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ABSTRACT

In this contribution various objective measures that can be used to
evaluate speech dereverberation algorithms by means of listening-
room compensation (LRC) are compared to subjective listening
tests. It is shown that technical measures describing the impulse
responses are suitable for evaluation of such algorithms. Most
signal-based objective measures fail to judge the specific distortions
that may be introduced by LRC algorithms like late reverberation
since these artifacts are small in amplitude but perceptually relevant
due to the loss of masking of the room impulse response. Only one
signal-based measure, the so-called perceptual similarity measure
(PSM), showed high correlation with subjective rating for the given
test setup.

Index Terms— Quality Assessment, Listening-Room Compen-
sation, Equalization, Dereverberation

1. INTRODUCTION

Reverberation is caused in enclosed spaces by numerous reflections
of a signal emitted by a sound source until it is picked up by a
microphone or the human ear. Reverberation decreases speech in-
telligibility and reverberant sound is perceived as sounding distant
and echoic. Although speech dereverberation by means of listening-
room compensation (LRC) has been research topic for some years
now [1, 2], no commonly accepted objective measure for evaluating
such algorithms has established itself [3, 4, 5, 6]. Often the perfor-
mance of dereverberation algorithms is judged by simple technical
measures which are based on energy ratios as it is common in the
field of noise reduction. However, lots of more sophisticated mea-
sures have been developed recently incorporating psychoacoustical
knowledge [7] or even complex models of the human auditory sys-
tem [8, 9]. Since the perception of the sound quality of dereverber-
ated signals is multidimensional, at least the dimensions coloration
[10] and what is called the reverberation tail effect (reverberation
without the influence of a spectral modification) have to be consid-
ered [11]. However, for the LRC algorithms that are analyzed in this
paper these two dimensions (influences in spectral domain and in
time domain) may not be sufficient. For example, late reverberation
introduced by least-squares approaches may be mathematically neg-
ligible since it is of small amplitude but it is perceptually relevant
due to the loss of temporal masking of the impulse response. Fur-
thermore, measures that were developed to judge coloration [2, 10]
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may fail if spectral distortion is perceptually more relevant to sub-
jective listeners.

In this contribution, different objective measures that are ex-
pected to be able to judge algorithms for LRC are compared to re-
sults from subjective listening tests and evaluated w.r.t. their capa-
bility to predict important artifacts or the overall quality of the dere-
verberated speech sample.

The remainder of this paper is organized as follows: Section 2
briefly summarizes the methods for LRC that were used for speech
dereverberation. Section 3 introduces objective measures that can
principally be used for the evaluation of dereverberated signals. Sec-
tion 4 describes the experimental setup for the subjective listening
tests. Results and correlations between subjective and objective data
are presented in Section 5, and Section 6 concludes the paper. A list
of all objective measures that were evaluated and the corresponding
references are given in Section 7 as a help to deal with the acronyms.

2. LISTENING-ROOM COMPENSATION ALGORITHMS

Fig. 1 shows a general setup for LRC with an equalization filter
cEQ preceding the acoustic channel h. Here, cEQ and h denote
the coefficient vectors of the equalization filter of length LEQ and
the coefficient vector of the room impulse response (RIR) of length
Lh, respectively [12]. Since usual RIRs are mixed-phase systems of
high order direct inversion by a stable causal filter is not possible in
general [1]. Thus, common least-squares approaches [12, 1] try to
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Fig. 1. General setup for listening-room compensation.

minimize the Euclidean distance between the concatenated system
of cEQ and h and a given target system d which usually is chosen
as a delay, band pass or high pass [13]. An appropriate weighting
of the error vector eEQ as introduced in [14] for cross-talk cancela-
tion can avoid perceptually disturbing late echoes by accentuating on
late samples of eEQ. Minimizing the weighted mean squared error
signal E{||eEQ||

2} = E{||W(HcEQ − d)||2} leads to a weighted
least-squares equalizer

cEQ = (WH)+Wd (1)

with H being the channel convolution matrix built up by the RIR
coefficients and (·)+ being the Moore-Penrose pseudo-inverse. The
weighting matrix W is a diagonal matrix containing a weighting
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window on its main diagonal. By a proper choice of W, RIR short-
ening or RIR shaping instead of a straightforward equalization can
be achieved, which leads to perceptually better results.

Another approach for RIR shaping was discussed in [15] and is
based on the solution of a generalized eigenvalue problem

Ac
′
EQ = λmaxBc

′
EQ (2)

A = H
T
W

T

u WuH (3)

B = H
T
W

T

d WdH. (4)

Similar to (1) Wu and Wd are diagonal matrices with window func-
tions defining a desired part of the RIR and an undesired part of the
RIR. The greatest eigenvalue is denoted by λmax in (2). To avoid
spectral distortion a post processor based on liner prediction [15] is
used after applying (2). For a more detailed discussion the reader is
referred to [15, 16].

3. OBJECTIVE MEASURES

We classify objective measures that may be capable to evaluate
speech dereverberation algorithms in two different classes: mea-
sures that are based on the (i) impulse response or the transfer
function of a system (system-based measures) and (ii) measures
that are based on signals. Generally, for LRC algorithms both the
filter impulse response cEQ[k] and the RIR h[k] are available during
simulations. However, if gradient algorithms [17] are used to avoid
computational complex matrix inversions (e.g. as in (1)) or to track
time-varying environments or if blind dereverberation approaches,
e.g. [5], shall be applied, the necessary impulse responses of the
room or the filter may not be accessible or not appropriate to apply
those measures. Such situations restrict the number of applicable
measures to those based on signals as described in Section 3.2.

3.1. System-Based Measures

Room impulse responses can be characterized by several objective
measures, see e.g. [18]. Most of them are based on a ratio between
early and late part of the impulse response. Since impulse responses
of equalized systems v[k] = h[k]∗cEQ[k] may look slightly different
from common RIRs, Fig. 2 shows an equalized impulse response
v[k]. We calculated six different measures that are widely used for
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Fig. 2. Impulse response of an equalized system v[k] = h[k] ∗
cEQ[k] in dB (fs=8kHz).

characterizing impulse responses. The ratio between the first 50ms
or the first 80ms after the main peak to the overall energy of the
RIR is called Definition and is denoted by D50 or D80, respectively
[18]. The so-called Clarity [18], denoted here by C50 or C80, is
the logarithmic ratio of 50ms (80ms) after the main peak to the rest
of the impulse response. The Direct-to-Reverberation-Ratio DRR

[19] is defined as the logarithmic ratio between the main peak and
all others. The so-called Central Time CT [18] is no direct ratio but
the center of gravity in terms of the energy of the RIR.

Since equalization often aims at a flat spectrum using the vari-
ance (VAR) of the logarithmic overall transfer function V [n] =
H[n]CEQ[n] was proposed in [2] to evaluate LRC algorithms. A
second measure that judges a flat overall transfer function is the so-
called Spectral Flatness Measure (SFM) [20] that calculates the ratio
of geometric mean and the arithmetic mean of V [n].

3.2. Measures Based on Signals

Whenever impulse responses or transfer functions are not obtainable
for objective testing, e.g. for blind dereverberation [5], algorithms
have to be evaluated based on the signals only. The most simple
measures are the Segmental Signal-to-Reverberation Ratio (SSRR)
[3] and the SRR Enhancement (SRRE) [12] that are defined similarly
to SNR-based measures known from noise reduction quality assess-
ment. The Frequency-Weighted SSRR (FWSSRR) [21] represents
a first step towards consideration of the human auditory system by
analyzing the SSRR in critical bands. Apart from the SRRE, all
improvements between processed and unprocessed signals are in-
dicated by a Δ, e.g. as for ΔFWSSRR. To account for logarithmic
loudness perception of the human auditory system the Log-Spectral
Distortion (LSD) compares logarithmical weighted spectra. Since
dereverberation of speech is the aim in most scenarios, we also
tested measures based on the LPC models as the Log-Area Ratio
(LAR) [22], the Log-Likelihood Ratio (LLR) [21], the Itakura-Saito
Distance (IS) [21], and the Cepstral Distance (CD) [21]. As a fur-
ther extension towards modeling of the human auditory system the
Bark Spectral Distortion measure (BSD) [23] compares perceived
loudness incorporating spectral masking effects.
Recently, objective measures have been proposed especially de-
signed for assessment of dereverberation algorithms. For this con-
tribution we tested the so-called Reverberation Decay Tail (RDT)
measure [11], the Speech-to-Reverberation Modulation Energy
Ratio (SRMR) [24] and the Objective Measure for Coloration in
Reverberation (OMCR) [10].
From quality assessment in the field of audio coding or noise reduc-
tion it is known that measures that are based on more exact models
of the human auditory system show high correlation with subjective
data. Thus, we also tested the Perceptual Evaluation of Speech
Quality (PESQ) measure [25, 21] and the Perceptual Similarity
Measure (PSM, PSMt) from PEMO-Q [8] that compares internal
representations according to the auditory model of [9].

4. SUBJECTIVE QUALITY ASSESSMENT

Speech samples for the subjective tests were generated by con-
volving male and female utterances with room impulse responses
generated by the image method [26] for a room having a size of
(6 × 4 × 2.6)m3. The distance between sound source and micro-
phone was approximately 0.8m. These RIRs had room reverbera-
tion times of approximately τ60 = {500, 1000}ms corresponding
to normal and somewhat larger office environments. To generate
the dereverberated speech samples that later were presented to the
subjects the reverberant speech samples were convolved with the
equalization filters cEQ[k] stemming from the different algorithms
described in Section 2. Filter lengths of these equalizers were
LEQ = {1024, 2048, 4096, 8196} at a sampling rate of 8000Hz.

From all speech samples 19 audio samples were chosen which
represented the full scale of reverberation and possible distortions.
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These audio samples had a length of 8 sec and were scaled to have
the same root-mean-square value. An audiovisual presentation of
the samples and the corresponding systems can be found at [27].
They were presented diotically to 24 normal-hearing listeners via
headphones (Sennheiser HD650) in quiet after an appropriate train-
ing period by example audio samples. Training and listening could
be repeated as often as desired. A graphical user interface was pro-
grammed for the listening test based on the suggestions of [28] (with
slight differences) asking to judge the attributes reverberant, colored
(distorted), distant and overall quality on a continuous 5-point Mean
Opinion Score (MOS) scale. It was expected that attributes ”rever-
berant” and ”distant” would lead to the same result. Since for LRC
algorithms frequency distortion is perceptually much more promi-
nent than what usually is understood as coloration, we asked to judge
coloration/distortion as one spectral attribute. This leads to the fact
that common measures that were designed to judge coloration may
not correlate well to the subjective data. However, these distortions
dominate the spectral perception of subjective quality.

5. RESULTS

Table 1 shows the correlations of subjective data with all measures
described in Section 3 using the methodology described in Section 4.
It is obvious that measures that are based on the impulse response
of the equalized system show high correlation with the subjective
data for all four attributes (with the exception of the DRR mea-
sure and somewhat lower correlations obtained for the attribute col-
ored/distorted). The frequency-domain measures VAR and SFM are
less correlated to all attributes. The signal-based measures show
lower correlation to subjective data than the system-based measures.
Furthermore, the Δ-measures show lowest correlation. Comparing
the signal-based measures it is obvious that LPC-based measures
outperform purely signal-based measures like the SSRR. By far, the
highest correlations are obtained by measures relying on auditory
models like PESQ, PSM and PSMt. PSMt, in addition to PSM,
evaluates short-time behavior of the correlations of internal signal
representations and focuses on low correlations as it is done by hu-
man listeners [8]. The auditory-model based measures show even
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Fig. 3. (a) IR or room (τ60 = 1s) and equalized system in time
domain (EQ filter length was 8192 samples, delay has been com-
pensated to match main peaks of IRs), (b) corresponding transfer
functions, (c) subjective rating for system in (a), (b).

higher correlation than RDT, SRMR and OMCR although the lat-
ter were designed to explicitly judge reverberation. The RDT and
OMCR measures rely on internal parameters that can be adjusted
and, by this, higher correlation to the specific set of samples can

C50 0,93 0,67 0,94 0,94

D50 0,86 0,63 0,94 0,91

D80 0,90 0,50 0,91 0,90

C80 0,93 0,61 0,89 0,91

CT 0,85 0,61 0,93 0,91

DRR 0,24 0,10 0,18 0,13

VAR 0,03 0,37 0,23 0,16

SSRR 0,33 0,29 0,43 0,40

FWSSRR 0,44 0,40 0,57 0,55

LSD 0,74 0,48 0,81 0,78

CD 0,63 0,41 0,70 0,67

LAR 0,52 0,38 0,61 0,59

LLR 0,66 0,43 0,75 0,71

IS 0,64 0,35 0,69 0,68

BSD 0,04 0,30 0,24 0,20

RDT 0,67 0,51 0,79 0,75

SRMR 0,53 0,24 0,59 0,51

OMCR 0,05 0,13 0,03 0,05

PESQ 0,60 0,35 0,69 0,63

PSM 0,80 0,63 0,90 0,87

PSMt 0,91 0,61 0,95 0,94

SSRE 0,00 0,14 0,02 0,03

�FWSSRR 0,15 0,04 0,11 0,09

�LSD 0,07 0,06 0,03 0,03

�CD 0,52 0,37 0,47 0,49

�LAR 0,24 0,23 0,25 0,26

�LLR 0,50 0,31 0,46 0,45
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�BSD 0,66 0,25 0,57 0,60

�RDT 0,67 0,51 0,71 0,72

�SRMR 0,42 0,14 0,45 0,36

�OMCR 0,52 0,24 0,45 0,43

�PESQ 0,41 0,18 0,43 0,37

�PSM 0,44 0,41 0,49 0,47

�

�

Table 1. Correlations between subjective quality assessment and
objective measures. Length of bars in each cell correspond to corre-
lation coefficients r. High correlations between 0.8 ≤ r ≤ 1 are in-
dicated by green bars, medium correlations between 0.6 ≤ r < 0.8
by yellow bars and low correlations r < 0.6 by red bars.

be obtained. However, we used standard values for these parame-
ters given in [11, 10]. Furthermore, it has to be emphasized that the
attribute coloration/distortion is most difficult to assess by objective
measures at least for the discussed LRC algorithms, since distortions
are perceptually relevant and measures like OMCR try to judge col-
oration effects only (the same holds for the variance measure). They
succeed in doing so, but coloration alone is not well correlated to our
subjective data. One reason for that surely is that the source-receiver
distance for our experiment is larger than the critical distance. Fig. 3
gives an example for this. Although the spectral characteristics are
clearly enhanced (sub-figure (b)) and in time domain (sub-figure (a))
much energy of the impulse response is suppressed, a high amount
of late reverberation occurs after sample 5000 that is small in ampli-
tude but perceptually relevant since the temporal masking effect of
the main peak is less distinct for those late taps [16]. Fig. 3 (c) which
depicts the subjective rating for the given system in Fig. 3 (a) and (b),
clearly shows that a high amount of reverberation is perceived by
the subjects as well as relatively high spectral coloration/distortions
given that the transfer function is clearly enhanced compared to the
unprocessed room transfer function. Furthermore, depending on the
delay that is introduced by the equalizer, perceptually disturbing pre-
echoes occur as observable in Fig. 3 (a). None of the tested measure
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is capable to explicitly judge those influences. Thus, the authors be-
lieve that developing such a measure would be valuable future work.

It should be noted that even those measures showing low corre-
lation to the subjective data can be used for assessment within a spe-
cific test setup (e.g., for the enhancement of one specific algorithm).
For example, the SSRR measure that is used widely to judge dere-
verberation algorithms is capable of clearly indicating a decrease of
reverberation energy. However, a thoughless use of this measure,
e.g., to compare different algorithms, may be imprudent.

As it was expected, the attributes reverberation and distance
show similar results (correlation between reverberation and distance
was 94%). Furthermore, for the given set of speech data, the correla-
tion between the attributes overall quality and the attributes distant
as well as reverberated show high correlation as summarized in
Table 2. Thus, the perceived audio quality is strongly influenced by
reverberation (including late reverberation).

Colored/distorted Distant Overall

Reverberated 0.56 0.94 0.95
Colored/distorted 0.65 0.70

Distant 0.97

Table 2. Inter-attribute correlations.

6. CONCLUSION AND OUTLOOK

In this contribution it has been analyzed to what extent various objec-
tive quality measures are capable to assess quality of speech samples
that have been dereverberated by means of listening-room compen-
sation algorithms. Measures that are based on the impulse response
(like the common C50 measure) showed much higher correlation
between objective and subjective data than most of the tested mea-
sures that are based on the signals only. However, if impulse re-
sponses are not properly accessible, e.g. as for blind dereverberation
algorithms, measures that incorporate sophisticated auditory mod-
els should be used for quality assessment. The so-called Perceptual
Similarity Measure showed highest correlations to subjective data.

7. LIST OF OBJECTIVE MEASURES

BSD: Bark Spectral Distortion [23], C50, C80: Clarity [18], CD:
Cepstral Distance [21], CT: Central Time [18], D50,D80: Defi-
nition [18], DRR: Direct-to-Reverberation-Ratio [19], FWSSRR:
Frequency-Weighted SSRR [21], IS: Itakura-Saito Distance [21],
LAR: Log-Area Ratio [22], LLR: Log-Likelihood Ratio [21], LSD:
Log-Spectral Distortion [21], OMCR: Objective Measure for Col-
oration in Reverberation [10], PESQ: Perceptual Evaluation of
Speech Quality [21], PSM, PSMt: Perceptual Similarity Measure
[8] RDT: Reverberation Decay Tail [11], SFM: Spectral Flatness
Measure [20], SRMR: Speech-to-Reverberation Modulation En-
ergy Ratio [24], SSRR: Segmental Signal-to-Reverberation Ratio
[3], VAR: Variance of logarithmic transfer function [2].

8. REFERENCES

[1] S. T. Neely and J. B. Allen, “Invertibility of a Room Impulse Response,” Journal
of the Acoustical Society of America (JASA), vol. 66, pp. 165–169, July 1979.

[2] J. N. Mourjopoulos, “Digital Equalization of Room Acoustics,” Journal of the
Audio Engineering Society, vol. 42, no. 11, pp. 884–900, Nov. 1994.

[3] P. Naylor and N. Gaubitch, “Speech Dereverberation,” in Proc. Int. Workshop on
Acoustic Echo and Noise Control (IWAENC), Eindhoven, The Netherlands, Sept.
2005.

[4] J. Wen, N. Gaubitch, E. Habets, T. Myatt, and P. Naylor, “Evaluation of Speech
Dereverberation Algorithms using the MARDY Database,” in Proc. Int. Workshop
on Acoustic Echo and Noise Control (IWAENC), Paris, France, Sept. 2006.

[5] E. Habets, “Single and Multi-Microphone Speech Dereverberation using Spec-
tral Enhancement,” Ph.D. dissertation, University of Eindhoven, Eindhoven, The
Netherlands, June 2007.

[6] E. Albertin, J. Rennies and S. Goetze, “Objective Quality Measures for Dere-
verberation Methods based on Room Impulse Response Equalization,” in Proc.
German Annual Conference on Acoustics (DAGA), Berlin, Germany, Mar. 2010.

[7] S. Wang, A. Sekey, and A. Gersho, “An Objective Measure for Predicting Sub-
jective Quality of Speech Coders,” IEEE J. Selected Areas of Communications,
vol. 10, no. 5, June 1992.

[8] R. Huber and B. Kollmeier, “PEMO-Q - A New Method for Objective Audio
Quality Assessment using a Model of Auditory Perception,” IEEE Trans. on Au-
dio, Speech and Language Processing, vol. 14, no. 6, Special Issue on Objectiv
Quality Assessment of Speech and Audio, 2006.
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