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ABSTRACT
An information theoretic analysis of multiple antenna sys-
tems shows that the possible gain due to transmitter-sided
channel knowledge is usually small for uncorrelated fad-
ing. However, it is not obvious how these results translate
to real-world transmission strategies. Thus, in this paper
the error performance of adaptive bit and power loading
with perfect channel state information is compared to that
of high-rate multistratum space-time codes relying only on
transmit diversity. We demonstrate that the latter may even
outperform the adaptive scheme if discrete rate constraints
are taken into account.

1. INTRODUCTION

Multiple antenna or MIMO systems will be a key technol-
ogy in future wireless communication systems as they en-
able very high data rates with limited bandwidth. This is
especially true for indoor environments with rich scattering.
With perfect channel knowledge at both ends of the link,
the MIMO channel can be decomposed into parallel sub-
channels by appropriate precoding. This facilitates the ap-
plication of adaptive modulation and power allocation tech-
niques that were originally designed for discrete multitone
transmission or orthogonal frequency division multiplexing
(OFDM) [1, 2]. Without the rather optimistic assumption
of ideal channel information at the transmitter, research has
focused on two opposing directions: increasing data rate by
spatial multiplexing [3], and improving link reliability by
exploiting diversity [4].

In this paper, multistratum space-time codes [5] are com-
pared to a channel aware adaptive transmit strategy in or-
der to quantify the gain of channel knowledge with respect
to the uncoded bit error rate for realistic systems. To this
end, we present a unified view of some existing bit and
power loading algorithms and derive a method that fits our
needs. In order to allow for a fair comparison, maximum-
likelihood detection is performed in both cases, though this
comes at the price of higher receiver complexity for the non-
orthogonal space-time codes.

After the definition of the channel model in Section 2,
we will briefly review some motivating results from infor-
mation theory in Section 3. The considered transmission
schemes are described in Section 4 and 5, respectively, and
simulation results are presented in Section 6. Concluding
remarks can be found in Section 7.

2. CHANNEL MODEL

We consider a single-user multiple antenna system with NT

transmit and NR receive antennas. For simplicity, we re-
strict to flat fading channels, and the NR × NT equiva-
lent baseband channel matrix H is assumed to be constant
during the transmission of a packet (block fading) and per-
fectly known to the receiver. Note that our analysis may
easily be generalized to the frequency selective case if ei-
ther OFDM is employed or H is replaced by a correspond-
ing block Toeplitz convolution matrix for single-carrier sys-
tems. The receive signals at discrete time k are given by the
NR × 1 vector

y[k] = Hx[k] + n[k] , (1)

where the NT × 1 vector x[k] contains all transmit sym-
bols and n[k] represents complex white Gaussian noise with
variance σ2

n = 1. Throughout this paper the following nor-
malizations will be used:

E
{‖H‖2

F

}
= NT NR , E

{‖x[k]‖2
}

= P . (2)

For uncorrelated transmit signals with equal power, the re-
ceived energy per information bit Eb is proportional to the
number of receive antennas. Hence, we define

Eb

N0
=

NR P

R
(3)

where N0 is the one-sided power spectral density of the
noise and R denotes the data rate in bits per channel use.



3. RESULTS FROM INFORMATION THEORY

Assume that the transmitter also has perfect channel state
information. Then, introducing the singular value decom-
position H = UΣVH and the relation x[k] = Vs[k],
the original channel model (1) can be transformed into an
equivalent one consisting of decoupled subchannels

r[k] = UH y[k] = Σs[k] + UH n[k] . (4)

Due to the circular symmetry of n[k], multiplication with
the unitary matrix UH does not change the statistical prop-
erties of the noise. Given a channel realization H, the mu-
tual information between transmit signals x[k] and receive
signals y[k] under the power constraint (2) is maximized if
s[k] contains independent elements taken from a Gaussian
codebook. Denoting the squared singular values of H by
λi, this yields

I(x[k] ; y[k] |H) =
NT∑
i=1

log2(1 + λi Pi) , (5)

where, in order to achieve the capacity C(H), the transmit
powers Pi on the parallel subchannels must be chosen ac-
cording to the waterfilling criterion [6]

Pi = max
{

θ − 1
λi

, 0
}

with
NT∑
i=1

Pi = P . (6)

For random H, the mutual information is also a random
variable. In this case, the ergodic capacity

C = E {I(x[k] ; y[k] |H)} (7)

and the outage probability

Pout = Pr {I(x[k] ; y[k] |H) < R} (8)

are appropriate performance measures. As waterfilling max-
imizes the mutual information for each channel realization,
it is also the optimum strategy with respect to (7) and (8),
respectively.

Without channel knowledge at the transmitter, adapta-
tion to the current channel conditions is not possible. In this
situation, the ergodic capacity can be maximized by trans-
mitting uncorrelated signals with equal power, i.e. using
Pi = P/NT in (5). For the outage probability this power
allocation is also optimal, at least in the interesting SNR
range where Pout � 1.

Fig. 1 illustrates the achievable performance for uncor-
related Rayleigh fading channels. For NT = 4 and NR = 1,
transmitter-sided channel state information provides a large
capacity gain of 6 dB, because the total transmit power can
be focused on the single subchannel with λi > 0 in this
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Fig. 1. Ergodic channel capacity for NT = 4 (left) and out-
age probability for NT = NR = 4 (right) with waterfilling
(solid) and equal power allocation (dashed).

case. However, for NT = NR = 4 the gap is signifi-
cantly smaller and vanishes in the high SNR limit where the
waterfilling solution also tends to distribute powers equally
among the subchannels. The outage probabilities show the
same trend: for low data rates the power can be concentrated
on strong eigenmodes, while for high rates also weaker sub-
channels must be used. The question arises, how these in-
formation theoretic results that are valid only for ideal chan-
nel codes translate to more realistic system setups.

4. BIT AND POWER LOADING

As shown in (4), the channel may be decomposed into par-
allel subchannels by using V as a linear precoder. For Gray-
labelled square QAM symbols si[k] with Ri = 2, 4, . . . bits
per symbol, the bit error probability on the i-th subchannel
can be well approximated1 by

Pb,i ≈ 4
Ri

(
1 − 1

2Ri/2

)
· Q
(√

3
2Ri − 1

λi Pi

)

with Q(x) =
1√
2π

∫ ∞

x

e−t2/2dt .

(9)

Our goal is to minimize the average error probability for
given data rate R and transmit power P by properly adapt-
ing Ri and Pi for 1 ≤ i ≤ NT , i.e.

min
R,P

Pb =
1
R

NT∑
i=1

Ri Pb,i

s.t.
NT∑
i=1

Ri = R ,

NT∑
i=1

Pi = P .

(10)

1In (9) it has been assumed that one bit error occurs per symbol error,
which is usually true for moderate to high SNR’s.



For a fixed rate allocation, (10) can be solved by formulating
the Lagrange dual function and applying the Karush-Kuhn-
Tucker optimality conditions as shown in [7]. Then, the
whole solution corresponds to the minimum over all possi-
ble rate distributions, where, without loss of generality, only
those fulfilling Ri ≥ Rl for λi ≥ λl need to be checked.
While this approach is feasible for a small number of sub-
channels, the computational complexity will be very high
if, e.g., there are additionally multiple subcarriers like in
MIMO-OFDM. Thus, we will subsequently introduce some
simplifications.

For sufficiently large P , the minimization of Pb requires
equal bit error rates (BER) on all subchannels, because oth-
erwise weak channels will dominate the performance. This
is most easily verified for a system with two subchannels
if the Gaussian error function Q(x) is approximated by an
exponential function

Pb ≈ β1 e−α1 P1 + β2 e−α2 (P−P1) , (11)

where βi depends only on the rate Ri, and αi additionally
on the channel gain λi. Setting ∂Pb/∂P1 = 0 leads to

P opt
1 =

α2 P + ln
(

α1β1
α2β2

)
α1 + α2

P�1≈ α2 P

α1 + α2
, (12)

and hence α1P
opt
1 ≈ α2P

opt
2 . Neglecting the factors β1

and β2 in (11) this implies P opt
b,1 ≈ P opt

b,2 . By induction,
this result can be generalized to any number of subchannels.
Note that adaptive modulation limits the dynamics range of
α1/α2, so the equal BER assumption is well justified in this
case.

Replacing the factor in front of the Q function by an
appropriate constant c, (9) can be solved for the rate

Ri = log2

(
1 + λi

Pi

Γ

)

with Γ =
1
3
[
Q−1 (Pb/c)

]2
.

(13)

Except for the scaling factor Γ which is a decreasing func-
tion of Pb, this is identical to the capacity of an AWGN
channel with gain λi, hence (13) is usually referred to as
gap approximation. For continuous rates, the minimization
of Pb is equivalent to minimizing P and again solved by
the waterfilling criterion (6), but now with a constraint on
the total data rate. Afterwards, the transmit power resulting
from the waterfilling procedure can be scaled by Γ to any
desired value P .

Though derived in an alternative way, the widely used
bit loading algorithm proposed in [2] is essentially based on
a high SNR approximation of (13), namely

Ri ≈ log2

(
λi

P

NT Γ

)
. (14)

The continuous rates are quantized and, if necessary, bits
are added or removed until the total rate constraint is ful-
filled. However, this two-step procedure is suboptimal. In-
stead, we suggest to use an optimum algorithm for the dis-
crete rate power minimization problem and scale the trans-
mit powers as described above. The most prominent exam-
ple is the Hughes-Hartogs algorithm [1], but there also exist
far more efficient implementations that exploit the convex-
ity of the rate-power region, e.g. [8]. Note that instead of
simple scaling it is, of course, also possible to redistribute
the transmit powers according to [7] once the bit allocation
has been found. However, as argued before, the possible
performance gain will be small compared to the additional
computational effort.

5. MULTISTRATUM SPACE-TIME CODES

The adaptive transmission presented in the previous section
requires perfect channel state information at the receiver and
the transmitter. While for the receiver this assumption is
justified for slowly fading channels, it is quite unrealistic
for the transmitter as it implies either a high rate feedback
link or a time division duplex (TDD) system with ideal reci-
procity of the channel. Hence, we will now turn to the case
without channel knowledge at the transmitter.

In the V-BLAST architecture [3], the information sym-
bols si[k] are directly transmitted, i.e. x[k] = s[k] in (1).
For NR ≥ NT , it is possible to separate the signals at the
receiver. To this end, many algorithms with different com-
plexities have been developed. In combination with pow-
erful channel coding and iterative a-posteriori probability
(APP) detection and decoding, the capacity limits of the
channel can be approached [9]. However, for uncoded trans-
mission V-BLAST does not exploit transmit diversity.

On the other hand, orthogonal space-time block codes
can significantly enhance the link reliability while having
low decoding complexity. A simple example is the Alam-
outi scheme for NT = 2 antennas [4]

X =
(
x[1] x[2]

)
=
(

s1 −s∗2
s2 s∗1

)
. (15)

Here, KST = 2 complex symbols are transmitted during
NST = 2 channel uses. Thus, as opposed to V-BLAST, the
Alamouti code (15) does not offer a multiplexing gain. Fur-
thermore, for more than two transmit antennas there exists
no linear orthogonal space-time code with rate one. Instead,
we consider the following quasi-orthogonal code [10]

X =




s1 −s∗2 −s̃∗3 s̃4

s2 s∗1 −s̃∗4 −s̃3

s̃3 −s̃∗4 s∗1 −s2

s̃4 s̃∗3 s∗2 s1


 , (16)

where s̃i = ejπ/4si are rotated versions of the actual QAM
information symbols. This constellation rotation is crucial



for achieving the full diversity degree. Note that (16) fol-
lows from a recursive application of (15) and can easily be
generalized to any number of transmit antennas.

Every linear space-time block code can be described by
a generator matrix G. In order to allow for complex conju-
gate information symbols, we define the real-valued vector

s = (Re {s1} , Im {s1} , . . . , Im {sKST
})T

. (17)

Then, a space-time codeword is given by the sequence of
transmit vectors

x =
(
xT [1], . . . ,xT [NST ]

)T
= G s . (18)

The channel matrix H and the generator matrix G can be
merged to a system matrix A = (INST

⊗ H)G, which
results in an overall system model having the same structure
as (1). Thus, detection algorithms developed for V-BLAST
may be used for general non-orthogonal codes. Comparing
(18) and (15), it is easy to verify that the generator matrix
of the Alamouti scheme is

G =
(
G[1]
G[2]

)
=




1 j 0 0
0 0 1 j
0 0 −1 j
1 −j 0 0


 , (19)

where the implicitly defined submatrices G[k] characterize
the k-th transmit vector of one codeword. The 16 × 8 gen-
erator matrix of the quasi-orthogonal code (16) can be de-
termined analogously and will be omitted here due to space
limitations.

Multistratum space-time codes combine the benefits of
both space-time block codes and multilayer transmission
[5]. As in V-BLAST, the information symbols are demul-
tiplexed into NS ≤ min{NT , NR} parallel data streams.
However, instead of directly transmitting these so called
strata, they are first encoded by a common space-time block
code. Hence, each stratum experiences full transmit diver-
sity. Afterwards, the strata are superimposed using an ap-
propriate orthogonal transform that allows to separate them
at the receiver. The Hadamard transform is one possible
choice. For the Alamouti code with the maximum number
of NS = 2 strata, this results in the 4 × 8 matrix

G(2) =
(

G[1] G[1]
G[2] −G[2]

)

=




1 j 0 0 1 j 0 0
0 0 1 j 0 0 1 j
0 0 −1 j 0 0 1 −j
1 −j 0 0 −1 j 0 0


 . (20)

Similarly, if G represents the quasi-orthogonal code from
(16), a multistratum space-time code with rate four is given

by the 16 × 32 generator matrix [11]

G(4) =




G[1] G[1] G[1] G[1]
G[2] −G[2] G[2] −G[2]
G[3] G[3] −G[3] −G[3]
G[4] −G[4] −G[4] G[4]


 . (21)

In contrast to V-BLAST, multistratum codes are also suited
for systems with NR < NT as strata may be switched off
without transmission breaks. For NS = 1 they degenerate
to ordinary space-time block codes. This enables a flexible
adaptation of the data rate and application in heterogenous
networks.

6. SIMULATION RESULTS

In this section we compare multistratum space-time codes
to the adaptive transmission scheme from Section 4. For the
simulations, an uncorrelated Rayleigh fading channel was
assumed, and the improved sphere decoder from [11] was
used for maximum-likelihood detection of the multistratum
codes. Taking practical implementation limitations into ac-
count, the maximum constellation size for bit loading was
fixed to 256-QAM.

Fig. 2 shows the results for both codes discussed in this
paper together with those using adaptive modulation and
power allocation. As a reference, we also included the achiev-
able performance for ”virtual” symbol alphabets without
discrete and finite rate constraints.

For R = 2, the gain of pure beamforming over space-
time coding is evident. This coincides with the theoretical
analysis in Section 3. For higher rates, the maximum num-
ber of strata was used with varying modulation index. It
can be observed that the code from (20) as proposed in [5]
does not achieve full diversity, which may be prevented by
proper a constellation rotation. Nevertheless, for R = 12 it
outperforms the adaptive transmission mode at high SNR,
because due to the rate restrictions, 16-QAM must be em-
ployed on the weak second subchannel. However, in general
the diversity scheme is far from optimum in this case.

Things look different for the multistratum design (21)
based on the quasi-orthogonal space-time block code from
(16). The code exhibits the optimal diversity-multiplexing
tradeoff and comes very close to the theoretical performance
limit represented by continuous waterfilling. Hence, in line
with the observations made from Fig. 1, channel state in-
formation at the transmitter yields no additional gain for
uncorrelated fading and NR ≥ NT if high data rates are
desired. Moreover, the practical bit loading scheme again
suffers from discrete (R = 8) and finite (R = 24) rate con-
straints. As the results for the extreme cases of ideal and
no channel coding show the same trends, it can be conjec-
tured that the same conclusions hold true for realistic chan-
nel coding schemes.
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Fig. 2. Bit error rates for multistratum space-time codes
(dashed) and adaptive transmission with Ri ∈ {2, 4, 6, 8}
(solid). The thin lines correspond to waterfilling without
discrete rate constraints.

7. CONCLUSION

Inspired by results from information theory, we analyzed
the uncoded bit error performance of adaptive bit and power
loading with perfect channel state information at the trans-
mitter, and compared it to that of multistratum space-time
codes which simply rely on transmit diversity. While the
code for NT = 2 antennas taken from [5] is not able to ex-
ploit the full diversity of the channel, a recently proposed
full-rate full-diversity multistratum design for NT = 4 is
close to optimal if maximum-likelihood detection is per-
formed at the receiver. However, for low data rates chan-
nel knowledge may significantly improve the transmission
quality.
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