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Abstract

This paper deals with joint data detection and channel estimation for frequency-selective multiple-input multiple-
output (MIMO) systems with focus on the analysis of the channel estimator. First, we present a scheme alternating
between joint Viterbi detection and least squares channel estimation and analyze its performance in terms of
unbiasedness. Since in the proposed technique the channel estimator exploits both known pilot symbols (non-
blind) as well as unknown information bearing symbols (blind), this channel identification scheme is referred to as
semiblind. Second, we derive the Cramer-Rao lower bound (CRLB) for semiblind channel estimation of frequency-
selective MIMO channels, which provides a theoretical lower bound of the achievable mean squared error (MSE) of
any unbiased estimator. By simulation the MSE performance of the proposed algorithm is evaluated and compared
to the CRLB.

1 Introduction

An important obstacle for achieving the potential ca-
pacity of MIMO systems is the difficulty in acquiring
reliable channel state information. If a purely training-
based scheme is used, a large amount of training sym-
bols will be necessary for obtaining reliable estimates
of the large number of channel coefficients, which will
significantly degrade the system bandwidth efficiency.
In comparison, a semiblind channel estimator (SBCE)
tries to extract the channel information carried by all
observations, and is able to achieve very low MSE with
using just a few training symbols. Due to its amazing
performance, SBCE has recently attracted increasing
attentions. Simulation results of such type of channel
estimators can be found in a number of papers [1]-[4],
but detailed theoretical analysis is still not sufficient,
especially for FIR-MIMO channels.

In this paper, we try to give a thorough analysis of
SBCE with focus on the MSE performance. We con-
sider block-fading frequency-selective MIMO channels.
The obtained results are universal for systems with an
arbitrary number of antennas and an arbitrary channel
memory length. As an example, a SBCE algorithm
with least squares channel estimator and maximum
likelihood data detector will be first introduced and
analyzed. It will be shown that the presented semiblind
channel estimator is biased at low SNR but tends to be
unbiased at high SNR. Please note that this statement
is also true if the system adopts a linear data detector
or even a successive data detector. Since the estimator
is unbiased at high SNR, its MSE performance will
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be limited by the CRLB. Scherb et al. derived the
CRLB for SBCE in the case of single-input single-
output (SISO) systems, while in this paper we ex-
tend the derivation to the case of frequency-selective
MIMO systems. As the obtained analytical expression
of CRLB involves high order integration, we provide
reasonable approximations for low SNR and high SNR,
respectively. Interestingly but reasonably, the minimum
mean squared error achievable by any unbiased channel
estimator at high SNR will be the same as that all
data symbols are a-priori known at the receiver, but
only the training symbols are known at low SNR. We
thereafter provide simulation results to show that the
MSE performance of the presented SBCE coincides
with the CRLB at high SNR but exceeds CRLB at low
SNR due to biasing. Of particular interest is the SNR
value where a semiblind channel estimator begin to
approach the CRLB, which means that a SBCE will be
able to fully exploit the channel information carried by
all observations for SNRs larger than this value. Under
this motivation, we derive an analytical expression for
determining this SNR value.

The rest of this paper is organized as follows. In
Sec. 2, a general MIMO channel model is illustrated.
Sec. 3 describes a practical SBCE algorithm, while
Sec. 4 concentrates on the derivation of the CRLB for
SBCE. In Sec. 5, numerical results are compared with
the theoretical bounds, and detailed performance anal-
ysis is provided. Finally, Sec. 6 gives the conclusion.

Throughout this paper, we use (·)H to denote Hermi-
tian conjugate. tr{·} denotes the trace of a matrix. ⊗ is
the Kronecker product operator, and vec{·} is the col-
umn stacking operator, with vec{A} = [aT

1 , · · · , aT
N ]T ,

where A = [a1, . . . , aN ] is an M × N matrix.
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Fig. 1. Burst structure, NT = 2, L = 2

2 Channel Model
The equivalent discrete-time model of a frequency-
selective (NR × NT)-MIMO channel (including trans-
mit and receive filter, physical channel and baud-rate
sampling) is given by

r(k) =

L∑

l=0

H(l)s(k − l) + n(k), (1)

where k is the discrete time index, and s(k) ∈ CNT×1

denotes the symbol vector. The channel output vector
is given by r(k) ∈ CNR×1 and n(k) ∈ CNR×1 is a
complex zero-mean white Gaussian noise vector with
covariance E{n(k)nH(k)} = σ2

nINR . The frequency-
selective channel H(l) ∈ C

NR×NT has order L and is
assumed to be constant over K symbol periods (block
fading). Hence, the transmission of K consecutive
symbol vectors can be compactly rewritten as

R = HS + N, (2)

where R = [r(0), · · · , r(K + L − 1)], H =
[H(0), · · · ,H(L)] and N = [n(0), · · · ,n(K +L−1)].
The matrix S is of block Toeplitz form, i.e.

S =



s(0) · · · s(K − 1) 0

. . .
. . .

0 s(0) · · · s(K − 1)


 . (3)

Given the burst structure shown in Fig. 1, the symbol
matrix may be written as a horizontal concatenation of
two sub-blocks

S = [ST,SI], (4)

where ST contains training symbols only, while SI

contains data symbols and several training symbols
due to the Toeplitz structure of S. Correspondingly,
the channel output can also be written as a horizontal
concatenation

R = [RT,RI] = [HST + NT,HSI + NI]. (5)

This notation is given to ease the tasks of algorithm
description and performance analysis.

3 Semiblind Channel Estimation
In comparison with traditional algorithms, a SBCE
utilizes not only the training but also the data symbols
to perform channel estimation. Since the data symbols
are unknown at the receiver, data detection becomes a

necessary step. Borrowing ideas from Turbo decoding,
the procedure of SBCE can be done iteratively:

1) Initial training-based channel estimation;
2) Given channel knowledge, detect data symbols;
3) Given data knowledge, perform channel estima-

tion by taking the whole block as virtual training;
4) Repeat step 2 and step 3 until a certain stopping

criterion is reached.
In the following, the issue of data detection and channel
estimation for MIMO systems will be tackled respec-
tively, and then an analysis on the biasing is provided.

3.1 Joint Viterbi Detection
Given perfect channel knowledge, the optimal data
detector for a MIMO system in the sense of the
ML criterion is so called joint Viterbi detector (JVD)
[5][6], which searches for the most likely data sequence
according to the following formula:

Ŝ = arg min
eS∈S

{
‖R−HS̃‖2

F

}
. (6)

JVD is an extension of the well-known trellis-based
data detector for SISO systems to the case of MIMO
systems, and delivers better performance compared to
linear algorithms, such as zero-forcing and minimum
mean squared error. Due to its non-linear property,
there is no requirements on the relationship between
NR and NT, that is the number of receive antennas
is allowed to be less than the number of transmit
antennas. However, JVD suffers from exponentially
growing complexity w.r.t. NT(L + 1) and hence often
becomes computationally prohibitive in practice. Since
in this paper we focus on the analysis of theoretical
MSE bounds, JVD will be used as the data detector for
the sake of easy analysis and clearity.

3.2 Least Squares Channel Estimation
A least squares (LS) channel estimator minimizes the
distance between the channel output and its noiseless
hypotheses, written as

Ĥ = arg min
eH∈H

{
‖R− H̃S‖2

F

}

= RS
H
(
SS

H
)−1

, (7)

which in turn maximizes the likelihood function
p(R|H̃,S), and is often also called ML channel es-
timator. For SBCE, the initial channel estimation is
performed over the training only:

Ĥ = RTS
H
T

(
STS

H
T

)−1
, (8)

while in later iterations, the knowledge of data symbols
will also be utilized:

Ĥ = RŜ
H
(
ŜŜ

H
)−1

, (9)

with Ŝ = [ST, ŜI]. If the number of symbol errors in
ŜI is small enough, (9) will hopefully produce a better
channel estimate than (8).



3.3 On the Bias of SBCE

It is easy to find that (8) always delivers unbiased
channel estimates, while it remains to be an interesting
question whether Ĥ in (9) is biased or not. Considering
sufficient large block lengths, the following assumption

ŜŜ
H ≈ KINT(L+1) (10)

should be valid. Then we may approximate (9) by

Ĥ ≈
1

K
RŜ

H

=
1

K
[HST + NT,HSI + NI][ST, ŜI]

H (11)

=
1

K

(
H(STS

H
T + SIŜ

H
I ) + NTS

H
T + NIŜ

H
I

)
.

Given optimal training [7], and letting Ps denote the
symbol error rate at the output of the data detector, we
have

STS
H
T

= KTINT(L+1) (12)

E
{
SIŜ

H
I

}
= (1 − 2Ps)KIINT(L+1). (13)

Let EI = ŜI−SI denote the symbol estimation errors.
The mean value of Ĥ can now be written as

E
{
Ĥ
}
≈

KT + (1 − 2Ps)KI

K
H +

E{NIE
H
I }

K
, (14)

where the right-most term indicates the correlation
between the noise and the symbol estimation errors.
It is clear that Ĥ tends to be unbiased for very high
SNR, because both Ps and EI will become zero, while
at low SNR it is biased by a positive real scaling factor
and by an additive noise-error cross correlation matrix.
Contrary to the statements in [8], E{NIE

H
I } should not

be assumed to be zero, since the noise is exactly the
cause of data detection errors. This statement will be
attested by the numerical results provided in Sec. 5.

4 Cramer-Rao Lower Bound

As the presented SBCE is unbiased at high SNR, its
MSE performance will be limited by the well-known
CRLB. In the following we give a brief overview on
the main results of [9] dealing with the CRLB for
semiblind channel estimation. Due to the lack of space
we do not repeat any derivation within this paper.
The interested reader may find details in the above
mentioned reference. Although [9] deals with SISO
systems, a generalization to MIMO systems is straight
forward by employing the vectorized channel model:

r
H = h

H
S + n

H , (15)

where r = vec(RH), h = vec(HH), S = INR ⊗S and
n = vec(NH).

4.1 Preliminaries

The set S is defined as a finite set over all possible
realizations of S, where Si is the i-th element of S.
Let M be the amount of binary information carried by
S, which depends on modulation index, block length
and number of transmit antennas. Then the cardinality
of S is given by |S| = 2M . Each element Si ∈ S is
assumed to be equally probable with

p(S) =
1

|S|
. (16)

In order to obtain a validated statement by the CRLB,
it has to be guaranteed that the estimation problem has
an unique solution for all Si ∈ S. For this reason a
necessary condition is that

h
H
Si 6= h

H
Sj ∀ Si 6= Sj , (17)

which in turn means that h 6= 0 and Si has to be full
row rank. Considering a proper choice of pilots, the full
rank requirement can be always satisfied.

4.2 Derivation of the CRLB

The CRLB can be stated as follows: Let ĥ be an
unbiased estimator of the channel parameter h and

C
ĥ

= E{(h− ĥ)(h − ĥ)H} (18)

be the covariance of the estimator. Then the covariance
matrix of any unbiased estimator satisfies

C
ĥ
− F

−1 ≥ 0, (19)

where “≥ 0” stands for positive-semidefinite, and F

is the Fisher information matrix (FIM) [10]. Since the
variance of each entry in ĥ is given by the main
diagonal of C

ĥ
, the minimum MSE obtained by any

unbiased estimator can be directly derived from the
inverse of FIM by MSEmin = tr{F−1}. The FIM for
the semiblind channel estimation problem is given by

F =
1

|S|σ2
n

· (20)

∫

C(L+K)NR

∑
Si,Sj∈S

Sidid
H
j S

H
j p(r|Si,h)p(r|Sj ,h)

∑
Si∈S

p(r|Si,h)
dr,

where

d
H
i =

r
H − h

H
Si

σn
(21)

and p(r|Si,h) is the conditional PDF to observe r

under the assumption that Si was transmitted over the
channel h.

Integration of this expression can only be done
numerically, where high accuracy requires high com-
putational effort. However, a more intuitive insight of
the CRLB is provided by asymptotical expressions of



the FIM at low and high SNR. At high SNR, namely
if σ2

n tends to zero, the FIM is given by

Fhigh =
1

|S|σ2

∑

Si∈S

SiS
H
i , (22)

whereas at low SNR, namely if σ2
n tends to infinity, the

FIM is given by

Flow =
1

|S|2σ2

∑

Si,Sj∈S

SiS
H
j . (23)

Thus, the minimum MSE of any unbiased estimator
is within the range tr(F−1

high) ≤ MSEmin ≤ tr(F−1
low).

Letting ST be the training part of S, (22) and (23) can
be further simplified to

Fhigh =
1

σ2
n

(
STS

H
T + KIINTNR(L+1)

)
. (24)

and
Flow =

1

σ2
n

STS
H
T , (25)

respectively. It is remarkable that Flow depends only on
the pilot part ST. Therefore, in the low SNR regime
the semiblind CRLB is identical to the CRLB of a
pilot aided channel estimator. In contrast, Fhigh takes
all available symbols into account. Hence, in the high
SNR regime the semiblind CRLB is close to the case
of perfectly knowing the values of each symbol at the
estimator.

4.3 Saturation Point
Of particular interest is the range of SNR values,
at which the asymptotical expressions (22) and (23)
provide sufficiently accurate approximations of the true
CRLB. Contrary to [9], in this paper we will restrict
our focus on the high SNR case, since (as shown in
Sec. 3.3) only at high SNR values the SBCE is unbiased
and, consequently, bounded by the CRLB. Note that at
low SNR the MSE performance of the SBCE may be
superior to the CRLB due to its bias.

In the following we present a SNR threshold called
“saturation point”, after which the true CRLB is suf-
ficiently close to its high SNR approximation. As
shown in [9], this threshold depends on the minimum
squared distance δmin

1 between two adjacent transmit
hypothesis defined by

δmin = min
i6=j

δi,j , (26)

where

δi,j = ‖hH(Si − Sj)‖
2 = ‖HH(Si − Sj)‖

2
F. (27)

Let a ∈ [0, 1] be a parameter quantifying the similarity
of the true CRLB to the low and high SNR approxima-
tion, where a → 1 means that the true CRLB is close
to its low SNR approximation and a → 0 means that

1Please note that the definition of δi,j and δmin differ from [9]
for the sake of readability.

the true CRLB is close to its high SNR approximation.
The SNR value, at which the true CRLB has weight a,
can be approximated by

SNRa(δmin) = −
4 log(a)

δmin
. (28)

Experience has shown that a rather good match for the
desired saturation point can be found by setting a =
0.05 in (28).

For stochastic channel models δmin is a random vari-
able depending on the momentary channel realization.
In this case the mean of δmin given by

δ̄min = E{δmin} (29)

may be taken for further analysis. As derived in Ap-
pendix A, an upper limit and also an accurate ap-
proximation of δ̄min for complex Gaussian frequency-
selective MIMO channels of length Q = L + 1 (each
channel gain is i.i.d. with hm,n(l) ∼ CN (0, 1/Q)) is
given by

δ̄min =
wNT

Q

∫ ∞

0

e−δδQNR [Γ(QNR, δ)]NT−1

[(QNR − 1)!]NT
dδ,

(30)
where w is the minimum squared distance between two
admissible data symbols and Γ(a, b) is the incomplete
gamma function defined in Appendix A. In case of
BPSK mapping the minimum squared distance is w =
4. Please note that (30) does not hold for channel
coding and space-time coding, which may have an
enormous effect on δmin and, consequently, may shift
the saturation point to significantly lower SNR values.
Eq. (30) is analytically solvable, but the solution may
become rather complex for high numbers of receive
and transmit antennas and for large channel lengths. In
Tab. I we have compared the values calculated by (30)
with simulated means of δmin for certain MIMO setups.
Apparently, the analytically obtained values are rather
close to the simulated values and the accuracy increases
for large numbers of receive antennas. Since the degree
of diversity becomes higher with increasing channel
length, the values of frequency-selective systems are
slightly larger than in the correponding non-frequency-
selective cases.

TABLE I

δ̄min AND THE CORRESPONDING SATURATION POINTS (a = 0.05)

FOR FREQUENCY-SELECTIVE CHANNELS (L = 2)

NT NR simul. anal. simul. anal.
δ̄min δ̄min SNRa [dB] SNRa [dB]

2 2 6.1731 6.1953 2.8806 2.865
2 4 13.3815 13.4211 -0.4794 -0.4923
2 8 28.3170 28.3339 -3.7348 -3.7374

5 Numerical Results
In this section, we will provide numerical results con-
cerning the biasing, the mean squared error and the
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Cramer Rao lower bound, respectively. Specifically, we
choose a system with NT = 2 and L = 2 as the
simulation platform, and use KT = 8 training symbols
per burst, which is actually the minimum number of
training symbols in order to perform the proposed
SBCE algorithm [4]. Since flat-fading channel is just
a special case (L = 0), all the analysis and theoretical
conclusions in the following hold for flat channels as
well.

5.1 Biasing of SBCE
In order to measure the biasing of the semi-blind
channel estimator, we define the degree of biasing as

BIAS
.
= ‖H− E{Ĥ}‖2

F. (31)

Given a randomly chosen channel matrix

H = [H(0),H(1),H(2)], (32)

where

H(0) =

[
0.32− 0.39j 0.40− 0.50j
0.23− 0.15j −0.21− 0.02j

]

H(1) =

[
−0.34− 0.48j 0.13− 0.46j
−0.11− 0.43j 0.10− 0.55j

]
(33)

H(2) =

[
−0.48 + 0.60j 0.01− 0.11j
−0.90 + 0.02j −0.41 + 0.39j

]
,

the simulation results of BIAS versus SNR is provided
in Fig. 2. The statement in Section 3.3 is hence proved,
that the presented semiblind channel estimator is biased
at low SNR while unbiased at high SNR. Besides, the
curve of NEC

.
= ‖E{NIE

H
I }/K‖2

F shows that the
noise-error correlation is not negligible. Indeed, the
value of NEC is significant w.r.t. the value of BIAS.

5.2 Cramer-Rao Lower Bound
From (22) and (23), we can obtain the CRLB approx-
imation for high SNR as

MSE ≥ tr
{
F

−1
high

}
≈

NRNT(L + 1)

K
σ2

n, (34)
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and the CRLB approximation for low SNR as

MSE ≥ tr
{
F

−1
low

}
= NRσ2

ntr
{
(STS

H
T )−1

}
. (35)

As we may notice that both approximations are linear
w.r.t. the noise power, we can expect two parallel
straight lines in a log-plot, which is demonstrated
in Fig. 3. At the high SNR range, the MSE curves
approach the lower bound. In this situation, the dis-
cussed semi-blind channel estimator tends to be unbi-
ased, hence its performance is exactly bounded by the
CRLB. However, at low SNR, the MSE curve is even
lower than the CRLB approximation. Fortunately, this
phenomenon can be explained by the biasing of the
estimator at low SNR.

According to Tab. I, the vertical dashed lines in
Fig. 3 mark the lowest possible SNR thresholds, where
SBCE may go into saturation. We will find that the
saturation point shifts to lower SNRs as the number of
receive antennas increases. Therefore for SBCEs, the
more receive antennas the better, and the better channel
estimation quality will in turn yields lower symbol error
rate. In comparison, purely training-based channel esti-
mators (TBCE) cannot benefit from reception diversity.
The MSE of TBCE is always fixed, as long as the
number of transmit antennas and the channel memory
length is fixed. It can be observed that the saturation
point is considerably close to the point, where the MSE
curves of the proposed SBCE approaches the high SNR
approximation of CRLB. Furthermore, the gap becomes
smaller for an increasing number of receive antennas.

6 Conclusions
In this paper, we analyzed the performance of semib-
lind channel estimation for frequency-selective MIMO
systems. An algorithm alternating between joint Viterbi
detection and least squares channel estimation was
presented. We also presented asymptotic approxima-
tions of the CRLB for SBCE in the high and low
SNR regime. It was shown that the proposed algorithm



is asymptotically unbiased in the high SNR regime,
whereas it suffers from biasing in the low SNR regime.
For this reason the proposed algorithm may perform
better within the low SNR range as provided by the
CRLB, whereas in the high SNR regime the CRLB is
an admissible lower bound of the MSE performance.
We also examined the SNR threshold, where SBCEs
theoretically and practically may approach the asymp-
totic CRLB at high SNR. As shown by simulations,
the presented algorithm is rather close to the theoretical
bounds.

APPENDIX

A Derivation of (30)
For the sake of readability, in the following we will drop
the subscript of δmin and denote the quantity simply by
δ. The mean of δ is given by

δ̄ = E{δ} =

∫ ∞

0

δp(δ)dδ. (36)

Hence, for calculating δ̄ the PDF p(δ) is required. We
will first give an approximation for p(δ) in the case
of flat Rayleigh-fading channels, and then extend the
obtained expression to frequency-selective channels.

Recall the definition of the minimum squared dis-
tance:

δ = min
i6=j

δi,j = min
i6=j

‖H(Si − Sj)‖
2
F. (37)

Since δ is mostly achieved if Si and Sj differ only
in one symbol, in the following we neglect those δi,j

differing in more than one symbols. As shown in Table
I this assumption provides a rather good match of the
real situation. The remaining distances can be split into
NT ensembles w.r.t. the transmit antennas.

The n-th ensemble comprises all squared distances,
where the position of the differing symbol is associated
with the n-th transmit antenna. Note that each ensemble
has coinciding distances, e. g. for the n-the ensemble
the squared distance is given by

∆n = w
∑

m

|hm,n|
2, (38)

where ∆n (1 ≤ n ≤ NT) are independent with each
other and identically distributed. Given i.i.d. channel
gains with hm,n ∼ CN (0, 1), ∆n conforms to the χ2

distribution with 2 · NR degrees of freedom given by

p(∆n) =
∆NR−1

n e−∆n/w

wNR(NR − 1)!
. (39)

Hence, δ is the minimum of all ensemble distances ∆n

and the PDF of δ is given by

p(δ) ≈
NT∑

n=1

p(∆n = δ)

NT∏

i=1,i6=n

P(∆i ≥ δ) (40)

= NT · p(∆n = δ) · [P(∆i ≥ δ)]NT−1

=
NTδNR−1e−

δ
w

wNR(NR − 1)!

(
Γ(NR, δ

w )

(NR − 1)!

)NT−1

,

where the probability P(∆i ≥ δ) is the complementary
cumulative distribution function (CCDF) of ∆i. Γ(a, b)
is the incomplete Gamma function defined as

Γ(a, b) =

∫ ∞

b

xa−1e−xdx. (41)

Substituting (40) into (36), we finally obtain

δ̄ = wNT ·

∫ ∞

0

δNRe−δ [Γ(NR, δ)]
NT−1

[(NR − 1)!]NT
dδ. (42)

This result can be easily extended to the frequency-
selective case. Taking into account the by factor L + 1
increased degree of freedom in (39), the mean of δ is
given by Eq. (30).
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