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Abstract 

This paper addresses the topic of bit and power loading in 
coded MIMO-OFDM systems. Due to the need of designing 
communication systems with high spectral efficiencies, the 
combination of multiple antennas at transmitter and receiver 
with OFDM represents a promising approach. Moreover, 
channel knowledge at the transmitter can be exploited to 
adapt the transmission to the channel. While loading strate-
gies for the uncoded case as well as the information theoreti-
cal solution are already known, the optimum scheme is still 
unknown for coded systems. In this paper, we compare dif-
ferent loading approaches for coded systems with respect to 
their error rate performance.  

1 Introduction 

Since bandwidth is a limited and valuable resource, modern 
communication systems have to be designed to achieve very 
high spectral efficiencies. One candidate for an appropriate 
air interface of future mobile radio systems is the multi-car-
rier technique OFDM (Orthogonal Frequency Division Multi-
plexing) [1]. It has already proven its practicability by finding 
its way into various standards for broadcast as well as point-
to-point communications [5,6,7]. One of the main benefits is 
the simple equalization of frequency selective channels. 
Additionally, OFDM allows an easy adaptation to the channel 
conditions due to its granularity in the frequency domain if 
channel knowledge is available at the transmitter.  
A second approach leading to high spectral efficiencies is to 
use multiple antennas at the transmitter as well as the 
receiver. The high potential of multiple-input multiple-output 
(MIMO) systems stems from the fact that parallel data 
streams can be transmitted thereby multiplying the achievable 
data rate [12]. For frequency selective channels, a 
combination of OFDM and multiple antennas is obvious. 
In this paper, we consider a coded MIMO-OFDM system and 
assume perfect channel knowledge at transmitter and receiver. 
This assumption allows the exploitation of the eigenmodes of 
the MIMO channel and the transmission of independent par-
allel data streams. Transmit power and signal constellation 
can be individually chosen for each stream with respect to an 
appropriate optimization criterion. 
The paper is organized as follows: Section 2 describes the 
system model and Section 3 the investigated loading strate-

gies. Simulation results comparing the different concepts are 
discussed in Section 4 and concluding remarks can be found 
in Section 5. 

2 System Model 

The structure of the MIMO-OFDM transmitter is depicted in 
Figure 1. The information bits are first encoded by an FEC 
encoder that is further specified in Section 4. The encoded 
stream is demultiplexed into  layers, where NC TN N N= C 
denotes the number of OFDM subcarriers and NT the number 
of transmit antennas. Since we assume perfect channel 
knowledge at transmitter and receiver, each layer is 
individually modulated (block ‘M’) according to an 
appropriate signal constellation. As OFDM ensures that each 
carrier is only affected by flat fading, the MIMO channel 
corresponding to carrier ν  can be represented by an R TN N×  
matrix  with the singular value decomposition 

. The unitary  matrices  are used 
for a linear pre-processing in order to exploit the eigenmodes 
of the MIMO channel, i.e. the transmitted vector becomes 
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Figure 1: MIMO-OFDM transmitter 
 
The N symbols are subsequently assigned to NT streams each 
comprising NC symbols forming one OFDM symbol per 
antenna. 
At the receiver depicted in Figure 2, OFDM demodulation is 
performed at each of the NR antennas. Next, the permutation is 
reversed so that NC streams each containing the signals of NR 
antennas are formed. The receive vector on the 

-thν subcarrier is given by 
 .ν ν ν ν= +y H x n  (1) 



 

 
Figure 2: MIMO-OFDM receiver 
 
 
After filtering with the unitary matrix H

νU  we obtain  
 H

ν ν ν ν ν ν= = +r U y Σ s n  (2) 
Stacking all transmit and receive signals into large vectors s  
and r  finally leads to the mathematical model  
  (3) = +r Σs n
Since  represents a diagonal matrix containing the singular 
values σ

Σ
μ of all submatrices  we obtain N parallel 

channels whose rates and transmit powers have to be 
appropriately chosen according to the strategies presented in 
the next section. 

νH

3 Loading Strategies 

In this section we briefly review some existing bit and power 
loading schemes. The results for the extreme cases of ideal 
and no channel coding will turn out to be also meaningful for 
realistic coded transmission. 

3.1 Minimizing the outage probability 

It is well known that the mutual information between transmit 
and receive signal for a given channel matrix ( ; | )I x y H is 
maximized if the transmit powers Pμ  are assigned according 
to the water-filling criterion 
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where the parameter θ  must be chosen such that the total 
power constraint is fulfilled. Obviously, this power allocation 
minimizes the probability that the mutual information is 
smaller than the desired transmission rate  for a certain 
channel realization, i.e. 

R

  (5) out Pr{ ( ; | ) }.P I= x y H R<
This outage probability corresponds to the frame error rate of 
an ideal code. As capacity achieving codebooks resemble 
independent transmit symbols, it is not necessary to use 
different codes with variable rates on the parallel 
subchannels. Instead, a single code can be applied across all 
frequencies and spatial eigenmodes and pure power loading is 
sufficient [2]. Note that this important observation does not 

only reduce the implementation complexity, but also improve 
the performance, because good random-like codes benefit 
from an increased codeword length. Hence, information 
theory gives a strong motivation for the transmitter structure 
depicted in Figure 1 using only one channel encoder. 
Moreover, from this point of view adaptive modulation is not 
required, so the symbol mapping could also be performed 
before demultiplexing the data streams. 
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3.2 Minimizing the uncoded BER 

Turning to uncoded transmission, we are interested in 
minimizing the average bit error probability for a given 
channel realization 
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by properly adjusting the rates Rμ  and powers Pμ . For square 
QAM constellations with Gray-labelling, the error probability 
on the -thμ  subchannel can be well approximated by 
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with the Gaussian error integral 

 
2 / 21Q( ) .

2
t

x

x e dt
π

∞
−= ∫  (8) 

For a fixed rate allocation, the power optimization can be 
performed based on the Lagrange dual function of (6). 
However, since all feasible rate tuples must be checked, the 
computational complexity is extremely high for large number 
of subcarriers or antennas. 
The problem at hand can be greatly simplified for sufficiently 
high signal to noise ratio (SNR). In that case, the bit error 
rates on all active subchannels will be approximately the 
same. Ignoring the term in front of the rapidly decreasing Q 
function, (7) can be solved for the rate 
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which is identical to the capacity of an AWGN channel with 
transmit power reduced by the constant factorΓ . Hence, the 
optimum rate and power distribution again follows from the 
water-filling criterion (4), where the SNR gapΓ ensures that 
both rate and power constraint can be fulfilled. Note that only 
discrete rates are possible for uncoded data, which is 
accounted for in the efficient algorithm presented in [3].  
Slightly better results can be obtained if the transmit power is 
first minimized for the given data rate and some arbitrary 
target error rate without making use of any approximations, 
and then scaled to the desired value. For this purpose, we take 
the look-up table based bisection search from [9], which runs 
considerably faster than the greedy Hughes-Hartogs algorithm 
[8]. 

3.3 Minimizing the coded BER 

For very powerful codes it may be conjectured that the results 
from Section 3.1 can be applied. However, little is known for 
suboptimal channel coding schemes. 
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Figure 3: Outage probability with and without water-filling 
 
In [10], a hard decision is assumed before the decoder. This 
transfers each of the parallel AWGN channels into a binary 
symmetric channel (BSC), whose error probability can be 
minimized using the methods described in the previous 
section. However, the reliability information about the code 
bits is lost due to the quantization, which leads to a severe 
performance degradation that may even overcompensate the 
gains due to the adaptive transmission. 
An approximation for the coded BER with soft-input 
decoding is derived in [11]. Interestingly, the resulting rate 
allocation formula is identical to (9) with SNR gap inversely 
proportional to the minimum Hamming distance of the 
channel code. This leads to the assumption that algorithms 
originally developed for the uncoded case are also reasonable 
for coded transmission. So, all in all, both information 
theoretic and uncoded results appear to be suited for realistic 
codes. However, while rate adaptation is not required for 
ideal coding schemes, it is essential in the absence of channel 
coding. It is not intuitively clear, which approach turns out to 
be better. 

4 Numerical Results 

In order to evaluate the different loading strategies, we 
consider a MIMO-OFDM system with  carriers and 

 antennas at transmitter and receiver. The 
channel impulse responses consist of  uncorrelated 
complex Gaussian distributed taps with equal variance and 
the received SNR per bit is defined as 
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Figure 3 shows the outage probability of the channel. Here 
and in the following figures, solid, dashed, and dash-dotted 
lines correspond to data rates of , 
respectively. It can be observed that the gain due to water-
filling diminishes with increasing rate. 

4, 8, and 12 bit/s/HzR =
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Figure 4: Performance of different loading schemes for 
uncoded transmission 
 
In Figure 4, results for the uncoded case are depicted. Not 
surprisingly, non-adaptive transmission performs poorly, 
because no diversity is used and weak subchannels dominate 
the average error rate. Enormous improvements are possible 
with the bit and power loading algorithm described in Section 
3.2, where the maximum constellation size was limited to 256 
QAM. Most of the gain can already be achieved by 
combining the resulting bit allocation with an equal power 
distribution among active subchannels, so power loading 
seems to be less important. 
The loading algorithms were then applied to coded 
transmission. Each codeword spans consecutive 
MIMO-OFDM symbols (consisting of 

10FL =
1280F C TL N N =  

QAM symbols) during which the channel remains constant. 
Figure 5 depicts the BER for a half-rate non-recursive 
convolutional code with generator polynomials in octal 
representation. Looking at a spectral efficiency of 
R = 4 bit/s/Hz, we observe that pure bit loading shows the 
best performance and is slightly better than the combination 
of bit and power loading. Obviously, a power distribution 
enforcing equal bit error probabilities on all subchannels does 
not represent the optimum approach for coded systems. The 
gain of bit loading compared to the non-adaptive systems 
amounts to 5 dB at a bit error rate of 10

8(7,5)

-4. The different slopes 
of the curves indicate that this code can not utilize the full 
diversity of the channel without bit loading. On the other 
hand, water-filling performs even worse than the non-
adaptive system. The reason is that the code is highly punc-
tured because bits assigned to channels with 0Pμ =  are not 
transmitted. This is in contrast to the case of bit loading, 
where all code bits are transmitted. For growing spectral 
efficiency, the water filling approach becomes the best choice 
at low signal to noise ratios while pure bit loading performs 
best for medium and high SNR. For R = 12 bit/s/Hz, nearly 
all channels – even the worst ones – have to be used so that 
puncturing has only a minor influence. The bit loading  
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Figure 5: Performance of different loading schemes for a half-
rate convolutional code  
 
scheme gains about 3 dB. A comparison with Figure 4 reveals 
that for this high data uncoded adaptive transmission is 
another 2.5 dB better, because due to the code rate 1/ 2cR =  
each QAM symbol contains on average 6 code bits while the 
maximum is set to 8 bits, which limits the degrees of freedom 
for the loading process.  
 
Figure 6 shows the corresponding results for the turbo code 
consisting of two identical constituent encoders with 
generator polynomials  and punctured to rate 

. For low and medium spectral efficiencies, bit 
loading still performs best closely followed by bit and power 
loading. The gains amount to 3 dB for R = 4 bit/s/Hz and 
1.5 dB for R = 8 bit/s/Hz. For an efficiency of R = 12 bit/s/Hz, 
the relations change and water filling achieves the lowest 
error rate. Astonishingly, the combination of bit and power 
loading performs worst. The gains reduce to less than 1 dB. 
For this powerful turbo code and the high spectral efficiency, 
the information theoretical approach can be confirmed. In 
contrast to the convolutional code, the turbo code is able to 
exploit the full spatial and frequency diversity contained in 
the system. 

8(1,17 /13)
1/ 2cR =

5 Conclusions 

It has been shown that loading strategies exploiting channel 
knowledge at the transmitter can improve the error rate per-
formance significantly. For weak codes, pure bit loading 
seems to be an appropriate choice while the water filling 
approach performs best for strong codes and extremely high 
spectral efficiencies. However, it is still an open question how 
optimum bit and power loading has to be performed for a 
specific code. 
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Figure 6: Performance of different loading schemes for a half-
rate turbo code 

References 

[1]  J.A.C. Bingham. “Multicarrier Modulation for Data 
Transmission: An idea whose time has come”, IEEE 
Communications Magazine, pp. 5-14, (1990). 

[2] G. Caire, G. Taricco, E. Biglieri. “Optimum Power 
Control Over Fading Channels”, IEEE Transactions on 
Information Theory, 45(5), pp. 1468-1489, (1999). 

[3] J. Campello. ”Practical Bit Loading for DMT”, Proc. 
International Conference on Communications (ICC), pp. 
801-805, June 1999.  

[4]  T.M. Cover, J.A. Thomas. Elements of Information 
Theory, Wiley & Sons, London, (1991). 

[5]  Digital Audio Broadcast, http://www.worlddab.org. 
[6]  Digital Video Broadcast, http://www.dvb.org. 
[7]  IEEE 802.11, http://grouper.ieee.org/groups/802/11/. 
[8]  D. Hughes-Hartogs. “Ensemble Modem Structure for 

Imperfect Transmission Media”, U.S. Patents No. 
4,679,227 and 4,731,816 and 4,833,706, (1989). 

[9] B.S. Krongold, K. Ramchandran, D.L. Jones.  
”Computationally Efficient Optimal Power Allocation 
Algorithm for Multicarrier Communication Systems”, 
Proc. International Conference on Communications 
(ICC), pp. 1018-1022, June 1998. 

[10] C. Mutti, D. Dahlhaus, T. Hunziker, and M. Foresti. “Bit 
and Power Loading Procedures for OFDM Systems with 
Bit-Interleaved Coded Modulation”, International 
Conference on Telecommunications (ICT), pp.1422-
1427, 2003. 

[11] K. Song, A. Ekbal, and J.M. Cioffi. “Adaptive 
Modulation and Coding (AMC) for Bit-interleaved 
Coded OFDM (BIC-OFDM),” Proc. International 
Conference on Communications (ICC), pp. 3197-3201, 
June 2004. 

[12]  E. Telatar. “Capacity of Multi-antenna Gaussian 
Channels”, ATT-Bell Labs Internal Technical Memo, 
(1995). 


