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ABSTRACT

A new method for determining the layer-wise SINR distribution as
well as the total outage probability of V-BLAST with successive
interference cancellation at the receiver is presented. Incontrast to
previous publications, we do not restrict to zero-forcing,but also
consider minimum mean square error interference suppression. It
is shown that optimizing the detection sequence is even moreim-
portant in this case, and that ordered MMSE-SIC can achieve full
receive diversity if the data rate per layer is not larger than one.

1. INTRODUCTION

Multiple antenna systems can be used to achieve very high spec-
tral efficiencies [1]. The layered V-BLAST architecture is aprac-
tical way to realize unprecedented data rates [2]. A detailed per-
formance analysis for simple linear as well as optimal maximum-
likelihood receivers can be found in [3]. However, for the ordered
successive interference cancellation (SIC) proposed in [2], analyt-
ical results are more difficult to obtain. In [4], it was shownthat
without sorting the diversity order of thek-th layer is given by
NR − NT + k, whereNT andNR denote the number of transmit
and receive antennas. The importance of an optimized detection
order for the information outage probability was highlighted in [5],
where a uniform power and rate allocation among a subset of trans-
mit antennas was conjectured to be optimal, but the requireddis-
tribution of the layer-wise signal to noise ratio (SNR) withopti-
mal ordering was only approximated by Monte-Carlo simulations.
The exact expression for the case of two transmit antennas was
first determined in [6] using the distribution of the angle between
two complex Gaussian vectors, which was also employed to find
loose bounds forNT > 2 in [7]. An alternative approach based on
the inverted complex Wishart distribution was recently presented
in [8].

The above mentioned publications assume perfect interference
suppression by a linear zero-forcing (ZF) filter. The methodde-
scribed in this paper is somewhat more intuitive than previous
ones. Even more important, it can be extended to analyze the sig-
nal to interference and noise ratio (SINR) when using a minimum
mean square error (MMSE) filter. This will be used to derive the
exact outage probability of various SIC receiver structures.
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2. SYSTEM MODEL

Consider the equivalent baseband model of a single-user multiple
antenna system withNT transmit andNR ≥ NT receive antennas.
The channels are uncorrelated and flat Rayleigh fading. Hence,
theNR ×NT channel matrixH consists of independent circularly
symmetric complex Gaussian entries with zero mean and unit vari-
ance. The receive vector is given by

y = Hx + n , (1)

where the vectorx = [x1, . . . , xNT
]T with covariance matrix

E
�
xxH

	
= INT

contains independent transmit symbols, andn

represents circularly symmetric and white complex Gaussian noise
with varianceσ2

n. Perfect channel state information is assumed at
the receiver.

3. ZF-SIC WITHOUT ORDERING

For each layer, the interference caused by already detectedlayers is
subtracted from the receive signal, and the remaining interference
is suppressed by a linear filter. The required filter matricesfol-
low from the QL decomposition of the channel matrixH = QL,
where theNR × NT matrixQ has orthogonal columns with unit
norm andL is lower triangular with real-valued and nonnegative
diagonal elements [9]. Assuming correct decisions in all previous
detection steps1, . . . , k−1, the estimatêxk of xk can be obtained
from the filtered receive signalz = QHy via

x̃k = zk −

k−1X
m=1

lkm x̂m = lkk xk + ñk , (2)

where the noisẽnk is still white with varianceσ2
n. Thus, the SNR

of thek-th layer is given by

SNRk = l2kk/σ2
n . (3)

3.1. SNR Distribution

From the rotational invariance of the multivariate Gaussian distri-
bution ofhk it can be deduced that the elements ofL are indepen-
dent andlmk is complex Gaussian form > k. Furthermore, as
the squared column norm‖hk‖

2 has aχ2 distribution with2NR

degrees of freedom [10], the squared diagonal elementl2kk is also
χ2-distributed, but with only2(NR−NT +k) degrees of freedom.



Hence, we get the pdf’s

pl2
kk

(t) =
tNR−NT +k−1e−t

Γ(NR − NT + k)
, (4)

p|lmk|2(t) = e−t , m > k (5)

that are zero fort < 0. Using (3), the cdf of the SNR on thek-th
layer can be obtained by integrating over (4)

PSNRk
(ϑ) = Pl2

kk
(σ2

nϑ) = γ̃(NR − NT + k, σ2
nϑ) , (6)

where γ̃(n, x) = γ(n, x)/Γ(n) is a normalized version of the
incomplete gamma function [11].

3.2. Outage Probability

An outage occurs if the channel capacity of at least one layeris
too small to support the chosen data rateR. For Gaussian transmit
symbols, error-free transmission is only possible if

Ck = log2(1 + SNRk) > R ⇒ SNRk > 2R − 1 (7)

holds for allk. Since the layers are statistically independent, the
total outage probability becomes

Pout = 1 −

NTY
k=1

Γ̃(NR − NT + k, σ2
n[2R − 1]) (8)

with the regularized complementary incomplete gamma function
Γ̃(n, x) = Γ(n, x)/Γ(n) = 1 − γ̃(n, x).

4. ZF-SIC WITH OPTIMIZED ORDERING

The order of detection can be optimized by exchanging elements
of the transmit vectorx and the corresponding columns of the
channel matrixH before the QL decomposition [9]. Let us de-
fineȞ = HΠ = Q̌Ľ for some permutation matrixΠ and restrict
to the case ofNT = 2 transmit antennas in the following, for
simplicity. In order to maximize the minimum SNR, we need to
choose the detection sequence such that

ľ222 = min
�
‖h1‖

2, |h2‖
2
	

⇒ ľ222 ≤ ľ211 + |ľ21|
2 , (9)

i.e. the layer with the weaker channel is detected last and does not
have to suppress interference by a linear filter.

4.1. SNR Distribution

With (9), the cdf of the squared second diagonal element can easily
be found using order statistics [10]

Pľ2
22

(ξ) =1 −
�
Pr
�
‖hk‖

2 ≥ ξ
	�2

= 1 −
h
Γ̃(NR, ξ)

i2
=γ̃(NR, ξ) · [2 − γ̃(NR, ξ)] . (10)

Then, similar to (6), the distribution ofSNR2 for the optimal per-
mutation is given byPSNR2

(ϑ) = Pľ2
22

(σ2
nϑ). As already ob-

served in [6], it is approximately doubled due to sorting.
Unfortunately, the diagonal elements ofĽ are not independent

anymore. However, conditioned onľ222 = ξ, the natural ordering is
optimal wheneverl211 + |l21|

2 ≥ ξ is fulfilled according to (9). As

both detection orders are equiprobable, this leads to the conditional
cdf

PSNR1

�
ϑ
�� ľ222 = ξ

�
= Pl2

11

�
σ2

nϑ
�� l211 + |l21|

2 ≥ ξ
�

. (11)

Exploiting the statistical independence ofl11 andl21, we first cal-
culate the joint probability

Pr
�
l211 < σ2

nϑ , l211 + |l21|
2 ≥ ξ

	
=

Z σ2
nϑ

0

Z ∞

(ξ−t)+
pl2

11
(t) · p|l21|2

(u) du dt (12)

=

(
[σ2

nϑ]NR−1e−ξ/Γ(NR) , σ2
nϑ ≤ ξ

γ̃(NR − 1, σ2
nϑ) − γ̃(NR, ξ) , σ2

nϑ > ξ
(13)

from the pdf’s (4) and (5), where the notation(x)+ = max{x, 0}
was introduced. As expected, (13) corresponds to (6) forξ = 0,
while for σ2

nϑ → ∞ we get the complementary cdf of‖hk‖
2

Pr
�
l211 + |l21|

2 ≥ ξ
	

= 1 − γ̃(NR, ξ) = Γ̃(NR, ξ) . (14)

Hence, (11) is given by

PSNR1

�
ϑ
�� ľ222 = ξ

�
=

Pr
�
l211 < σ2

nϑ , l211 + |l21|
2 ≥ ξ

	
Pr {l211 + |l21|2 ≥ ξ}

=

(
[σ2

nϑ]NR−1e−ξ/Γ(NR, ξ) , σ2
nϑ ≤ ξ

1 − Γ̃(NR − 1, σ2
nϑ)/Γ̃(NR, ξ) , σ2

nϑ > ξ .
(15)

The unconditional cdf ofSNR1 can be computed by averaging
(15) overľ222. The required pdf of̌l222

pľ2
22

(ξ) =
2ξNR−1e−ξ

Γ(NR)
Γ̃(NR, ξ) (16)

is obtained by taking the derivative of (10). With this, we finally
arrive at

PSNR1
(ϑ) =

Z ∞

0

PSNR1

�
ϑ
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· pľ2
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=
[σ2

nϑ]NR−1Γ̃(NR, 2σ2
nϑ)

2NR−1Γ(NR)
+ 1 −

h
Γ̃(NR, σ2

nϑ)
i2

− 2Γ̃(NR − 1, σ2
nϑ) · γ̃(NR, σ2

nϑ) . (18)

Note that the integral in (17) must be split up into two parts,and
the first term in (18) belongs to the caseσ2

nϑ ≤ ξ in (15).

4.2. Outage Probability

In contrast to Section 3.2, the joint SNR distribution can not be
factorized anymore. However, lettingϑ = 2R − 1 and keeping in
mind thatSNR2 ≥ ϑ is equivalent tǒl222 ≥ σ2

nϑ, the exact outage
probability of ordered ZF-SIC

Pout = PSNR2
(ϑ) + Pr {SNR1 < ϑ , SNR2 ≥ ϑ} (19)

= 1 −
h
Γ̃(NR, σ2

nϑ)
i2

+
[σ2

nϑ]NR−1Γ̃(NR, 2σ2
nϑ)

2NR−1Γ(NR)
(20)

directly follows from (10) and (18).



5. MMSE-SIC WITHOUT ORDERING

In [12], it was demonstrated that SIC with MMSE filtering corre-
sponds to the ZF-SIC described in Section 3 if the matricesQ and
L are replaced byQ1 andL obtained from the QL decomposition
of the extended channel matrix

H =

�
H

σnINT

�
=

�
Q1

Q2

�
L . (21)

We will focus onSINR1 in the following, because the results for
the second layer remain unaffected as no interference needsto
be suppressed. Using the relations‖hk‖

2 = ‖hk‖
2 + σ2

n and
|hH

2 h1|
2 = l222|l21|

2, it can be shown that

SINR1 =
l211
σ2

n

− 1 =
l211
σ2

n

+
|l21|

2

l222 + σ2
n

. (22)

5.1. SINR Distribution

Similar to (12), the SINR distribution of the first layer conditioned
on l222 = ξ can be calculated by integrating over the joint pdf of
l211 and|l21|2

PSINR1
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ϑ
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(t) · p|l21|2
(u) dudt (23)

=γ̃(NR − 1, σ2
nϑ) −

e−[ξ+σ2
n]ϑγ̃(NR − 1,−ϑξ)

[−ξ/σ2
n]NR−1

. (24)

For ξ/σ2
n → ∞, the second term vanishes and we obtain the

cdf of SNR1 with ZF filtering. On the other hand, (24) tends to
γ̃(NR, σ2

nϑ) for ξ/σ2
n → 0, which is identical to the SNR distri-

bution after maximum ratio combining. Hence, the MMSE filter
benefits from small SNR’s on the second layer. The unconditional
cdf can then be determined from

PSINR1
(ϑ) =

Z ∞

0

PSINR1
(ϑ
�� l222 = ξ) · pl2
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(ξ) dξ (25)

=γ̃(NR − 1, σ2
nϑ) −

[σ2
nϑ]NR−1e−σ2

nϑ

Γ(NR) · [ϑ + 1]
. (26)

5.2. Outage Probability

The outage probability corresponds to (19) withSNR1 substituted
by SINR1. The joint probability therein is equal to (25) if the
lower limit of the integral is replaced byσ2

nϑ, which yields after
some manipulations

Pout =1 − Γ̃(NR − 1, σ2
nϑ) · Γ̃(NR, σ2

nϑ)

−
[σ2

nϑ]NR−1e−σ2
nϑ

Γ(NR) · [ϑ + 1]

�
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+
e−[ϑ+1]σ2

nϑ

[−ϑ]NR−1
γ̃(NR − 1,−σ2

nϑ2)

�
.

6. MMSE-SIC WITH OPTIMIZED ORDERING

We now finally turn to the case of ordered MMSE-SIC. The de-
tection is based on the QL decomposition ofȞ = HΠ, and the
ordering criterion (9) is still optimal, so we can simply combine
the approaches from the previous sections.

6.1. SINR Distribution

Along the lines of (12) and (23), we have to calculate the probabil-

ity Pr
n

l211
σ2

n
+ |l21|

2

ξ+σ2
n

< ϑ , l211 + |l21|
2 ≥ ξ

o
from the joint pdf of

l211 and|l21|2, and then divide it bỹΓ(NR, ξ) as in (15) to obtain
the conditional cdfPSINR1

�
ϑ
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�
. Then, taking the expec-

tation overľ222 and performing some simplifications finally leads
to

PSINR1
(ϑ) =1 −

h
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nϑ)
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with Υ(n, x) =

(
γ̃(n, x) , x ≤ 0

−Γ̃(n, x) , x > 0 .
(29)

6.2. Outage Probability

As for the case of ordered ZF-SIC, the expression for the outage
probability turns out to be an intermediate result during the calcu-
lation of (28). It is given by

Pout =1 −
h
Γ̃(NR, σ2

nϑ)
i2

+
(−σ2

n)NR−1

Γ(NR)
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(−σ2
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(30)

7. NUMERICAL RESULTS

In this section, we present numerical results for a system with
two transmit and receive antennas. Fig. 1 depicts the SINR dis-
tributions per layer for fixed noise varianceσ2

n and varying rate
ϑ = 2R − 1. As already noted before, optimal sorting approxi-
mately doubles the cdf of the second layer, while the curve ofthe
first layer is shifted to the right by3 dB for ZF-SIC. The impact
of MMSE filtering is most pronounced for strong noise. Using the
optimum detection order, a cliff atR ≈ 1 can be seen, and the cdf
of the first layer rapidly converges to that of the second one with
the inverted optimal orderinǧl222 = max{‖h1‖

2, ‖h2‖
2}. With-

out sorting, a constant gap remains. From Fig. 2, we find that the
performance of ordered MMSE-SIC is strictly dominated by the
second layer as long asR ≤ 1, thus it achieves full receive diver-
sity. However, for larger data rates the cdf ofSINR1 flattens, and
the diversity degree is equal to that of the other receiver variants.
Interestingly, this behavior can also be observed for uncoded bit
error rates [12]. Finally, Fig. 3 compares the outage probabilities
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Fig. 1. SINR distributions forσ2
n ∈ {0.01, 0.1, 1} (left to right).
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Fig. 2. SINR distributions forR ∈ {0.5, 1, 1.5} (right to left).

to the corresponding union bounds. Although the approximation
is very tight for sufficiently smallPout, it is usually even easier to
compute the exact solution than the sum of the layer-wise SINR
distributions.

8. CONCLUSION

A unified approach to the SINR and outage analysis of V-BLAST
with different SIC detection schemes has been presented. Were-
stricted to the case of two transmit antennas, for simplicity, be-
cause the integrals become quite involved forNT > 2. It was
demonstrated that the conditional cdf of the SINR on the firstlayer
can be calculated from the QL decomposition of the channel ma-
trix for all considered receiver structures. The unconditional cdf
was then found by averaging over the second layer. With this,it
could be shown that ordered MMSE-SIC achieves full receive di-
versity if the data rate per layer is not larger than one. As a byprod-
uct, we also obtained the joint SINR distribution, which enabled us
to compute the exact outage probabilities.
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Fig. 3. Exact outage probabilities and union bounds forR = 1.
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