecker product The nels are of orde@((MN)3) which significantly exceeds the
probability density function (PDF) of the channel is given b numerical effort required for BLUE.

exp (—h#(®;" ® &3")h)

p(h) = —7% M N
i (det @) (det Br) @ 4. FIX POINT ALGORITHM
exp (|05 HE L ? )
~ TMN (et &) M (det )N In this section we derive a class of fixpoint algorithms for

- Bayesian channel estimation. First, the non-regularized fi
and the likelihood to obtain under the condition th&8 was  point algorithm (NRFA) is presented in Section 4.1. Althbug
transmitted over the channklis given by NRFA is not reasonable for practical application due to & lac
exp (_(r _ Sh)H(r— Sh)/a,?,) of convergence, it is the basis for the fixpoint approaches

p(r|h,S) = — (5) presented in the subsequent sections. In order to guarantee
(mo3) general convergence we introduce the concept of regulariza
tion. The “linearly regularized fixpoint algorithm” (LRFA$
3. PARAMETRIC AND BAYESIAN CHANNEL presented in section Section 4.2 and an alternative approac
ESTIMATION named as “projectively regularized fixpoint algorithm” (PR

] o is presented in Section 4.3. Since the two regularized ap-
In common literature (e.g. [17]) estimation methods are<la proaches LRFA and PRFA provide opposite benefits, in Sec-

parametric approach is the best linear unbiased estimator  reqylarized fixpoint algorithm” (LPRFA) is proposed.
(BLUE) which is often referred to as least squares channel

estimation. It is readily known that BLUE satisfies the maxi-
mum likelihood (ML) criterion, i.e.
) 4.1. NRFA
h = argmaxp(r|/h,S) = —Sfr 6
PLUE B plrlh,S) K ©) Left multiplying (8) by®/K we obtain
which is equivalent to

. o2 R 1
2 1 S -1 _lgn
HpLue = ERSH. (7) hpay + K (@r" ® g )hpay KS r o
- 14 o A
INote that ve¢ABC) = (CT ® A) - vec(B). =hp,y = ESHI. _ ?((I)TT ® (I)Rl)hBay-



In contrast to (8) this expression can be converted into con
pact matrix form by

2
_ %

K
2

2 90 & —11 -1
= Hprue — EUQ’R Hp., @1,

A 1 1 —
Hp,y = ERSH r Hp, @'

(10)

f(I:IBay)

where the r.h.s. can be expressed as function of the desir
channel impulse respon#. Apparently, the MAP-solution

fIBay is a fixpoint of this function (i.e. a point that is mapped
onto itself by the function). On the basis of this expressior
we deduce the fix point Algorithm 1. The numerical costs of

Algorithmus 1 Fix Point Algorithm
1:

initialize Hy = 0 andi = 0

2: repeat

3. calculateH, ,, = f(H,)

4: seti=1+1

5. until |[H; — H;_||% < threshold

(@) (b)
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Fig. 1. Convergence behavior of NRFA at (B\grra < 1
und (b)LNRFA > 1.

The Lipschitz constant of (H) can be calculated by

o I (Ha) — f()>

Lxgrpa = ma < 5
.0, [[He —Hyll2
2 -1 _ P —1
max ﬁ”q’R (Ian I:Ib>(I)T ll2 (13)
i, 01, K [Ho — Hyll2
o2

v

- ’
K)\min,T)\min,R

where A\pin, 7 and Apin, g are the minimum eigenvalues of

one iteration are given b(N® + M?) due to the inversion g, and @y, respectively. Apparently, the convergence be-
of &g and®r. Thus, compared to (8) even with a moderateayior of NRFA becomes crucial at low SNR and when the

number of iterations the computational complexity is signi - channel is strongly correlated. As illustrated in Fig. 1\eem

cantly reduced. Note that the result of the firstiteralibnis  gence can be guaranteed as longfagea (EI) is within the

identical to the BLUE solution. In order to explore the CON-gray colored region, whereas otherwise NRFA diverges. Note

vergence behavior of NRFA, we recapitulate some commo
results of functional analysis [18]:

Definition: Let f : X — Y be a function defined on
a metric space. Then this function is said to be Lipschitz
continuous in the subset C X if there exist a nonnegative
real number such that for each, b € Z the condition
1f(a) = fO)lly < Llla—blx (11)

holds. The smallest valuesatisfying (11) is called Lipschitz-
constant.

Banachs fixpoint theoremA function f : X — X has
exactly one fixpoinyf (z~,) = z ifitis Lipschitz continuous
in X and the corresponding Lipschitz constankis: 1.

In fact, the valud. is also an indicator for the convergence
behavior of fixpoint algorithms. By replacing(x,,—1) =
Zn and f(zo) = xs in (11) it can easily be seen that the
progress per iteration is lower bounded by

[Zn—1 — Tool| < Ll|on — Too|- (12)

fthat the intersection ofNRFA(fI) and the y-axis is always at
£(0) = Hppug independently fronLxgpa.

4.2. LRFA

The main idea behind regularizationis to replaéﬁ) in (10)

by a function which is as close as possible to the originatfun
tion while its Lipschitz constant is bounded by a predefined
valueL, < 1. Such a linear regularized function is given by

2
%

fupra(H) = Hprug — a Ié RH®! (14)
re Ik
a = min (1, 0_02 )\min,T)\min,R) (15)

is a reel nonnegative parameter ensutingra < Lo. Note,

that while the regularization is active, i.e < 1, the fix point
Hrgrpa = f(Hprpa) is shifted by a small fraction from the
desired valuég,, towardsHpyug. An illustration of this
effect is shown in Fig. 2. Thus, by adjustidg properly we

may trade off between performance and convergence speed.
However, the worst case parameter= 0 still delivers the

As a consequence, general convergence can be guaranteedBatUE solution. A drawback of LRFA is that if either the

L <1.

transmit or the receive correlation matrix is rank deficient



\ fLrra (FI)
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Fig. 2. Convergence behavior of linear regularized fixpoint

algorithm.

Amin, T = 0 0N Apinr = 0, due toa = 0 it always delivers
the BLUE solution.

and the pseudo inverse of the rank reduced correlation-matri
ces

I
Pr=>_ Auu und Y = Z ARVIVS
whereu; andv; are thei-th column ofU corresponding to
the eigenvalue\; r and, respectively, thg-th column ofV
corresponding to the eigenvaldgr. Each eigen-component
according to(¢,j) > (I,J) is removed from the instanta-
neous channel estimate by right and left multiplying (10) by
Q; r andQ, ;. Thus, the PRFA is obtained by

ferea (H) = Qyr(HprLug — —‘I’ 'He . H)Qrr
; (17)
ag;
= Q rHBLUEQ! T — I; iny H<I>““"
The Lipschitz-constant oprFA( ) is given by
o2 o2

L = v < v . 18
PREA KArr, 2 7R — K Amin, T) Amin,R (18)

In order to determine appropriate dimensi¢isJ) we pro-
pose to solve following optimization problem: Chodge.J)
such that the energy (variance) of participating chanmerei
components in (17) becomes maximum under the condition

4.3. PRFA Lonus < Lo, i.e.

In contrast to the previously discussed LRFA this method is I J 9

also able to deal with rank deficient correlation matricea in (I, J) = arg maxz Z AiTAjR St ArrAjR > —— T

smart way. Implying the singular value decompositions LI == K(LO)
19

&1 = UATU? and®r = VARVH

the PDF of the channel given in (4) can be rewritten by
p(H) o exp(—|| @ * H®[|7)
= exp(—|VAR HAL U 3)
= i PA A ),
i,j

(16)

whereH = VHHU is the rotated channel matrix whose

As it will be shown in section 5 PRFA is superior to LRFA
when the channel is very strongly correlated. Conversely,
PRFA is not robust in the sense that its worst case estimate
is bounded byH g1y .

4.4. LPRFA

Merging the regularization techniques applied in LRFA and
PRFA we obtain the LPRFA which is defined by the function

2

entriesh; ; are independently distributed and subsequentlyrhe parameter

called the(s, j)-th eigen-component of the channel.
(16) follows that the product of the eigenvalugsr A, r cor-
responds to the variancef ;. Hence, when,; )\, r is very

From

frerea(H) = QurHMLQr T — ar, ]—v‘i’ H<I>mv
(20)
LoK
ar,; = min (17 —02 >\I,T>\J,R) (21)

small the contribution of the corresponding eigen-compone is upper bounding the Lipschitz constditprra to Lo. Ap-

h; ; can be neglected for channel estimation. Since even thogiopriate values fo(/, J) can be found by minimizing the
eigen-components are responsible for the bad convergengean squared error between true and estimated channel (see
behavior of NRFA, it seems to be evident to eliminate themAppendix), i.e.

from the fixpoint iteration. Therefore, we define the projec-

tion matrices

I J
H H
QI,T = E u;u; und QJ,R = E vjV]
=1

j=1

(I,J) = argmipE <||H — Hyprra(l, j)HQF) (22)
Nk = (1= 2a; ) BN A3
L - — 201 ) EIN
—argmaggzz TAj,R (.1;(2 T jR
I,J i=1 j—1 (AZTA‘]R+ ff?)2



5. NUMERICAL RESULTS close to that of the ideal MAP solution at comparatively low
computational complexity.
In the simulations we modeled the transmit and receive cor- .
relation matrix by Appendix

The mean squared error (MSE) between true and estimated

[m—mn| [m—mn|
[®1]mn = P and  [®rlma =, 5 (23 channel for LPRFA can be analytically calculated by

respectively, where the coefficieris< pr, pr < 1 deter- N .
min% the d?e/gree of correlation. All cur\//)es?n Fig. 3 are plot- E (”H — Hrprra (!, J)”%) =E (Hh — hrprea(/, J>H§)
ted over the receive correlation in the rarge < pr < 1, —tr E (hhH )

whereas the transmit correlation was kept constaptrat

0.3. Note that the correlation matri®g equals to identity 2 .

if pr = 0 whereas it tends to be the all-ones matrix fgr Oy =inv - -
be/i)ng close to one. In fact, the fully correlated cazs&/ﬁ@f T (QI ’(IMN o "> E (hBLUEhBLUE))
is not covered within the simulations since th@f, is sin-
gular. Fig. 3 (a), (c) and (e) illustrate the influence of the
correlation on the normalized mean squared error (NMSE)

tr®=MN

(7',2
P+ 2Ivun

o2 A\ -
—QUWR{QLJ(IMN“+GLJ—2@?Z) E(hhgﬁm)}
N———

E{|H - H||%}/E{|H||%} of LRFA, PRFA and LPRFA, re- K

spectively, at 12 dB SNR. For the reason of comparability P4

the NMSE curves of BLUE, the ideal Bayesian approach and I J An— (1—2a >ﬁ>)\2 22
NRFA are plotted in each of these figures. Obviously, the — 5/ ZZ AT Aj R LJ LTTGR
NMSE performance of BLUE is not affected by correlations, i1 =1 (AT AR F a1, g7 )2

whereas especially in case of strong correlations the Bayes (24)

estimator considerably benefits from the pre-knowledge on

the transmit and receive correlation matrix. Due to thedéct whereQ;; = Q7 1 ® Q g, ® = @1 ® P and PPy =
being the MAP estimator the Bayesian estimator displays thgq,mv ® <I>”“’ Note that by setting; ; = 1 the MSE of
lowest attainable NMSE-values and may, therefore, serve srra, and by settmg N and.J = M the MSE of LRFA
reference. The NRFA works very well up to the point at ap-is gbtained.

proximatelypr = 0.8, where the Lipschitz constant exceeds
the admissible range. Beyond this threshold NRFA diverges.
General convergence is attained by each of the regularized fi
point algorithms. LRFA is robust in the sense that its NMSE
performance is lower bounded by BLUE and it is monoton-
ically increasing for growingr. Nevertheless, the gap be-
tween the ideal Baysian approach and LRFA becomes large
at pr close to one. Conversely, an abrupt performance degraIz] B. Hassibi, and B. M. Hochwalddow Much Training
dation can be observed for PRFA whenever a channel eigen- ~ is Needed in Multiple-Antenna Wireless Link$REE
component is faded out, whereas PRFA clearly outperforms  ransactions on Information Theory, Vol. 49, No. 4,
LRFA for very strong correlations. LPRFA shows excellent pp. 951-5963, April, 2003.

performance over the whole range. The effecgfon the

computational complexity in terms of the number of required [3] H. Vikalo, B. Hassibi, B. M. Hochwald and T. Kailath.
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