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Abstract— In this paper we will derive an algorithm, which
estimates the channel blindly exploiting the statistical depen-
dencies of the transmitted signal caused by channel coding.
An additional feature of this algorithm is that in contrast to
most blind deconvolution algorithms phase correct estimates can
be obtained. The error performance of the proposed algorithm
depends on the characteristics of the channel code. If the code
has appropriate properties, which is true for some convolutional
codes as well as for several block codes, e.g. especially low-density
parity check codes (LDPC), the proposed algorithm performs
similarly or slightly better in comparison to higher order statics
based algorithms.

I. INTRODUCTION

Beside subspace algorithms and methods based on the
approximation of the maximum likelihood criterion, most
blind deconvolution algorithms are based on the assumption
of statistically independent sources. The channel causes a
superposition of source signals weighted by channel coeffi-
cients such that this property is distorted. Thus, a channel
equalizer has to restore the statistical independence at the
channel output. Due to the fact that a measure for the statistical
independence can be obtained from higher orders statistics
(HOS), these methods are often called HOS based algorithms
[1],[2]. A good survey of blind channel estimation can be
found in [3],[4].

Focussing on communications the data are usually channel
encoded before transmission in order to protect them against
bit errors. The encoding causes statistical dependencies. There-
fore, the assumption of independent source signals does not
hold exactly in this case. The impact of encoding on HOS
based blind channel identification was examined in [5].

However, the key idea of this paper is to exploit the
statistical dependencies caused by channel encoding to identify
the channel blindly. As we will see, if the code has special
properties as shown in Section III, in contrast to HOS based
methods phase correct estimation is also feasible. This paper
is organized as follows. In Section II the transmission model
is presented. In Section III the concept of ”logic strings” is
introduced in order to describe the statistical dependencies
caused by channel coding. In Section IV we will derive an
algorithm to blindly estimate the channel exploiting channel
coding. The performance of the algorithm is evaluated on
the basis of simulation results in Section V and the paper
is concluded in Section VI.

II. SYSTEM MODEL
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Fig. 1. System Model

Consider an information data sequence of binary bits b =
[b(1), · · · , b(I)]T of length I , where b(i) ∈ {0, 1}. As shown
in Fig. 1 the bits are encoded in order to protect them against
errors. The encoded data of length K are denoted by c =
[c(1), · · · , c(K)]T , where K > I , c(k) ∈ {0, 1} and C is the
set of all valid code words.

The relation between origin and encoded data is given by

c(k) = gk,1b(1) ⊕ gk,2b(2) ⊕ · · · ⊕ gk,Ib(I), (1)

where gk,i ∈ {0, 1} and ⊕ is the XOR operator. Therefore, a
vector matrix notation is given by

c = (Gb)mod2

, (2)

where gk,i is the k-th row and i-th column element of G.
The encoded data c are interleaved by

d = Pc, (3)

where P ∈ {0, 1}K×K contains by definition exactly one non-
zero element in each row and column. The row index of the
non-zero element in the k-th column will be denoted by π(k),
such that c(k) = d(π(k)) holds.

The encoded bits are mapped onto BPSK symbols s(k) by
assigning 0 ⇒ 1 and 1 ⇒ −1.

The transmission is characterized by the discrete time
channel impulse response (CIR) hκ of order H including pulse
shaping and receive filter. The receiver input can be expressed
as

r(k) =

H∑

κ=0

hκs(k − κ) + n(k). (4)

III. PROPERTIES OF ENCODED SEQUENCES

A. The Concept of Logic Strings

In order to exploit the statistical dependencies caused by
the channel coding, we make use of a concept termed as



logic strings1 which is defined as follows:

Definition 1: A set of encoded bits is called logic string,
when the XOR-conjunction of its elements always gives a
zero for each arbitrary original data sequence.

In order to explain this definition, let us assume that a rule
exists drawing N logic strings of length M according to an
encoding scheme. We denote by A the set of cardinality N
containing all time indices corresponding to logic strings of
this type. Let [τ1,n, τ2,n, · · · , τM,n] ∈ A be the time indices
corresponding to the n-th valid logic string. Then,

c(τ1,n) ⊕ c(τ2,n) ⊕ · · · ⊕ c(τM,n) = 0 (5)

holds for n = 1, · · · , N .
After interleaving the string d(π1,n)⊕d(π2,n)⊕d(πM,n) =

0 is equivalent to (5), where πn,m = π(τn,m) and
the set of valid logic strings is determined by B =
{[π(τ1,n), π(τ2,n), · · · , π(τM,n)] | [τ1,n, τ2,n, · · · , τM,n] ∈
A}. After mapping the encoded bits onto signal space, the
XOR operator in (5) can be replaced by multiplications such
that

s(π1,n)s(π2,n) · · · s(πM,n) = 1 (6)

holds. Furthermore, the M -th order moments for any
k1, k2, · · · , kM 6∈ B vanish, i.e.

E{s(k1)s(k2) · · · s(kM )} = 0. (7)

B. Asymmetry

The goal of phase correct channel estimation can be
attained, if the encoding scheme is non-symmetric, where the
term ”asymmetric” is defined as follows:

Definition 2: A code is called asymmetric if the negation
of each valid code word is not a valid code word, i.e.

c ∈ C ⇒ c 6∈ C. (8)

Note that if the code incorporates a logic string of odd length
M , the code is always non-symmetric. The requirements will
become more clear in the example given below.

C. Example: Convolution Code

As example we examine the half rate (7, 5)-code. The
encoding rule for odd indexed c can be expressed as

c(2n−1) = b(n)⊕b(n+1)⊕b(n+2) ; n = 1, · · · , N (9)

and for even indexed c as

c(2n) = b(n) ⊕ b(n + 2) ; n = 1, · · · , N (10)

1In terms of coding theory, the concept of logic strings is closely related to
the representation of the parity check matrix and the null space corresponding
to the code space, respectively. An important difference is that the length of a
set of logic strings is fixed, whereas e.g. the number of ones in each column
vector of a syndrome matrix may vary.

A logic string of length 5 for this encoder is given by

c(2n − 1) ⊕ c(2n) ⊕ c(2n + 2) ⊕ c(2n + 3) ⊕ c(2n + 4)

= b(n) ⊕ b(n + 1) ⊕ b(n + 2)

⊕b(n) ⊕ b(n + 2)

⊕b(n + 1) ⊕ b(n + 3)

⊕b(n + 2) ⊕ b(n + 3) ⊕ b(n + 4)

⊕b(n + 2) ⊕ b(n + 4)

= 0. (11)

A rule displaying all time indices τm,n corresponding to the
set of N logic strings of length M = 5 is given by

τm,n =

{

2n + m − 2 m = 1, 2

2n + m − 1 m = 3, 4, 5
. (12)

There may exist other logic strings of higher length, which can
be found by a heuristic search. However, this is the shortest
string for this code. Due to the odd number of elements of the
logic strings defined in (12), this code is also non-symmetric.

IV. ALGORITHM

On the basis of the results of Section III we are now able
to derive a simple blind channel estimator for the l-th channel
coefficient exploiting the properties of (6) and (7). As we will
see, an estimate of the l-th channel gain can be obtained by
the expectation of the product of the received data according
to an arbitrary logic string:

ȟl = E

{

r(π1,n + l)
P+1∏

m=2

r(πm,n)
M∏

m=P+2

r∗(πm,n)

}

, (13)

where P = (M − 1)/2. Note that apart from the first factor
the number P of the complex conjugated factors is equal to
the number of non complex conjugated factors. This relation
holds only, if the length of the concerning logic string is odd.
Remember that in this case the code is always asymmetric and
therefore we can achieve a phase correct channel estimation.
As we will see, the complex conjugation of P factors in (13)
yields a phase correct estimator.

After replacing r(k) in (13) by the r.h.s of (4) we obtain

ȟl = E

{(
H∑

κ1=0

hκ1
s(π1,n + l − κ1) + n(π1,n + l)

)

P+1∏

m=2

(
H∑

κm=0

hκm
s(πm,n − κm) + n(πm,n)

)

(14)

M∏

m=P+2

(
H∑

κm=0

h∗
κm

s∗(πm,n − κm) + n∗(πm,n)

)}

.

In order to obtain a more illustrative expression, we want to
exchange products and sums in (14). Since the noise is i.i.d, all
elements incorporating noise vanish. Therefore, in the sequel
noise will be neglected.

Let K = {(κ1, · · · , κM )|0 ≤ κm ≤ H} be the set of M -
tuples with cardinality (H+1)M consisting of all combinations



of indices which occur in (14). Now, (14) can be rewritten as
(15). Assuming that no logic string is accidentally2 caught in
v(κ1, · · · , κM ) in (15), due to (7) only the left term assigned
to the logic string n remains such that

ȟl = hl|h0|
M−1. (16)

Hence, the estimate ȟl consists of the true channel coefficient
hl, which is weighted by a real positive factor |h0|

M−1.
Unfortunately, in real applications the expectation in (15) is
not available. Thus, it must be approximated by averaging over
N logic strings.

ȟl =
1

N

N∑

n=1

r(π1,n + l)

P+1∏

m=2

r(πm,n)

M∏

m=P+2

r∗(πm,n)(17)

= hl|h0|
M−1 1

N

N∑

n=1

M∏

m=1

s(πm,n) (18)

+
∑

(κ1,··· ,κM )∈K\(l,0,··· ,0)

u(κ1, · · · , κM )v̂(κ1, · · · , κM ),

where

v̂(κ1, · · · , κM )

=
1

N

N∑

n=1

(

s(πm,n + l − κ1)

M∏

m=2

s(πm,n − κm)

)

(19)

In the face of a finite number N , the term v̂(κ1, · · · , κM ) does
not become exactly zero for (κ1, · · · , κM ) ∈ K\ (l, 0, · · · , 0).
Therefore, an error remains weighted by u(κ1, · · · , κM ). The
error power depends on the characteristics of the channel and
how it weights the useful part in relation to the remaining error.
However, in the case of ill conditioned channel characteristics
(|h0| � |hκ| : κ 6= 0) the performance of the estimator might
become even worse. In order to combat this effect, we suggest
to insert a linear equalizer e = [eL, · · · , e0]

H of order L at
the receiver.

On the basis of the channel estimate the filter coefficients
can be adjusted. Otherwise, an appropriate linear filter e may
assist reducing the impact of the error in v̂(κ1, · · · , κM ).
Therefore, we suggest an iterative two-step algorithm, where
channel estimation and filter adaptation are repeated alter-
nately until the algorithm converges.

Sampling L + 1 data at the receiver, we obtain

r(k) = Hs(k) + n(k) (20)

2In order to limit the effort of decoding, the encoder usually shows a
periodical structure. It can be shown that in these case also the logic strings
may have a periodical structure. Due to the fact that the channel causes a
weighted superposition of encoded data, it is not unlikely that beside the
logic string of interest a parasitic logic string is caught. In order to avoid this
effect interleaving the encoded data is mandatory for our approach.

where s(k) = [s(k − L − H + k0), · · · , s(k + k0)] with k0

is an arbitrary delay in the interval H < k0 < L, n(k) =
[n(k−L), · · · , n(k)] and n(k) is additive white gaussian noise
of power E{|n(k)|2} = σ2

n. The (L + 1×L + H + 1)-matrix
H is defined by

[H]ν,µ =

{

hH+ν−µ : 0 ≤ ν − µ ≤ H

0 : else
. (21)

Let us denote the output of the filter by

y(k) = e
H
r(k)

= e
H
Hs(k) + e

H
n(k)

= w
H
s(k) + η(k), (22)

where w = [wL+H , · · · , w0]
H is the joint impulse response

of channel and filter and η(k) = e
H
n(k).

The channel estimate can be improved using the outputs of
the filter by replacing the M − 1 last factors in (17) by the
filter outputs we obtain (23), where L = {(κ1, · · · , κM )} with
0 ≤ κ1 ≤ H and 0 ≤ κm ≤ H + L for m = 2, · · · ,M is the
set of M -tuples with cardinality (H +1)(H +L+1)M−1 and

ũ(κ1, · · · , κM ) = hκ1−l

P+1∏

m=2

wκm

M∏

m=P+2

w∗
κm

. (24)

From (23) and (24) it can be seen, that if e nearly represents
the ideal channel equalizer, the factors ũ(κ1, · · · , κM ) for
(κ1, · · · , κM ) ∈ L \ (l, 0, · · · , 0) weighting the remaining
errors become very small.

On the basis of the channel estimate the filter’s coefficients
can be adjusted, e.g. by the MMSE approach [6] with

e
′ = Φ

−1
rr h̃, (25)

where h̃ = [0, · · · , 0, ĥ(0), · · · , ĥ(H), 0, · · · , 0]T is a vector
of length L with k0 zeros at the beginning and Φrr =
E{r(k)rH(k)} is the covariance matrix of the receive signal.
In order to get close to the absolute of the true CIR and to
avoid a bit overflow, e

′ should be normalized by

e =
e
′

√

e′HΦrre
′
. (26)

In the initial step e should contain at least one non-zero entry
at index H < k0 < L in order to ensure a non zero entry of the
joint impulse response w at index k. As initialization, e0 =
δk0

seems to be a good choice, where δk0
is an unit vector

and the k0-th element is 1 . The algorithm is summarized in
Tab. I.

ȟl = hl|h0|
M−1E

{
M∏

m=1

s(πm,n)

}

+
∑

(κ1,··· ,κM )∈K\(l,0,··· ,0)

hκ1+l

P+1∏

m=2

hκm

M∏

m=P+2

h∗
κm

︸ ︷︷ ︸

u(κ1,··· ,κM )

E

{

s(πm,n + l − κ1)

M∏

m=2

s(πm,n − κm)

}

︸ ︷︷ ︸

v(κ1,··· ,κM )

(15)



TABLE I

PHASE CORRECT BLIND DECONVOLUTION EXPLOITING CHANNEL CODING

(BDCC)

1 : Initialize e0 = δk0
and the iteration counter ι = 0.

2 : repeat
3 : Estimate the channel by (23).
4 : Update the linear equalizer by (25) and (26).
5 : Set ι = ι + 1.
6 : end

V. SIMULATION RESULTS

The estimation performance is evaluated over normalized
mean squared error (NMSE) between the true channel and the
estimated channel, which is defined as

NMSE =

∑H

l=0 |hl − ĥl|
2

∑H

l=0 |hl|2
. (27)

The data are encoded by a (75)-convolutional (conv75) en-
coder with rate 1/2, which comprises K/2 − 1 logic strings
of length M = 5, and by a single parity check code with
rate 2/3 (spcc), which comprises K/3 logic strings of length
M = 3. As reference, the super exponential algorithm (SEA)
[2] is used, which is a typical HOS-based method. As in our
approach, SEA will also consist of several iterations, where
jointly a linear filter is adapted and the channel is estimated.
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Fig. 2. NMSE vs. SNR

In simulations we used a 3-tap Rayleigh fading channel with
constant coefficients for a block of K = 400 symbols (block
fading channel). The order of the linear filter was L = 10 and
the algorithms was stopped after 5 iterations. The results are
averaged over 5000 channel realizations.

Fig. 2 shows the NMSE performance versus signal to noise
ratio (SNR). It can be seen, that the performance of the blind
deconvolution exploiting channel coding (BDCC) depends
strongly on the length M of the particular logic strings. The
reason may be on the one hand that the number of terms,
which are accumulated in (23) is (H +1)M and consequently
the performance is very sensitive with respect to M . On the
other hand also the impact of noise on the estimation must be
taken into account. For small M the BDCC performs similarly
or slightly better than SEA.

VI. CONCLUSION

In this paper we have derived an iterative algorithm, which
blindly identifies the channel exploiting the statistical depen-
dencies of the transmitted signal caused by channel coding.
The algorithm jointly updates channel estimates and adapts a
linear equalizer. For asymmetric channel coding, the algorithm
delivers phase correct estimates. It was shown by simulations,
that the performance of the proposed algorithm depends on
the properties of the code and the length of its logic strings,
respectively. In the case of short logic strings the algorithm
performs slightly better than the HOS based methods and
additionally delivers phase correct estimates.
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ĥl =
1

N

N∑

n=1

r(π1,n + l)

P+1∏

m=2

e
H
r(πm,n)

M∏

m=P+2

r
H(πm,n)e

= hl|w0|
M−1 1

N

N∑

n=1

M∏

m=1

s(πm,n) +
∑

(κ1,··· ,κM )∈L\(l,0,··· ,0)

ũ(κ1, · · · , κM )v̂(κ1, · · · , κM )

≈ hl|w0|
M−1, (23)


