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Abstract

Many sophisticated resource allocation strategies are based on the maximization of the weighted sum of data rates
for a given transmit power. While this problem can be easily solved for orthogonal multiple access schemes like
TDMA, it is much more complicated if users are separated in space using multiple antennas at the base station due
to the mutual coupling. In this paper, we propose a new projected conjugate gradient algorithm for the optimization
of the transmit filters. The power constraint is taken into account in the calculation of the search direction by
projecting the gradient onto a tangent hyperplane. Our method features excellent convergence properties when
applied to dirty paper precoding, and it may also be used for the optimization of linear precoders.

1 Introduction

The multicarrier technique OFDM is well established
for broadband wireless communication. In upcoming
standards, it will be combined with multiple input
multiple output (MIMO) schemes using more than
one transmit and receive antenna simultaneously. In
the downlink of a multi-user scenario, resources must
be allocated subject to a total power constraint. A
suitable optimization criterion is the sum of weighted
data rates. Many advanced scheduling algorithms can
be cast into this framework, e.g. taking the inverse
average throughputs as weighting factors leads to the
proportional fair policy [1], while choosing the queue
lengths as measure for the priorities reduces the risk
of buffer overflows [2]. A more sophisticated approach
aims at the minimization of the average packet delay
[3], and it is also possible to incorporate specific quality
of service demands of different applications.

It was shown in [4] that all possible rate allocations
for a given transmit power can be achieved by perform-
ing nonlinear dirty paper precoding at the base station.
Interestingly, the same rate region results if the roles
of transmitter and receivers are exchanged [5]. This
duality also holds for purely linear processing [6] and
its combination with nonlinear interference cancelation.
Efficient optimization algorithms usually solve a certain
problem for the uplink and transform the solution to
the downlink afterwards. After introducing the system
model in Section 2, we will discuss the properties
of the weighted sum rate for linear and nonlinear
precoding at the base station in Section 3. Existing
algorithms for the solution of this optimization problem
are reviewed in Section 4; some of these are only
suited for special cases, e.g. equal priorities or mobile
terminals with a single antenna. In Section 5, a novel

projected conjugate gradient algorithm is presented,
that converges extremely fast if dirty paper precoding
is employed and may also be used for design of linear
precoders. In contrast to [7], we optimize the transmit
filters instead of the covariance matrices, as they do not
have to be positive semidefinite. Additionally, the power
constraint is taken into account in the calculation of the
conjugate gradient search direction. Numerical results
for a typical indoor scenario are presented in Section 6.

2 System Model

We consider a MIMO-OFDM system withNU users
andNS subcarriers. The guard interval is assumed to be
of sufficient length, i.e. longer than the channel impulse
responses, but the corresponding rate and power loss
is neglected. The base station is equipped withNB

antennas and each mobile terminal hasNM antennas. It
is straightforward to generalize the results for mobiles
with different number of antennas. Although we are
mainly interested in the downlink, the duality of [5]
allows us to focus on an equivalent uplink channel with
the same power constraint instead, which is in general
easier to handle. Then, the receive signal at subcarrier
s is given by

y[s] =

NU
∑

u=1

Hu[s] xu[s] + n[s] (1)

where Hu[s] ∈ CNB×NM and xu[s] ∈ CNM denote
the dual channel matrix and transmit vector of useru,
respectively, andn[s] ∈ CNB represents normalized
additive white Gaussian noise with covariance matrix
E{n[s] n[s]H} = I. Furthermore, the transmit sig-
nal xu[s] follows from multiplying NL uncorrelated
unit variance Gaussian symbols with the filter matrix



Tu[s] ∈ CNM×NL , so the corresponding transmit co-
variance matrix becomes

Qu[s] = Tu[s] T H
u [s] , (2)

and the power constraint can be expressed as

NU
∑

u=1

NS
∑

s=1

tr(Qu[s]) =

NU
∑

u=1

NS
∑

s=1

∥

∥Tu[s]
∥

∥

2

F
≤ NSP (3)

with the average transmit power per subcarrierP . For
notational brevity, we collect all transmit covariances
and filters in the matricesQ andT , respectively.

3 Weighted Sum Rate

Assume that a certain priority is associated with each
user. Our goal is to assign resources such that the
sum of data ratesRu weighted by the prioritieswu

is maximized. Unfortunately, the rates can not be opti-
mized directly, but only through the transmit covariance
matricesQ or, equivalently, the filtersT . Hence, the
optimization problem may be written as

max
Q or T

NU
∑

u=1

wuRu subject to (3) (4)

Additionally, the data rates depend on the type of signal
processing at the base station. In the following, the
differences between linear and nonlinear methods are
examined in more detail.

3.1 Dirty Paper Precoding

In the downlink, all rate tuples inside the capacity
region can be achieved by nonlinear dirty paper pre-
coding. The users are encoded one after another, and
the known interference is presubtracted at the base
station. This is exactly the counterpart to successive
interference cancelation in the dual uplink.

We may assume without loss of generality that the
users are decoded in the orderk = NU, . . . , 1. Then, the
receive covariance matrix for thek-th user on subcarrier
s becomes

Φk[s] = I +

k
∑

u=1

Hu[s] Qu[s] HH
u [s]

= Φk−1[s] + Hk[s] Qk[s] HH
k [s] , (5)

whereΦk−1[s] with Φ0[s] = I represents the effective
noise including interference from subsequent users.
Consequently, the corresponding data rate becomes

Rdp
k [s] = log det

(

I + Φ−1
k−1[s] Hk[s] Qk[s] HH

k [s]
)

= log det(Φk[s]) − log det(Φk−1[s]) . (6)

The term containingΦk[s] appears inRdp
k [s] and

Rdp
k+1[s] with different signs. Hence, with the defini-

tions wNU+1 = 0 and∆k = wk − wk+1, the weighted

sum rate using dirty paper coding may be written as

WSRdp =
1

NS

NS
∑

s=1

NU
∑

k=1

∆k log det(Φk[s]) . (7)

For equal priorities, the decoding order is arbitrary.
However, in general the users must be sorted according
to their weighting factors such thatw1 ≥ . . . ≥ wNU

in order to maximize the weighted sum rate, i.e. the
user with the highest priority is decoded last [7]. Then,
∆k ≥ 0 ∀k, and, sincelog det(·) is a concave function,
(7) is concave with respect toQ. Furthermore, the
feasible set is convex. This assures that there exists a
unique optimum.

Besides fulfilling the power constraint (3), the trans-
mit covariance matrices additionally have to be positive
semidefinite, which can be achieved by setting all
negative eigenvalues ofQu[s] to zero. To this end, an
eigenvalue decomposition is required for all subcarriers
of each user, unless the mobile terminals have only a
single antenna. However, substituting (2) into (5), the
weighted sum rate may alternatively be expressed in
terms of the transmit filtersT , which can be chosen
arbitrarily as long as (3) is satisfied. Furthermore,
an orthogonal projection onto the power constraint
corresponds to a simple scaling. From this point of
view, it seems to be more appropriate to perform the
optimization overT instead ofQ. Indeed, the algorithm
presented in Section 5 is based on the transmit filters.
For later reference, we need the complex gradient of
WSRdp with respect toTu[s], which equals

Gu[s] = HH
u [s] Ψu[s] Hu[s] Tu[s] (8)

up to a scaling factor2 log(e)/NS. In (8), we introduced
the shorthand notation

Ψu[s] =

NU
∑

k=u

∆k Φ−1
k [s] = Ψu+1[s] + ∆u Φ−1

u [s] (9)

for the cumulative sum of the weighted inverse re-
ceive covariance matrices, that can be computed in a
recursive manner, starting withΨNU

[s] = ∆NU
Φ−1

NU
[s].

Likewise, the matrix inversion lemma yields the update
equation

Φ−1
k [s] = Φ−1

k−1[s]−Bk[s] (I + Ck[s])−1
BH

k [s] (10)

with Ak[s] = Hk[s] Tk[s], Bk[s] = Φ−1
k−1[s] Ak[s],

and Ck[s] = AH
k [s] Bk[s]. For the important case

where the maximum number of parallel data streams
per userNL is significantly smaller than the number
of antennas at the base stationNB, (10) is much more
efficient than directly invertingΦk[s]. In particular, for
NL = 1, no explicit matrix inversion is required at
all. To summarize, first the inverse matricesΦ−1

k [s] are
calculated in the orderk = 1, . . . , NU, and afterwards
the scaled gradientsGu[s] for u = NU, . . . , 1. The
intermediate results can be used to obtain the data rates
Rdp

k [s] = log det(I + Ck[s]) according to (6).
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Fig. 1. Weighted sum rate with dirty paper precoding.

Despite the apparent advantages of considering trans-
mit filters instead of covariance matrices when trying to
maximize the weighted sum rate, it should be noted that
the objective function is no longer concave. A simple
example forNU = 2 users withNM = 1 antenna
each andNS = 1 subcarrier is depicted in Figure 1.
User 1 has a higher priorityw1 = 5 w2, but user
2 has a better channel quality‖H2‖

2
F = 10 ‖H1‖

2
F,

and the total transmit power is set toP = 20 dB.
When plotted versus the transmit powersq1 = |t1|

2

and q2 = |t2|
2, the weighted sum rate is concave, as

mentioned before, and the power constraint is a straight
line. Obviously, the absolute phase of the transmit filters
is irrelevant, so we may assumetu to be real and
nonnegative. Although the function is not concave, it
can be observed from Figure 1 that moving along the
boundary in an ascent direction will ultimately lead to
a stationary point, which must be a global optimum,
because the mapping fromT to Q is unique (but not
vice versa). However, the transmit filters may not be
initialized with zeros, as the gradients in (8) vanish in
this case and one gets stuck at a suboptimal solution.

3.2 Linear Precoding

With linear precoding at the base station, all active users
interfere with each other, so in the dual uplink, all other
users contribute to the effective noise covariance matrix
of userk, which will be denoted as

Φ\k[s] = I +
∑

u6=k

Hu[s] Qu[s] HH
u [s]

= ΦNU
[s] − Hk[s] Qk[s] HH

k [s] , (11)

with ΦNU
[s] from (5). Similar to (10), the inverses can

be updated according to

Φ−1
\k

[s] = Φ−1
NU

[s] + Bk[s] (I − Ck[s])
−1

BH
k [s] (12)

with Bk[s] = Φ−1
NU

[s] Ak[s], and Ak[s] as well as
Ck[s] like before. The data rate on subcarriers is now
given by

Rlin
k [s] = log det(ΦNU

[s]) − log det
(

Φ\k[s]
)

= − log det(I − Ck[s]) . (13)
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Fig. 2. Weighted sum rate with linear precoding.

In contrast to (6), there are no terms that may cancel
each other in the weighted sum rate, so we just write

WSRlin =
1

NS

NS
∑

s=1

NU
∑

k=1

wk Rlin
k [s] . (14)

Note that (14) is in general not concave with respect
to the transmit covariance matrices, so there may be
several local maxima on the boundary of the feasible
set.

The gradient is slightly more complicated than be-
fore, as Tu[s] appears in all terms exceptΦ\u[s].
Substituting (13) into (14), we obtain after some sim-
plifications

Gu[s] = HH
u [s]

(

wu Φ−1
\u

[s] + Ψ [s]
)

Au[s] , (15)

where the scaling factor was again neglected and

Ψ [s] =

NU
∑

k=1

wk

(

Φ−1
NU

[s] − Φ−1
\k

[s]
)

(16)

does not depend on the user index, so it can be
calculated in advance using (12).

Figure 2 shows a contour plot of the objective func-
tion for the same system parameters as in Section 3.1.
At first sight, it seems to be quite similar to that in
Figure 1 when plotted against the transmit powers.
There is a maximum for approximately the same power
allocation as before, but a closer look reveals that the
global optimum is achieved forq2 = 0, i.e. serving only
the user with the higher priority and worse channel.
This becomes more obvious if the weighted sum rate
is expressed in terms of the transmit filters.

In Figure 3, the achievable data rates using linear
and nonlinear precoding are compared. Ifw1 > w2,
the optimal rate allocation with dirty paper coding
lies on the curve for the decoding order2 → 1,
which is switched otherwise. Except forw1 = w2,
where the order is arbitrary and even time-sharing
between different orders is allowed, the rates change
continuously with varying priorities. This is different
for the linear precoder, as the achievable rate region
is not convex. Once the relative weight of a user falls
below a certain limit, he should be switched off abruptly
in order to maximize the weighted sum rate.
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Fig. 3. Achievable rates for linear and dirty paper precoding with
both decoding orders in the dual uplink.

4 Existing Algorithms
Most publications related to the solution of (4) focus
on nonlinear precoding due to the problems involved
with the linear one. For the special case of equal pri-
orities, an iterative waterfilling approach based on the
eigenvalue decomposition of effective channel matrices
was presented in [8] for individual power constraints
per user. If only the total transmit power is fixed in
each iteration and all users are updated simultaneously,
it may be necessary to average the transmit covariance
matrices over the current and previous [9]. The speed
of convergence was significantly increased by a simple
approximate line search in [10], which is referred to
as state of the art in [11]. Instead, the covariance
matrices of randomly selected user pairs are optimized
in [12], while in [13] users are successively updated for
fixed waterfilling level, which is then adjusted using a
bisection search until the desired total transmit power
is reached.

For arbitrary weighting factors, the basic concepts
of [9] and [10] are adopted in [14] for single-antenna
mobile terminals, while the dual decomposition prin-
ciple of [13] is used in [15] for the same scenario
in combination with OFDM. Note that the whole al-
gorithm consists of three nested loops, where each
has to be repeated until a certain accuracy is reached.
Nevertheless, these waterfilling-based procedures are
supposed to be significantly faster than the more general
method of [16], that performs a line search along the
principal eigenvector of the gradient. Recently, a pro-
jected conjugate gradient algorithm based on the trans-
mit covariance matrices was proposed in [7], that was
originally developed for pure sum rate maximization in
[17]. As already mentioned in Section 3.1, eigenvalue
decompositions are required for the projection ofQ

onto the feasible set. An additional drawback will be
explained in the following section.

In [18] an alternating optimization of transmit and re-
ceive filters is performed based on the uplink-downlink
duality. Even though a small number of iterations seems
to be sufficient, it should be noted that aNUNL ×

Algorithm 1 Projected Conjugate Gradient Algorithm

1: Tu[s] =
√

P
NUNL

INM×NL
∀u, s

2: S = 0, ρ = 1, α = 1
3: repeat
4: StoreTold = T , Sold = S, ρold = ρ
5: Calculate gradientG using (8) or (15)
6: Normalize gradientḠ =

√

NSP
‖G‖2

F

G

7: Project gradientǦ = Ḡ −
tr(T HḠ)
tr(T HT ) T

8: Calculate Frobenius normρ = ‖Ǧ‖2
F

9: Update search directionS = Ǧ + ρ
ρold

Sold

10: Step in search directioñT = Told + αS

11: Normalize transmit filtersT =
√

NSP

‖T̃ ‖2

F

T̃

12: if WSR − WSRold < δ/2 then
13: Decrease step sizeα and setS = Ǧ

14: Go to step 10
15: end if
16: until desired accuracy reached

NUNL matrix must be inverted for the filter conversion
each time the transmit direction is reversed, so the
complexity grows roughly cubic in the number of
users. A simple projected gradient method based on
the transmit filtersT was used in [6] for the related
weighted sum mean square error minimization problem,
and lately also for sum rate maximization in [11], where
it performed comparable to the approach of [10]. One
problem of such gradient based strategies is the proper
choice of the step size. In [11], it is decreased as soon
as the objective shows no improvement in order to
ensure convergence. However, a small step size results
in slow speed of convergence. An advantage of the
conjugate gradient method described next is the implicit
adjustment of this step length.

5 Proposed Algorithm
We propose a projected conjugate gradient algorithm
for the optimization of the transmit filtersT , so in
contrast to [7], no eigenvalue decompositions are re-
quired. The whole procedure is outlined in Algorithm 1,
where the iteration index has been omitted in order
to simplify notation and emphasize the fact that most
operations can be performed in place. Apart from the
search direction, the method is similar to that in [11].
It may also be used for the design of linear precoders,
although convergence to the global optimum can not be
guaranteed in this case.

First, the gradient is calculated according to the type
of precoding. The normalization ensures that the speed
of convergence is almost independent of the transmit
power, as the Frobenius norm of the gradient tends
to be rather small for largeP . A key feature of our
algorithm is the projection of the gradient such that
Ǧ is orthogonal toT . In the optimum, the gradient
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Fig. 4. Illustration of the gradient projection

is in general not zero, but perpendicular to the power
constraint, i.e.‖Ǧ‖2

F = 0 and ‖G‖2
F ≥ 0. This is

illustrated in Figure 4 for a simple example with two
single-antenna terminals. If the projection was omitted
as in [7], the old search directionSold would always
significantly contribute to the new one, and the algo-
rithm may even try to step out of the optimum again.
This can not happen with our modified Fletcher-Reeves
deflection [19] based on the projected gradientǦ. The
updated search direction has two desirable properties:
If Ǧ andSold point into similar directions, they add up
constructively and the effective step length is increased.
On the other hand, oscillations around the optimum,
that are quite common for steepest ascent methods,
are prevented to a large extend by using the conjugate
gradient.

The transmit filters are updated usingS and normal-
ized such that the power constraint is fulfilled. If the
weighted sum rate does not show a sufficient improve-
ment, the step sizeα is reduced by a factor2 and the
projected gradient is used as the new search direction.
In general, the increase of the objective function should
be related to the linear increment

δ = 2 log(e)/NS · Re
{

tr
(

(T − Told)
H

G
)}

, (17)

in line 12, which is known as the Armijo condition for
an approximate line search [7]. However, for dirty paper
coding we usually observed even faster convergence by
simply settingδ = 0 as in [11].

6 Numerical Results
For the performance evaluation, we consider the sce-
nario depicted in Figure 5. There areNU = 50 users
in a 20 × 10 m room, e.g. a large office or a class
room. Each mobile station hasNM = 4 antennas
arranged on a square with10 cm side length. The base
station is located at the ceiling3 m above the mobiles
and consists of two crossed linear arrays with four
antennas each, soNB = 8. The carrier frequency is
5.2 GHz, and the total bandwidth of40 MHz is divided
into NS = 8 subcarriers. The channel matrices are
derived from a simple single-bounce model. To this

Base station
u = 1 u = 10

u = 5020m

1
0

m
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Fig. 5. Illustration of the simulation setup
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Fig. 6. Convergence of the proposed algorithm for differentweight
distributions and number of data streams.

end, 200 fixed scatter objects are randomly distributed,
and additionally 25 scatterers are placed on each wall
around the points of reflection for a certain user. The
channel coefficients are normalized such that their
average squared magnitude is equal to one, and the total
transmit power per subcarrier is set toP = 20 dB.

In Figure 6, the convergence behavior of our pro-
jected conjugate gradient algorithm is shown. The
number of objective function evaluations is used as a
measure for the complexity, because this requires an
update of the inverse receive covariance matrices. In
addition to the priorities given in Figure 5, we also
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Fig. 7. Rate allocations for different transmit strategies.

simulated the pure sum rate using equal weighting
factors, for comparison. Furthermore, the number of
data streams is varied. For dirty paper precoding, the
method always converges to the global optimum within
about 4 iterations. Compared to the covariance-based
sum rate maximization algorithm of [10], it takes less
than half the run time to reach a certain accuracy for the
given system parameters. Restricting the number of data
streams per user toNL = 1 leads to a further speed-
up without sacrificing much performance, especially
for equal priorities. However, when applied to linear
precoding, the convergence speed is much lower. The
step sizeα must be decreased several times during the
initial iterations to reach an improved objective function
value. Although the algorithm does not necessarily find
the global optimum, the resulting sum rate is quite close
to that of nonlinear precoding. The weighted sum rate,
on the other hand, is significantly smaller. This can be
intuitively explained by looking at the rate allocations
in Figure 7. For the pure sum rate, the active users
are just chosen according to their channel qualities.
However, the objective function linearly depends on
the priorities, while the channels appear only in the
logarithm. Thus, it is in general advisable to support
high priority users, even if their channels are not
particularly good. In our example, the usersu ∈ {7, 30}
are relatively far away from the base station, but their
weighting factors are fairly large. Using dirty paper
coding, these users experience only interference from
users with lower priorities, so they can still achieve
comparatively high data rates. This is not possible
with linear precoding anymore, because here all users
interfere with each other.
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