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Abstract— In this paper we present a composite algorithm
for blind sequence estimation in frequency selective multiple-
input multiple-output systems. The proposed algorithm combines
methods based on second and higher order statistics with a
trellis-based approach. Moreover, the computational complexity
of the presented method can be reduced by pre-processing the
observed data with a blindly designed linear impulse shortening
filter. As verified by simulations low computational effort has not
necessarily led to a deterioration of performance.

I. I NTRODUCTION

Due to its high data throughput with relatively low band-
width consumption the research onMultiple Input Multiple
Output (MIMO) systems has become popular in the recent
years [1]. However, due to the high number of coefficients
characterizing the MIMO channel the issue of channel es-
timation has emerged as one of the bottlenecks in coherent
MIMO transmission. Hence, a large amount of pilot symbols is
required for accurate MIMO channel estimates. The situation
becomes more crucial if the channel is frequency selective and
varies rapidly over time. Hassibi and Hochwald have shown
that from the information theoretic point of view purely pilot
assisted channel estimation may be highly suboptimal [2].

The use of pilot symbols can be avoided by applying blind
channel estimation methods at the receiver. Depending on
the degree of knowledge concerning the distribution of the
data source we may distinguish different classes of blind
identification approaches. The lowest level of knowledge is
required by statistical methods utilizing either second or
higher order statistical properties of the source, e.g. [3], [4],
[5], [6]. Second Order Statistics (SOS) methods are only
capable to determine the freq. select. MIMO channel up to
an instantaneous indeterminacy, whereas the remaining spatial
mixture can only be separated by usingHigher Order Statistics
(HOS) methods. Considering the finite signal alphabet (and,
thus, the knowledge of the source probability distributionat
the receiver) we may adopt trellis based methods for joint
channel estimation and data detection. In [7] it was proposed
to embed an LMS adaptation of the unknown channel within
the calculation of each branch metric inJoint Viterbi Detection
(JVD). In single-input single-output systems JVD/LMS has
shown considerable performance even when starting from zero

Channel State Information (CSI). This method still works well
in freq. select. MIMO environments if it is properly initialized,
whereas it may get stuck in some local optimum without
initial channel estimates. However, the computational effort of
Viterbi detection in freq. select. MIMO systems may become
very high and it might be desirable to decrease this effort by
some sort of pre-processing as e.g. linear impulse shortening
techniques.

In this paper we combine statistical methods with the
JVD/LMS algorithm. This approach is promising since on the
one hand side an appropriate starting point for JVD/LMS may
be provided by SOS and HOS methods and on the other hand
side the computational complexity may be kept low by blindly
adapting a linear impulse shortening filter on the basis of SOS
channel estimates.

II. CHANNEL MODEL

We consider a frequency selective MIMO system with
NT transmit andNR receive antennas. Using the equivalent
baseband representation at symbol clock the channel outputat
discrete time instancek can be expressed as

r(k) =

LH−1∑

ℓ=0

H(ℓ)b(k − ℓ) + n(k), (1)

whereH(ℓ) ∀ ℓ = 0, · · · , LH − 1 is a (NR × NT)-matrix
characterizing the frequency selective MIMO channel with
maximum delay ofLH symbol periods,b(k) is the channel
input at time instancek according to theNT transmit antennas,
and the lengthNR vectorn(k) is zero mean white gaussian
noise with varianceE

{
n(k)nH(k)

}
= σ2

nINR
. The channel

input b(k) is composed of a finite alphabetA, e.g. M -
PSK or M -QAM and assumed to be identically independent
distributed (i.i.d.) in space and time. The channel is assumed
to be constant overK + LH − 1 consecutive symbol periods
(block fading).

We define theG-extension of a time dependent vector
b(k) by bG(k) = [bT (k), · · · ,bT (k − G + 1)]T and the
G-convolutional extension of a freq. select. impulse response
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Fig. 1. Block diagram of the blind detection scheme

matrix H(ℓ) by theGNR × (G + LH − 1)NT matrix

HG =






H(0) · · · H(LH − 1)
. . .

. . .
H(0) · · · H(LH − 1)




 ,

where the usage of the subscript and the calligraphic letteris
a notational convention within this paper.

By the above definitions we may compactly rewrite theG

extension of (1) as

rG(k) = HGbG+LH−1(k) + nG(k). (2)

III. M ETHODS FORBLIND MIMO ESTIMATION

A. Preliminaries

Our aim is to recover the completely unknown source signal
only from the channel output without having any particular
knowledge on the frequency selective MIMO channel.

A general restriction of blind multichannel identification
is that the sources can only be recovered up to a complex
scaling and a permutation. The complex scaling ambiguity
may be reduced by exploiting the finite alphabet character
of the alphabet. Thus, we call anyz(k) to be a proper data
estimate, if its elements are from the set of admissible symbols
A and if it is related to the actual source by

z(k) = Pb(k − k0), (3)

whereP is an unknownNT × NT containing only one non-
zero element per each column and row andk0 is an arbitrary
delay.

As mentioned above SOS methods are only able to identify
the freq. select. channel up to instantaneous indeterminacy. In
order to distinguish between the parts of the channel, estimated
by SOS and HOS methods, we introduce the decomposition

H(ℓ) = T(ℓ)SP ∀ ℓ = 0, · · · , LH − 1 (4)

whereT(ℓ) ∀ ℓ = 0, · · · , LH − 1 is a NR × NT matrix and
and S is a NT × NT matrix not depending on the temporal
parameterℓ.

B. Receiver Structure

The considered receiver structure is illustrated in Fig. 1.The
essential part of signal detection is done in theupper branch
consisting of the impulse shortening filter IS-1 with impulse
responseE(ℓ) and the JVD/LMS. The impulse shortening

filter IS-1 is intended for reducing the effective channel to
a selectable lengthLV, where V(ℓ) is the reduced length
impulse response of the concatenation of the channelH(ℓ)
and the filterE(ℓ).

The required temporal characteristics of the unknown chan-
nel T(ℓ) is provided by the SOS-channel estimator (SOS) in
the mean branch.

Since the JVD/LMS requires some initial channel esti-
mates, we also have to identify the remaining spatial channel
componentS (up to a permutation and a complex scaling),
which is done in thelower branch. Therefore, the impulse
shortening filter IS-2 with impulse responseF(ℓ) is employed
first, which in contrast to IS-1 is aimed at completely removing
the InterSymbol Interference (ISI) from the observed signal.
The ISI-free signaly(k) is fed to the HOS channel estimator
(HOS) identifying the remaining spatial part of the channel.
Finally, the spatial and temporal channel estimates and the
impulse shortening filter has to be combined (Comb.) in order
to obtain an initial estimate of the reduced length channelV̂(ℓ)
for JVD/LMS.

Next, we will give a brief overview of the algorithms behind
each constituent block in Figure 1.

C. SOS

Herein, we will give a brief description of the subspace
approach for identification of MIMO systems developed by
Meraim etc. [3]. This algorithm deals with determining an ap-
propriate representation of the temporal channel characteristics
T(ℓ) according to (4).

In consideration of the extended system model (2) the
covariance matrix of the observation is given by

ΦG = E
{
rG(k)rH

G (k)
}

= HGH
H
G + σ2

nINT·M . (5)

If the size of the observation windowG is sufficiently large,
i.e.

G >
NT(LH − 1)

NR − NT
(6)

(the number of rows inHG is larger than the number of
columns) andHG has full column rank1, we may find an
orthogonal basis of the subspace spanned by the columns of
HG as well as a basis of the corresponding null space by
singular value decomposition (SVD) ofΦG. Note that (6)
does only have a finite solution ifNR > NT. The SVD of
the covariance matrix is given by

ΦG = [US UN]

[
Λ + σ2

nIS 0

0 σ2
nIN

] [
UH

S

UH
N

]

, (7)

whereΛ is a diagonal matrix containing the non-zero eigen-
values ofHGH

H
G on its main diagonal, the columns ofUS

and UN are the eigenvectors spanning the signal and noise
space, respectively.S = NT · (M + LH − 1) and N =
NR · M − NT · (M + LH − 1) are the dimensions of signal

1Identifiability conditions for blind SOS in terms of the channels Z-
transform are extensively studied in [3].



and noise subspace, respectively. Due to the orthogonalityof
signal and noise subspace

UH
NHG = 0 (8)

holds. By definingULH
as a convolutional matrix w.r.t.

the uniformly partitioned noise space matrixUN =
[UH(0), · · · ,UH(G − 1)]H we may rearrange (8) as

UH
LH






H(0)
...

H(LH − 1)




 = 0. (9)

Thus, if ULH
has full row rank, we may find an admissible

representation of the temporal channel characteristics bydeter-
mining a basis of the right null space ofUH

LH
in accordance to

(4), e.g.T = [TT (0), · · · ,TT (LH−1)]T satisfyingUH
LH

T =
0. The main steps of the subspace approach are summarized
in Table 1.

Algorithm 1 Blind SOS Channel Estimation
1: Estimate the covariance matricesΦG

2: Find an orthogonal basisUN of the noise subspace by
SVD on ΦG

3: RearrangeUN to ULH

4: EstimateT(ℓ) by determining the right null space ofULH

D. Impulse Shortening

In the previous section we have discussed a method for
estimation estimate of the temporal channel characteristics
T(ℓ) without using pilots symbols. SubstitutingT(ℓ)S =
H(ℓ) we may rewrite (1) as

r(k) =

LH−1∑

ℓ=0

T(ℓ)Sb(k − ℓ)
︸ ︷︷ ︸

x(k−ℓ)

+n(k). (10)

Considering a Rayleigh block fading channel model, we might
assume an i.i.d. character of the coefficients of the spatial
componentS, i.e. E

{
SSH

}
= INT

. Thus, knowingTG the
covariance matrix can be expressed as

ΦG = TGT
H

G + σ2
nINT·M . (11)

Given this knowledge our aim is to design a linear filterE(ℓ)
of lengthLE such that the concatenation of filter and channel
∑

ℓ′ E(ℓ′)T(ℓ−ℓ′) has less effective memory than the channel
itself. Due to the lack of space in this section we only discuss
the general principle of linear space-time impulse shortening
without gdetailed discussion. A comprehensive overview in
this field can be found in [8] and a detailed derivation of the
herein proposed impulse shortening technique is given in [9].

Let

V(ℓ) =
∑

ℓ′

E(ℓ′)T(ℓ − ℓ′ + k0) ∀ 0 ≤ ℓ < LV (12)

be the reduced length target impulse response (TIR) param-
eterized by its lengthLV < LH, an arbitrary delay ofk0

symbol periods, and the number of parallel outputs, which
we fixed toNT for the sake of convenience. Given the above
parameters the TIRV(ℓ) still has several degrees of freedom.
The ability ofE(ℓ) to maximize the totalSignal to Interference
and Noise Ratio (SINR) at the equalizer output significantly
depends on the realization ofV(ℓ). Thus, we have to optimize
E(ℓ) andV(ℓ) in parallel. We may seek to completely remove
ISI choosingLV = 1. However, better results in terms of
SINR might be obtained by only partially removing the ISI
as done in case ofLV > 1. Thus, the output of TIR can be
used as reference while defining the error between reference
and the equalizer output by

ǫ(k) = E1rLE
(k) − V1xLV

(k − k0). (13)

In terms of minimum mean squared error (MMSE) our goal
is to determine the pair

(E1,V1) = arg min
E1,V1

E
{
ǫ

H(k)ǫ(k)
}

s.t. V1V
H
1 = INT

. (14)

The orthogonality constraint (ONC) in (14) was introduced,in
order to avoid the trivial solutionE1 = 0. Indeed, also other
constraints were proposed in past [8], though ONC seems to
be the most reasonable choice in regard to SINR. Substituting
(13) after little algebra the squared mean error in (14) can be
expressed as

E
{
ǫ

H(k)ǫ(k)
}

= ‖(E1ΦLE
− V1∆k0

T H
G )Φ

−1/2
LE

‖2
F (15)

+ ‖V1∆k0
(T H

LE
TLE

+ σ2
nINT·LE

)−1∆H
k0
VH

1 ‖2
F ,

where∆k0
= [0LVNT×k0NT

ILVNT
0LVNT×δNT

]2. Appar-
ently, the first line in (15) can be forced to zero by

E1 = V1∆k0
T H

G Φ−1
LE

, (16)

whereas the second line represents the remaining error only
depending onV1. An appropriate TIRV1 minimizing this
term subject to the ONC can be obtained by calculating the
right eigenvectors ofΘ = ∆k0

(T H
LE

TLE
+ σ2

nINT·LE
)−1∆H

k0

corresponding to theNT smallest eigenvalues. The ONC
design of the impulse shortening filter is summarized in Table
2.

Algorithm 2 ONC design of the impulse shortening
1: DetermineΘ
2: Determine an appropriate TIRV(ℓ) by EVD on Θ

3: Determine the equalizerE(ℓ) by (16)

E. HOS

Whereas the former two section have dealt with the estima-
tion and equalization of the temporal channel characteristics,
in this section we focus only on identifying the spatial part.
Starting from the decomposition (4), we have

x = Sb (17)

2δ = LE + LH − LV + k0



whereb3 is a vector withNT statistically independent random
variables as entries,S is anNT×NT invertible spatial mixing
matrix andñ is noise.

The general approach of independent component analysis
(ICA) consists of the two steps at first whitening the ob-
served signalx, e.g. x̃ = Cx with E

{
x̃x̃H

}
= INT

and
afterwards finding an unitary separation matrixA such that
the components ofy = Ax̃ are mutually independent. While
the whitening matrixC might be easily found by the inverse
Cholesky factors of the covariance matrixE

{
xxH

}
, we have

to establish a statistical measurement of the independence
for the second part of ICA. Withb being an independent
non gaussian random vector (as stated above), we call an
empirical functionf(b) to be an appropriate contrast for
ICA, if f(b) < f(Pb) is satisfied for any matrixP with
equality only if z = Pb is a permutation ofb according
to the definition in (3). In other words the contrast becomes
minimum, if there is no statistical connection among the single
elements ofz.

An efficient batch algorithm referred to asJoint Approxi-
mate Diagonalization of Eigen-matrices (JADE) was proposed
by Cardoso [5]. This method is essentially based on the fourth
order cumulant contrast

fJADE(y) =
∑

ijkl 6=iikl

|cum(yi, y
∗
j , yk, y∗

l )|2. (18)

Cumulants are statistical parameters describing the particular
distribution of random variables. The fourth order cumulant
of zero mean and symmetrically distributed random variables
(as given in our case) is defined by

cum(yi, y
∗
j , yk, y∗

l ) (19)

= E
{
yiy

∗
j yky∗

l

}
− E

{
yiy

∗
j

}
E {yky∗

l } (20)

− E {yiyk}E
{
y∗

j y∗
l

}
− E {yiy

∗
l }E

{
yky∗

j

}
. (21)

Defining the cumulant matrix

Qij = E
{
xix

∗
jxxH

}
− E

{
xix

∗
j

}
E

{
xxH

}
(22)

− E {xix}E
{
x∗

jx
H

}
− E

{
x∗

jx
}

E
{
xix

H
}

(23)

we may express the desired cumulants ofy = Ax with
A = [a1, · · · ,aNT

] being an arbitrary unitary matrix as
cum(yi, y

∗
j , yk, y∗

l ) = aH
k Qijal. Thus, the above contrast is

minimized by diagonalizing jointly the set of all cumulant
matrices{Qij|0 < i, j < NT}. A common technique for
finding those left and right multipliers jointly diagonalizing a
set of Hermitic matrices is the Jacoby algorithm. The obtained
matrixA is the desired separation matrix, whereasC−1AH =
Ŝ is an estimate of spatial mixing matrix. The steps of JADE
are summarized in 3.

F. JVD/LMS

Starting from the reduced length channel model

r(k) = W1zLW
(k) + ñ(k) (24)

3For the sake of readability we have dropped the time indexk in the
following.

Algorithm 3 JADE
1: Determine the pre-whitening matrixC by Cholesky de-

composition
2: Estimate the cumulant matrix set{Qij |0 < i, j < NT}
3: Determine the separation matrixA by jointly diagonaliz-

ing {Qij |0 < i, j < NT} via Jacoby algorithm

(a) (b)

Fig. 2. Trellis segment in JVD (a) and JVD/LMS (b)

whereW(ℓ) =
∑

ℓ′ E(ℓ′)T(ℓ − ℓ′ + k0)A, LW = LV and
ñ(k) = E1nLE

(k−k0) is white noise, the maximum likelihood
sequence estimator is given by

[ẑ(0), · · · , ẑ(K)] = arg min
∑

k

‖r(k)−W1zLW
(k)‖2. (25)

Due to the finiteness of the signal alphabet and the con-
volutional structure ofWLW

the desired sequence can be
efficiently found by trellis search techniques, e.g. the joint
Viterbi detector (JVD). In Fig. 2 (a) a segment of a trellis
diagram is illustrated.

Each branch in Fig. 2 connecting two states is associated to
a hypothesis forzLW

(k), wherezµ→ν denotes the hypothesis
corresponding to the branch from theµ-th state to theν-
th state. The standard Viterbi algorithm calculates (25) by
recursively updating the metric

mν(k) = min
µ

(mµ(k − 1) + ‖r(k) −W1zµ→ν‖
2). (26)

In order to deal with non or imperfect CSI, the JVD/LMS
approach embeds a LMS channel adaptation within the metric
calculations. As illustrated in Fig. 2 (b) the estimateV̂

(µ)
1 (k) is

assigned to theµ-th node at instancek and estimatêV(µν)
1 (k)

is assigned to the branch connecting theµ-th node at instance
k−1 and theν-th node at instancek. According to the partic-
ular node and the instancek each of the considered estimates
corresponds to a different hypothetical signal sequence. Given
the previously obtained estimatêW(µ)

1 (k−1) and the step size
∆ the LMS adaptation yields

Ŵ
(µ→ν)
1 (k) (27)

= Ŵ
(µ)
1 (k − 1) + ∆

(

r(k) − Ŵ
(µ)
1 (k − 1)zµ→ν

)

zH
µ→ν .

ReplacingV1 by the estimate the metric calculations becomes

mν(k) = min
µ

(mµ(k−1)+‖r(k)−Ŵ
(µ→ν)
1 (k)sµ→ν‖

2) (28)

and with µmin being the index minimizing (28) the channel
estimate associated to theν-th state is given by

Ŵν
1 (k) = Ŵµmin→ν

1 (k). (29)
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Fig. 3. BER vs. SNR with perfect CSI (solid line) and blind (dashed line);
system parameter: BPSK,(NR = 6 × NT = 4) MIMO channel of length
L = 3 with i.i.d. gaussian channel gains, frame lengthK = 200

The JVD/LMS algorithm consists of the following steps sum-
marized in Alg. 4.

Algorithm 4 JVD/LMS

1: Initialize mµ(0) = 0 andŴ(µ)
1 (0) (by zeros or an initial

estimate) for anyµ.
2: for k=1:K+L-1 do
3: Perform a LMS adaption of the channel estimates by

(27) for any admissible state transitionµ → ν

4: Calculate the metricmµ(k) by (28) for anyµ

5: Update channel estimates by (29)
6: end for

IV. N UMERICAL RESULTS

As already mentioned in the previous section, blind data
detection always suffers from a permutation and phase ambi-
guity. In order to fade out these effects, we have fitted the
final detection result in the best way in terms of possible
permutations and complex scalings. Figure 3 shows the frame
error rate vs. the SNR for different target impulse lengths
LV. A reference for the proposed blind algorithm is given
by the solid curves, where we presumed perfect CSI. The
dashed curves exhibit the results of the herein proposed blind
receiver. The caseLV = 1 involves that within the JVD/LMS
step instantaneous maximum likelihood detection and LMS
channel adaption alternates. Comparing the FER ofLV = 1
and LV = 2 an apparent gain by approximately 8 dB can
be observed, whereas contrary to the reference curves the
performance in case ofLV = 3 might become worse than
in case ofLV = 2. Obviously, JVD/LMS is more sensitive
to an initial channel estimation error when the considered
effective channel order is large. Therefore, the prepended
impulse shortening filter IS-1 may not only provide lower

computational complexity but also deliver better performance
in terms of FER.

V. CONCLUSION

The proposed scheme combining statistical and trellis-based
methods for equalizing and estimating blindly frequency se-
lective MIMO systems has shown considerable performance.
In fact, purely statistical methods suffer from the disregard of
the a-priori known source statistics (finite alphabet character),
whereas purely trellis-based approaches cannot be appliedin
MIMO environment without appropriate initialization. Further-
more, the computational effort consumed by Viterbi detection
can be drastically reduced by applying a blindly designed
linear impulse shortening filter. Thus, our method provides
low computational complexity as well as high quality data
estimates.
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