Matlab Hinweise

Digitale Signal verarbeitung ${\rm I/II}$

- SS 2010 -

Henning Paul

NW1, Raum N2360, Tel.: 0421/218-62399 eMail: paul@ant.uni-bremen.de

Universität Bremen, FB1
Institut für Telekommunikation und Hochfrequenztechnik
Arbeitsbereich Nachrichtentechnik
Prof. Dr.-Ing. A. Dekorsy
Postfach 33 04 40
D-28334 Bremen

WWW-Server: http://www.ant.uni-bremen.de

Version vom 28. Juli 2010

A Folien zur Übung

Zuordnung von Zahlen, Vektoren und Matrizen

k = 1; Variable k wird der Wert 1 zugewiesen, Semikolon unterdrückt Bildschirmausgabe

k = 1:20; Array (Zeilenvektor) k mit den Elementen 1 bis 20

k = 2:5:25; Array (Zeilenvektor) k mit Werten von 2 bis 25 mit der Schrittweite 5 k = [2,7,12,17,22]

k = [1,2,3]; Array (Zeilenvektor) k = (1,2,3)

k = [1;2;3]; Array (Spaltenvektor) $k = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$

k = [1,2,3;7,1,4;3,6,9] Matrix $k = \begin{pmatrix} 1 & 2 & 3 \\ 7 & 1 & 4 \\ 3 & 6 & 9 \end{pmatrix}$

k = k(:); k in Spaltenvektor wandeln (Spaltenweise von links nach rechts)

 $k = \begin{pmatrix} 1 \\ 7 \\ 3 \\ 2 \\ 1 \\ \vdots \end{pmatrix}$

x = k(1); x erstes Element aus k zuweisen (Index beginnt mit 1 nicht mit 0 wie bei C)

k = [A,B,C]; $\text{Matrix } k = \left(\begin{array}{ccc} A & B & C \end{array}\right) = \left(\begin{array}{ccc} 1 & 2 & 3 \\ 7 & 1 & 4 \\ 3 & 6 & 9 \end{array}\right) \text{ mit den Spaltenvektoren } A = \left(\begin{array}{c} 1 \\ 7 \\ 3 \end{array}\right), B = \left(\begin{array}{c} 2 \\ 1 \\ 6 \end{array}\right), C = \left(\begin{array}{c} 3 \\ 4 \\ 9 \end{array}\right)$

Zuordnung von Zahlen, Vektoren und Matrizen

x = k(1:3,1:2);x wird aus k 1. bis 3.Zeile jeweils 1. und 2.Element gebildet

k = zeros(y,x);Erzeugt Matrix mit y Zeilen und x Spalten initialisiert mit 0.

Erzeugt Z x Z Matrix initialisiert mit 0. k = zeros(z);

k = ones(y,x);Erzeugt Matrix analog zu zeros() initialisiert mit 1.

Operatoren

Addition, Subtraktion

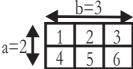
(Matrix-)Multiplikation/ Division / Potenz

Elementweise Multiplikation/Division/Potenz

Grafik

stem(x,y)

plot(x,y,option)



Analog zu stem(), mit zusätzlichen Optionen (Farbe, Linien-Form..)

y-Werte über x-Achse aufgetragen.

stem(y) erzeugt eigene X-Achse mit der

Länge von y

subplot(a,b,c) unterteilt das Bild und legt aktuelles Teilbild fest

Grafik

figure	Öffnet ein neues Figure.	
figure(x)	Figure mit der Nummer x wird als aktuelles Figure gesetzt.	
hold on	Aktuelles Bild wird nicht mehr überschrieben. Neue Plots werden eingefügt.	
hold off	Aktuelles Bild wird freigegeben. Nur hold springt zw. frei-gegebenen und festen Zustand hin und her.	
grid	Gitter an aus, analog zu hold	
axis([x_min x_max y_min y_mlaeglt)Achsenausschnitt fest		
<pre>xlabel('Text')</pre>	$X-A chsenbeschriftung, \ (ylabel(), zlabel(), title() \ analog)$	

Systemtheorie

[h,w]= freqz(b,a,l)	Berechnung des Frequenzgangs h und der entsprechenden Kreisfrequenzen w für ein digitales Filter, dargestellt durch die Vektoren b und a.
zplane(z,p)	Darstellung der Pol- und Nullstellen eines zeitdiskreten Systems. z: Spaltenvektor der Nullstellen, p: Spaltenvektor der Polstellen.
zplane(b,a)	Darstellung der Pol- und Nullstellen eines zeitdiskreten Systems. b: Zeilenvektor der Zählerkoeffizienten, a: Zeilenvektor der Nennerkoeffizienten.
[h,t] = impz(b,a)	Berechnung der Impulsantwort eines Filters, dargestellt durch die Vektoren a und b.
w = conv(u,v)	Faltung des Vektors u mit dem Vektor v.
y = filter(b,a,X)	Filterung des Datenvektors X mit einem Filter, dargestellt durch die Vektoren a und b.

wichtige	Funktionen

i, j, pi	vorgegebene Konstanten (können überladen werden)	
real(x)	Real-Teil von x	
imag(x)	Imaginär-Teil von x	
help fkt	gibt Hilfstext zur Funktion fkt, z.B: help imag	
cos(x)	Kosinus (x in rad) analog für $sin(x)$, $tan(x)$, $arcos(x)$	
fft(x,N)	N-Punkte FFT. Falls N größer als Länge von X auffüllen mit Nullen. Analog ifft, N optional.	
[a,b]=size(x)	gibt die Größe von x aus $(a = \text{Anzahl der Zeilen}, b = \text{Anzahl der Spalten})$	
length(x)	Länge des Vektors x , entspricht $max(size(x))$	
sum(x)	Summe des Vektors x bzw. Summe aller Spalten der Matrix x	
max(x)	Bildet das Maximum, analog zu sum(x) bzw. min(x)	
Steuerung des Programmablaufs		
<pre>for i = a:s:e other statements end;</pre>	for - Schleife mit Anfangswert a und Endwert e sowie der optionalen Stufigkeit s . Anstelle dessen sind auch Konstrukte der Form $i=[x_1x_2x_n]$ zulässig. Schleife wird n -mal durchlaufen, mit den Indizes x_1 x_2 x_n	
if A1; statements1 elseif A2 statements2 else statements3 end;	if Konstrukt, verzweigt den Programmablauf. Ausdrücke (Bedingungen) $A1$ und $A2$ haben oftmals die Form: $a>b,\ a==b,\ a<=b$ Die else und elseif- Anweisungen sind optional. Siehe hierzu Bild 1	

Funktionen-Header

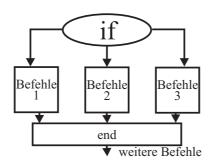
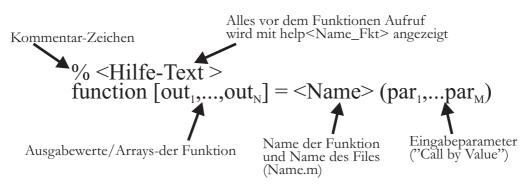



Abbildung 1: if-Verzweigungen

Im Programm erfolgt dann der Aufruf:

$$[out_1,...,out_N] = (par_1,...par_M)$$