ITG Fachgruppe "Angewandte Informationstheorie"

Program of the 39. Meeting, 13.06.2023

Deep Learning for Communications —

Universität Stuttgart, Institut für Nachrichtenübertragung Pfaffenwaldring 47, Gebäude ETI2, Raum 2.314, 70569 Stuttgart-Vaihingen

rianch	walaring 47, Ocbadae Eriz, Naam 2.314, 70303 Stattgart Valiningen
9:00 – 9:05	Dirk Wübben, Department of Communications Engineering, University of Bremen
9:05 – 9:15	Welcome Stephan ten Brink, Institute of Telecommunications, University of Stuttgart Welcome by the host
Cossien	vercome by the nost
Session I	
9:15 – 9:55	Florian Euchner, Institute of Telecommunications, University of Stuttgart Tutorial: Dissimilarity Metric-Based Wireless Channel Charting
9:55 – 10:15	Valentina Rizzello, Chair of Signal Processing Methods in Munich, TU München
	User-Driven Adaptive CSI Feedback With Ordered Vector Quantization
10:15 - 10:35	Yi Song, Communication and Information Theory Chair, TU Berlin
	Deep-Learning Aided Channel Training and Precoding in FDD Massive MIMO with Channel Statistics Knowledge
10:35 – 11:00	Coffee break
10:35 – 11:00 Session II	
Session II	Coffee break Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering,
Session II 11:00 – 11:20	Coffee break Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering, University of Bremen Interference Prediction in Unconnected In-X Mobile 6G Subnetworks
Session II 11:00 – 11:20 11:20 – 11:40	Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering, University of Bremen Interference Prediction in Unconnected In-X Mobile 6G Subnetworks Using Data-Driven Approach
Session II 11:00 – 11:20	Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering, University of Bremen Interference Prediction in Unconnected In-X Mobile 6G Subnetworks Using Data-Driven Approach Daniel Plabst, Institute for Communications Engineering, TU München NN Successive Interference Cancellation for Channels with ISI and a
Session II 11:00 – 11:20 11:20 – 11:40 11:40 – 12:00	Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering, University of Bremen Interference Prediction in Unconnected In-X Mobile 6G Subnetworks Using Data-Driven Approach Daniel Plabst, Institute for Communications Engineering, TU München NN Successive Interference Cancellation for Channels with ISI and a Memoryless Nonlinearity
Session II 11:00 – 11:20 11:20 – 11:40	Moritz Fischer, Institute of Telecommunications, University of Stuttgart Adaptive Neural Network-based OFDM Receivers Pramesh Gautam, Department of Communications Engineering, University of Bremen Interference Prediction in Unconnected In-X Mobile 6G Subnetworks Using Data-Driven Approach Daniel Plabst, Institute for Communications Engineering, TU München NN Successive Interference Cancellation for Channels with ISI and a

ITG Fachgruppe "Angewandte Informationstheorie"

Session III	
13:20 - 13:40	Jannis Clausius, Institute of Telecommunications, University of Stuttgart
	Component Training of Turbo Autoencoders
13:40 - 14:00	Muah Kim, TU Dresden
	Learning End-to-End Channel Coding with Diffusion Models
14:00 - 14:20	Sisi Miao, Communications Engineering Lab, KIT
	Neural Belief Propagation Decoding of Quantum LDPC Codes Using
	Overcomplete Check Matrices
14:20 - 14:40	Andrej Rode, Communications Engineering Lab, KIT
	Deep-Learning based Constellation Shaping for Optical Communi-
	cations with Phase Noise
14:40 – 15:05	Coffee break
Session IV	
Session IV 15:05 – 15:25	Jan Christian Hauffen, Communication and Information Theory Chair,
	TU Berlin
	•
	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link
15:05 – 15:25	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling
15:05 – 15:25	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling Hans Rosenberger, Institute for Digital Communications, FAU Erlangen- Nürnberg
15:05 – 15:25	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling Hans Rosenberger, Institute for Digital Communications, FAU Erlangen-
15:05 – 15:25 15:25 – 15:45	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling Hans Rosenberger, Institute for Digital Communications, FAU Erlangen- Nürnberg Algorithmic Improvements for Linear Computation Coding
15:05 – 15:25 15:25 – 15:45	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling Hans Rosenberger, Institute for Digital Communications, FAU Erlangen- Nürnberg Algorithmic Improvements for Linear Computation Coding Rebekka Schulz, Institute of Communications Engineering, Ulm University
15:05 – 15:25 15:25 – 15:45	TU Berlin Deep Unfolded Vector Optimization Method for Device-to-Device Link Scheduling Hans Rosenberger, Institute for Digital Communications, FAU Erlangen- Nürnberg Algorithmic Improvements for Linear Computation Coding Rebekka Schulz, Institute of Communications Engineering, Ulm University Preequalization for Physical-Layer Security according to the Secrecy