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ABSTRACT

In this contribution objective measures for quality assessment of speech signals are evaluated for listening-
room compensation algorithms. Dereverberation of speech signals by means of equalization of the room
impulse response and reverberation suppression has been an active research topic within the last years.
However, no commonly accepted objective quality measures exist for assessment of the enhancement achieved
by those algorithms. This paper discusses several objective quality measures and their applicability for
dereverberation of speech signals focusing on algorithms for listening-room compensation.

1. INTRODUCTION

State-of-the-art hands-free communication devices as

they are used e.g. in offices or car environments use algo-

rithms to reduce ambient noise, acoustic echoes and re-

verberation. Reverberation is caused by numerous reflec-

tions of the signal on room boundaries (walls, floor and

ceiling) in enclosed spaces. Reverberant speech sounds

distant and echoic [1]. Large amounts of reverberation

decrease speech intelligibility and perceived quality at

the position of the near-end speaker of a communication

system [2–4]. In general, two distinct reverberation re-

duction classes exist, viz. reverberation suppression and

reverberation cancellation. Reverberation suppression

approaches focus on removing the reverberant part of

the speech signal by calculating a spectral weighting rule

for each time-frequency coefficient in a way similar to

well-known approaches for noise reduction (cf. e.g. [5]

and the references therein). Reverberation cancellation

approaches remove the influence of the acoustic chan-

nel between the sound source and the listener by equal-

izing the room impulse response (RIR) of the channel.

This knowledge can be obtained by means of blind [6]

or non-blind [7] system identification. The equalizer can

be applied to the loudspeaker signal or the microphone

signal. Listening-room compensation is achieved in the

former case, i.e. when the equalizer is applied to the sig-

nal that is emitted by the loudspeaker such that the in-

fluence of reverberation on the perceived signal is re-

duced at the position the listener is assumed to be lo-

cated. In order to compute the equalizer one requires

knowledge of the RIR, which in the context of listening-

room compensation (LRC) is often obtained using non-

blind system identification [7–9]. This contribution fo-

cuses on such non-blind approaches for LRC. While the

aim of LRC algorithms is to improve the sound quality

of the dereverberated signal, they may also decrease the

sound quality if they are not designed properly [7, 10].

Thus, especially during algorithm design periods a re-

liable objective quality measure is required to evaluate

and compare different algorithms and their parameters.

It should be noted that at least the signal-based objective

quality measures that will be described in Section 4.2 are

applicable for quality assessment of all kinds of derever-

beration algorithms.

In general, whenever signal processing strategies change

a signal, e.g. to enhance speech quality, speech intelligi-

bility, listening effort, etc., the question arises how to as-

sess the achieved enhancement. Since subjective listen-

ing tests that involve humans are not applicable in every

case because they are time consuming and costly, objec-

tive quality measures that assess the performance of the

dereverberation algorithm based on impulse responses,

transfer functions or signals are needed [11]. While sev-

eral commonly accepted quality measures exist to assess
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the performance of noise reduction algorithms or acous-

tic echo cancellers, the assessment of dereverberation al-

gorithms is still an open issue [1, 10, 12].

This work discusses several measures that can be used

for evaluating dereverberation algorithms. An evaluation

of the sound quality of the dereverberated signals was

conducted by subjective listening tests and compared

to the results of the objective measures. As previously

shown by the authors [10], most signal-based measures

have difficulties to assess the performance of dereverber-

ation algorithms properly, especially if distortions are in-

troduced that are small in amplitude but clearly perceiv-

able by the human listener. However, especially these

measures are of particular interest since, e.g. for non-

linear dereverberation suppression approaches, channel-

based measures may not be applicable since the impulse

response of such an algorithm may be neither linear nor

time-invariant. Thus, artifacts that may be introduced

by the dereverberation algorithms such as late echoes or

spectral distortions, and their effect on the quality mea-

sures are analyzed and discussed. The algorithms were

analyzed regarding their capability to assess the prop-

erties reverberation, coloration, spectral distortion, per-

ceived distance, and overall quality of the signals. Since

objective measures that rely on purely technical energy

ratios, as it is common for quality assessment for noise

reduction algorithms, do not show good correlation to

subjective tests [13], we will particularly focus on qual-

ity measures that incorporate knowledge about the hu-

man auditory system for quality assessment.

The remainder of this paper is organized as follows.

Methods for LRC that were used for generating the

test signals are briefly summarized in Section 2 and

some general remarks on quality assessment for LRC

algorithms are given in Section 3. Section 4 gives an

overview of objective quality measures that principally

can be used for quality assessment of LRC algorithms

and Section 5 describes the experimental setup for the

subjective listening tests. Results of the correlation anal-

ysis are presented in Section 6 and Section 7 concludes

the paper.

Notation: The following notation is used throughout

the paper. Vectors and matrices are printed in boldface

while scalars are printed in italic. The discrete time

and frequency indices are denoted by n and k, respec-

tively. The superscripts (·)T and (·)+ denote the trans-

position and the Moore-Penrose pseudoinverse, respec-

tively. The operator ∗ denotes the convolution of two

sequences, E{·} is the expectation operator, and the oper-

ator convmtx{h,LEQ} generates a convolution matrix of

size (LEQ +Lh − 1)×LEQ. The operator diag{·} yields

a matrix of size L× L from a vector of size L× 1 that

has the vector’s elements on its main diagonal and zeros

elsewhere.

2. LISTENING-ROOM COMPENSATION

For LRC the equalization filter

cEQ =
[

cEQ,0, cEQ,1, . . . , cEQ,LEQ−1

]T
(1)

of length LEQ precedes the acoustic channel character-

ized by the RIR

h =
[

h0, h1, . . . , hLh

]T
(2)

of length Lh. The aim of the equalizer is to remove

the influence of the RIR at the position of the reference

microphone [8, 14] and, by this, to remove reverbera-

tion from the signal. A general setup for listening-room

compensation is shown in Fig. 1. Four different LRC

approaches were used to generate sound samples with

the goal of covering a large amount of distortions that

may occur while using such algorithms. These four ap-

proaches are briefly introduced in the following. For a

deeper discussion of the LRC algorithms please refer to

the respective references.

non-
reverberant microphone

-

+

cEQ h

d

reference

error signal

desired signal

near-end room

signalsignal

Fig. 1: General setup for listening-room compensation

(LRC) using an equalizer filter cEQ.

Since an RIR is a mixed-phase system having thousands

of zeros close to or even outside the unit-circle in z-

domain, a direct inversion by a causal stable filter is not

possible in general [15]. Therefore, least-squares ap-

proaches focus on minimizing the error vector

eEQ = HcEQ −d, (3)
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where H = convmtx{h,LEQ} is the channel convolution

matrix built up by the RIR coefficients and

d = [0, . . . , 0
︸ ︷︷ ︸

n0

, d0, d1, . . . , dLd−1, 0, . . . , 0
︸ ︷︷ ︸

Lh+LEQ−1−Ld−n0

]T (4)

is the desired response of length Lh + LEQ − 1 with n0

being the delay introduced by the equalizer (cf. [16] for

a discussion of n0). Rather than minimizing the norm

of the error vector, one can minimize the norm of a

weighted error vector. By a proper choice of a weighting

vector, RIR shortening or RIR shaping can be achieved.

Preferably, the weighting is based on the psychoacous-

tic property of masking observed in the human auditory

system in order to alleviate perceptually disturbing late

echoes [17, 18]. Hence, minimizing the ℓ2-norm of the

weighted error vector WeEQ leads to a weighted least-

squares equalizer

cEQ = (WH)+Wd (5)

with

W = diag{w} (6)

w = [1,1, ...,1
︸ ︷︷ ︸

N1

,w0,w1, ...,wN2−1
︸ ︷︷ ︸

N2

]T (7)

wi = 10
3α

log10(N0/N1)
log10(i/N1)+0.5

. (8)

Here, W is a diagonal matrix containing a window

weighting vector w on its main diagonal adopted from

[18] with N0 = (t0 + 0.2) fs, N1 = (t0 + 0.004) fs and

N2 = Lh + LEQ − 1−N1. The time of the direct sound

is denoted by t0 and α ≤ 1 is a factor that influences the

steepness of the window. For α = 1 the window corre-

sponds to the masking found in human subjects [17, 18].

Another approach for RIR shaping was discussed in [19]

and is based on the solution of a generalized eigenvalue

problem

Ac′EQ = λmaxBc′EQ (9)

A = HT WT
u WuH (10)

B = HT WT
d WdH. (11)

Similar to (5), Wu and Wd are diagonal matrices with

window functions defining a desired part of the RIR and

an undesired part of the RIR. The greatest eigenvalue

is denoted by λmax in (9). To avoid spectral distortion

a post-processor based on linear prediction [19] is used

after applying (9). For a more detailed discussion the

reader is referred to [18, 19].

An approach that jointly shapes the impulse response

(IR) of the equalized system and minimizes spectral dis-

tortions is described in [18]. Additionally, the psychoa-

coustic property of masking is exploited during the filter

design in [18].

Table 1 summarizes the four approaches and the respec-

tive acronyms used for LRC and for generating derever-

berated signals that were used for the subjective tests de-

scribed in Section 5.

Acronym Description of method

1. LS-EQ Least-squares equalizer according to (5)

without weighting of error signal (w = 1)

2. WLS-EQ Least-squares equalizer according to (5) with

window function according to (7)

3. ISwPP Impulse response shaping (IS) according to

(9) with post-processing (PP) [19]

4. ISwINO Impulse response shaping (IS) with infinity-

norm optimization (INO) according to [18]

Table 1: LRC approaches.

An RIR h that is processed by the equalizers described

above is exemplarily shown in Fig. 2 in time-domain (left

panels) and frequency-domain (right panels). The room

reverberation time of the RIR is τ60 = 0.5 s and the re-

spective filter length of the equalizer is LEQ = 4096 at a

sampling rate of fs = 8 kHz. The LS-EQ approach seems

to show good results in the time-domain (a) as well as

in the frequency-domain (b). However, although the de-

sired system d which was chosen as a delayed high-pass

is closely approximated a large amount of late rever-

beration can be observed e.g. around sample n = 4000.

Although small in amplitude this late reverberation is

clearly perceivable and disturbing since it is no longer

masked by the natural decay of common RIRs [17, 18].

Furthermore, pre-echoes that occur before the main peak

of the equalized channel’s impulse response further dis-

turb a natural sound perception. By applying the window

as defined in (7) both pre-echoes and late echoes are re-

duced at the cost of a less flat transfer function in the

frequency-domain (cf. sub-figures (c) and (d)). Figures 2

(e) and (f) show the impulse response shaping approach

according to [19] and sub-figures (g) and (h) show the ap-

proach according to [18] that explicitly focuses on hiding

all echoes below the masking curve.
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Fig. 2: Performance of the LRC algorithms. RIR h and

equalized IR v = HcEQ are shown in time-domain in

dB in sub-figures (a), (c), (e), (g) and the correspond-

ing squared-magnitude spectra in dB in sub-figures (b),

(d), (f), (h).

3. QUALITY ASSESSMENT FOR LRC ALGO-
RITHMS

Within this contribution, quality assessment involving

human subjects is called subjective quality assessment

while quality assessment based on technical measures is

denoted by the term objective. If humans are asked for

their opinion about the quality of a specific sound sam-

ple they are able to assess the quality based on an inter-

nal reference. This reference is created throughout their

life while listening to various sounds and allows the sub-

ject to distinguish between good quality and bad qual-

ity. Unfortunately, subjective quality assessment is time

consuming and costly. Thus, especially during algorithm

design and test periods reliable objective quality mea-

sures are needed that show high correlation with subjec-

tive ratings. Since no commonly accepted measure for

LRC quality assessment has been identified yet, we an-

alyzed the correlation between subjective quality ratings

and various objective measures that are assumed to be ap-

plicable for LRC quality assessment as depicted in Fig. 3.

equalizedequalized
signal or channel

signal

signal

reference objective quality subjective quality
assessmentassessment

correlation coefficient ρ

correlation
analysis

Fig. 3: Quality assessment by means of subjective and

objective testing.

Here, the reverberant signal is processed by the LRC al-

gorithm under test that produces a processed signal and

a corresponding equalized impulse response. This signal

is assessed by human subjects. The objective measures

described in Section 4 either take the equalized impulse

response (channel-based measures) or the processed sig-

nal (signal-based measures) as an input. The correlation

between the subjective and objective ratings was deter-

mined by

ρ =
∑i(ai − ā)(bi − b̄)

√

∑i(ai − ā)2 ∑i(bi − b̄)2
, (12)

where ai and bi are the subjective and objective ratings

on a specific sound sample and ā and b̄ the respective

mean values.

It should be noted that besides the Speech-to-

Reverberation Modulation Energy Ratio measure all ob-

jective measures used in this contribution belong to the

class of intrusive measures, which means that they ex-

plicitly need a reference signal or system while human

subjects rely on their internal reference.

4. OBJECTIVE QUALITY ASSESSMENT

This section focuses on the description of several objec-

tive quality measures that are assumed to be capable to

assess quality of signals processed by LRC algorithms.

Two classes of objective quality measures for LRC can

be defined: (i) measures that are based on the impulse

response or the transfer function of a system (channel-

based measures) and (ii) measures that are based on sig-

nals only. For LRC algorithms, both the filter impulse

response cEQ and the RIR h are available during simula-

tions. However, if gradient algorithms [14] are used to

avoid computational complex matrix inversions, e.g. as
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in (5), or to track time-varying environments or if the

effect of the dereverberation algorithm cannot be char-

acterized in terms of an linear time invariant (LTI) im-

pulse response, e.g. as in [5, 20, 21], the necessary im-

pulse responses of the room or the filter may not be ac-

cessible or it may be inappropriate to apply those mea-

sures [22]. Such situations restrict the number of appli-

cable measures to those based on signals as described in

Section 4.2.

4.1. Channel-Based Measures

Objective measures to characterize room impulse re-

sponses are mostly based on the ratio of early and late

part of the RIR, see e.g. [23]. Since the IR of an equal-

ized system v may look slightly different compared to

a normal RIR some objective measures were adapted

from their original definitions to account for this. Fig. 4

shows such an equalized system and illustrates the defi-

nitions of the lags n0, which is the position of the main

peak of the impulse response, N50 = ⌊0.05 s · fs⌋ and

N80 = ⌊0.08 s · fs⌋ which are the samples 50 ms and

80 ms later than the main peak, respectively. The def-

initions of six measures that are widely used to char-

acterize RIRs are given in the following for the equal-

ized system v and are also applicable for an RIR h.

The ratio between the first 50 or 80 ms after the main

v n
in

d
B

n in samples

0

0
-100

-50

2000 4000 6000n0

N80

N50

Lv

Fig. 4: Impulse response of an equalized system v =
HcEQ in dB and the corresponding definitions of the po-

sition of the main peak n0, and the discrete samples fol-

lowing 50 ms and 80 ms after this main peak N50 and

N80. Sampling frequency is fs = 8 kHz.

peak to the overall energy of the RIR is called Defini-

tion and is denoted by D50 or D80, respectively [23]:

D{50,80} =
∑

n0+N{50,80}−1

n=n0
v2

n

∑
Lv−1
n=0 v2

n

. The Clarity [23], denoted

here by C50 or C80, is the logarithmic ratio of 50 or 80 ms

after the main peak to the rest of the impulse response:

C{50,80} = 10log10
∑

n0+N{50,80}−1

n=n0
v2

n

∑
n0−1

n=0 v2
n+∑

Lv−1
n=n0+N{50,80}

v2
n

. The Direct-

to-Reverberation-Ratio DRR [24] is defined as the loga-

rithmic ratio between the energy of the direct path of the

impulse response and the energy of all reflections. How-

ever, since the direct path, in general, does not match

the sampling grid, a small range around the main peak

is considered as the direct path energy [5, 24]: DRR =

10log10

∑
n0+n∆−1
n=n0−n∆

v2
n

∑
n0−n∆−1

n=0 v2
n+∑

Lv
n=n0+n∆

v2
n

. Here, we chose n∆ =

4 ms · fs. The Central Time CT [23] is no direct ratio but

the center of gravity in terms of the energy of the RIR:

CT =
∑

Lv
n=0 n·v2

n

∑
Lv
n=0 v2

n

. Additionally to the time-domain mea-

sures described above, we evaluated two common spec-

tral channel-based measures to account for the coloration

effect [2,12]. Since equalization often aims at a flat spec-

trum using the variance (VAR) of the logarithmic over-

all transfer function Vk = HkCEQ,k as an objective mea-

sure to evaluate LRC algorithms was proposed in [9,25]:

VAR = 1
Kmax−Kmin+1 ∑

Kmax
k=Kmin

(20log10|Vk|−V̄dB)
2
. Here,

V̄dB = 1
Kmax−Kmin+1 ∑

Kmax
k=Kmin

20log10|Vk| is the mean loga-

rithmic spectrum and Kmin and Kmax are the frequency in-

dices that limit the considered frequency range in which

the equalized transfer function is desired to be flat.

We chose Kmin and Kmax corresponding to 200 Hz and

3700 Hz to account for a high-pass or band-pass char-

acteristic of the desired system vector in (4). A sec-

ond measure for the quality of equalization in frequency-

domain is the spectral flatness measure (SFM) that is

the ratio of geometric mean and the arithmetic mean of

Vk [26]: SFM =
K
√

∏K−1
k=0 |Vk|

2

1
K ∑K−1

k=0 |Vk|
2
, where K denotes the num-

ber of frequency bins.

4.2. Signal-Based Measures

For non-linear dereverberation suppression approaches

as in [5], impulse responses or transfer functions are

not obtainable or applicable for objective testing. Thus,

such algorithms have to be evaluated based on the sig-

nals only. Several signal-based measures that exist for

assessment of LRC approaches and dereverberation sup-

pression approaches are briefly summarized in the fol-

lowing. Due to space limitation the interested reader

is referred to the respective references. Simple mea-

sures like the Segmental Signal-to-Reverberation Ratio

(SSRR) [1] are defined similarly to SNR-based measures

known from noise reduction quality assessment. As al-
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ready known from speech quality assessment for noise

reduction, quality measures incorporating models of the

human auditory system show higher correlation with

subjective rating [13]. The Frequency-Weighted SSRR

(FWSSRR) [27] and the Weighted Spectral Slope (WSS)

[27] represent a first step towards consideration of the hu-

man auditory system by analyzing the SSRR in critical

bands. To account for logarithmic loudness perception

within the human auditory system the Log-Spectral Dis-

tortion (LSD) compares logarithmically weighted spec-

tra. Since dereverberation of speech is the aim in most

scenarios, we also tested measures based on the LPC

models such as the Log-Area Ratio (LAR) [28], the Log-

Likelihood Ratio (LLR) [27], the Itakura-Saito Distance

(ISD) [27], and the Cepstral Distance (CD) [27]. As a

further extension towards modeling of the human audi-

tory system the Bark Spectral Distortion measure (BSD)

[29] compares perceived loudness incorporating spectral

masking effects.

Recently, objective measures have been proposed espe-

cially designed for assessment of dereverberation algo-

rithms. For this contribution we tested the Reverber-

ation Decay Tail (RDT) measure [30], the Speech-to-

Reverberation Modulation Energy Ratio (SRMR) [31]

and the Objective Measure for Coloration in Reverber-

ation (OMCR) [32].

From quality assessment in the fields of audio coding and

noise reduction it is known that measures that are based

on more exact models of the human auditory system

show high correlation with subjective data [13]. Thus,

we also tested the Perceptual Evaluation of Speech Qual-

ity (PESQ) measure [27, 33] and the Perceptual Similar-

ity Measure (PSM, PSMt ) from PEMO-Q [34] that com-

pares internal representations according to the auditory

model of [35].

5. SUBJECTIVE QUALITY ASSESSMENT

For the subjective listening tests, reverberant speech

samples were calculated by first convolving room im-

pulse responses generated by the image method [36] for

a room having a size of 6 m× 4 m× 2.6 m (length ×
width × height) with male and female utterances. The

distance between sound source and microphone was ap-

proximately 0.8 m. Room reverberation times were ap-

proximately τ60 = {500,1000} ms corresponding to nor-

mal and somewhat larger office environments. These

reverberant speech samples were then processed by the

four LRC approaches discussed in Section 2 and pre-

sented to the subjects. Filter lengths of these equalizers

were LEQ = {1024,2048,4096,8196} at a sampling rate

of 8 kHz. The parameters α in (7) was chosen to α = 0.8.

From all generated speech samples 21 audio samples

were chosen which represented a wide variety of acous-

tic conditions and possible distortions. These audio sam-

ples had a length of 8 s and were scaled to have the same

root-mean-square value. An audiovisual presentation of

the samples and the corresponding systems can be found

in [37]. They were presented diotically to 24 normal-

hearing listeners via headphones (Sennheiser HD650) in

quiet after a training period by example audio samples.

Training and listening could be repeated as often as de-

sired. A graphical user interface was programmed for

the listening test based on the suggestions of [38] (with

slight differences) asking to judge the attributes rever-

berant, colored (distorted), distant and overall quality on

a continuous 5-point Mean Opinion Score (MOS) scale.

An overview of the training and listening test as well as

the GUI can also be obtained at [37]. For the algorithms

under test, it was expected that attributes reverberant and

distant would lead to similar results. Since for LRC al-

gorithms frequency distortion is perceptually much more

prominent than what usually is understood as coloration,

we asked to judge coloration/distortion as one spectral

attribute. This leads to the fact that common measures

that were designed to judge coloration may not correlate

well to the subjective data. However, these distortions

dominate the spectral perception of subjective quality.

6. RESULTS

6.1. Rating of the Sound Samples

The subjective ratings of the sound samples [37] for

the four attributes reverberant, colored/distorted, distant,

and overall quality are shown in Fig. 5 by means of box-

plots.

The sound samples are ordered according to their median

value for the respective attribute. Consequently, the or-

der is different for the different sub-figures. In general,

the results of the shaping approaches are better than the

LS approaches. Increasing the filter length of the LS-EQ

does not improve the results due to the fact that despite a

’good equalization’ perceptually relevant late echoes and

pre-echoes are clearly perceived as disturbing by the lis-

teners. Good ratings are achieved by the WLS-EQ and
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(c) distant:
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Fig. 5: Subjective rating of sound samples for attribute

(a) reverberant, (b) colored/distorted, (c) distant, and (d)

overall quality

the impulse response shaping based on infinity-norm op-

timization that considers human masking (see e.g. sound

samples no. 15 and 10).

Table 2 shows the inter-attribute correlations for the

given set of speech samples. As expected, the attributes

reverberant and distant show high inter-attribute correla-

tion (0.94) although the attribute distant leads to a higher

interquartile range (IQR) as it can be seen comparing

sub-figures (a) and (c) in Fig. 5. Furthermore, the cor-

Attribute Colored/distorted Distant Overall

Reverberant 0.44 0.91 0.94

Colored/distorted - 0.29 0.66

Distant - - 0.86

Table 2: Inter-attribute correlations.

relation between the attributes overall quality and the at-

tributes distant as well as reverberant is high. Thus, the

perceived audio quality is strongly influenced by rever-

beration (including late reverberation).

6.2. Correlation analyses

The correlations of subjective rating for the four at-

tributes and the channel-based objective measures are

shown in Table 3 while correlations with signal-based

objective measures are shown in Table 4. For each ob-

jective measure correlations with the subjective ratings

are given for the case that all LRC approaches of Sec-

tion 2 are considered (Method: All EQs) and for the case

that only one LRC approach is used. For the latter case

no correlation was calculated for the impulse-response

shaping approach based on infinity-norm optimization

because the number of sound samples was too low for a

reliable correlation analysis. The highest correlation for

each attribute and approach is highlighted in boldface in

the tables. The reason for additionally calculating corre-

lations for each LRC approach separately is exemplarily

illustrated in Fig. 6 for the SFM.
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ρLS =−0.376
ρWLS =−0.821
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Fig. 6: Correlations of subjective ratings and SFM mea-

sure for all four attributes.

Here the SFM shows much higher correlation when a sin-

Goetze et al Quality Assesment for LRC

17AES 38TH INTERNATIONAL CONFERENCE



Measure Method Reverberant Col./dist. Distant Overall

D
5
0

All EQs 0.860 0.629 0.937 0.910
LS-EQ 0.711 0.329 0.795 0.794
WLS-EQ 0.942 0.735 0.993 0.982

ISwPP 0.943 0.611 0.940 0.934

D
8
0

All EQs 0.905 0.504 0.911 0.904
LS-EQ 0.733 0.311 0.815 0.817
WLS-EQ 0.941 0.585 0.976 0.931
ISwPP 0.850 0.546 0.844 0.844

C
8
0

All EQs 0.930 0.607 0.888 0.907
LS-EQ 0.804 0.305 0.865 0.877
WLS-EQ 0.982 0.690 0.987 0.963
ISwPP 0.916 0.543 0.899 0.882

C
5
0

All EQs 0.926 0.665 0.944 0.935

LS-EQ 0.783 0.320 0.846 0.857
WLS-EQ 0.965 0.755 0.981 0.971
ISwPP 0.976 0.580 0.958 0.933

C
T

All EQs 0.845 0.607 0.927 0.911
LS-EQ 0.909 0.288 0.938 0.949

WLS-EQ 0.857 0.785 0.958 0.966
ISwPP 0.973 0.667 0.979 0.974

D
R

R

All EQs 0.238 0.101 0.179 0.131
LS-EQ 0.769 0.335 0.835 0.843
WLS-EQ 0.399 0.858 0.597 0.696
ISwPP 0.249 0.692 0.273 0.360

V
A

R

All EQs 0.028 0.374 0.231 0.156
LS-EQ 0.618 0.416 0.708 0.694
WLS-EQ 0.687 0.809 0.841 0.883
ISwPP 0.599 0.462 0.608 0.647

S
F

M

All EQs 0.132 0.267 0.126 0.048
LS-EQ 0.686 0.376 0.769 0.765
WLS-EQ 0.709 0.821 0.861 0.899
ISwPP 0.876 0.658 0.885 0.905

Table 3: Correlations |ρ | of MOS values of subjective

ratings and channel-based objective measures (maxima

are indicated in boldface).

gle rather than all LRC approaches are considered. How-

ever, the time-domain channel-based measures show

consistent correlations for all LRC approaches. The in-

terested reader is referred to [37] for an overview of

all correlation patterns. It can be seen from Table 3

that the time-domain channel-based objective measures

show high correlation with the subjective data for the at-

tributes reverberation, distance and overall quality (with

the exception of the DRR measure). The frequency-

domain channel-based measures VAR and SFM show

much lower correlation. However, as stated before, they

may show somewhat higher correlation for single LRC

approaches such as SFM for the WLS-EQ. In general,

and this is also true for the signal-based measures (cf. Ta-

ble 4), only low correlation was obtained with the at-

tribute colored/distorted for all measures. This can be

attributed to the fact that the source-receiver distance for

our experiment (0.8 m) is larger than the critical distance.

As shown in Fig. 7 and in consilience with the findings
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Fig. 7: VAR measure of (a) RIR Hk and (b) equal-

ized channel Vk over loudspeaker-microphone distance

for different room reverberation times (critical distances

are indicated as dashed vertical lines). Sub-figure (b)

shows the VAR measure for an equalized system using

an LS-EQ with LEQ = 2048 at fs = 8 kHz.

in [5, 25], the variance does not increase once it reaches

its maximum value that was calculated to be at about

31 dB in [25] for RIRs. This point is approximately

reached at the critical distance as it is shown in Fig. 7.

However, another reason for lower correlations for the

spectral measure VAR and SFM may be that they equally

judge spectral peaks which are perceived as being very

annoying [19] and spectral dips that do not decrease the

perceived quality to a great extend.

Table 4 shows the correlations of subjective ratings with

signal-based objective measures. It can be seen that the

signal-based measures show lower correlation to subjec-

tive data than the system-based measures. The LPC-

based measures outperform purely signal-based mea-

sures like the SSRR. By far, the highest correlations are

obtained by the measures PSM and PSMt that rely on

auditory models. PSMt, in addition to PSM, evaluates

short-time behaviour of the correlations of internal sig-

nal representations and focuses on low correlations as

it is done by human listeners [34]. The auditory-model

based measures show even higher correlation than RDT,

SRMR and OMCR although the latter were designed to

explicitly judge reverberation. The performance of RDT

and OMCR measures can be adjusted by changing inter-

nal parameters. By this, higher correlation to the spe-

cific set of samples can be obtained. However, we used

standard values for these parameters given in [30, 32].

Furthermore, it has to be emphasized that the attribute
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coloration/distortion is most difficult to assess by objec-

tive measures at least for the discussed LRC algorithms,

since distortions are perceptually relevant and measures

like OMCR try to judge coloration effects only (the same

holds for the variance measure). They succeed in doing

so, but coloration alone is not well correlated to our sub-

jective data due to distortions like late echoes and pre-

echoes which are much more prominent than the col-

oration effect [37]. As tested measures are incapable to

explicitly judge those influences further development of

objective measures is required.

7. CONCLUSION

Objective quality measures were compared to data from

subjective listening tests to identify objective measures

that can be used to evaluate the performance of listening-

room compensation algorithms. Channel-based mea-

sures showed higher correlations between objective and

subjective data than most of the tested signal-based mea-

sures. However, especially if impulse responses are not

properly accessible, e.g. as for dereverberation suppres-

sion algorithms, measures that incorporate sophisticated

auditory models should be used for quality assessment.

The Perceptual Similarity Measure (PSM) showed high-

est correlations to subjective data. A detailed assessment

of coloration effects and distortions that may be intro-

duced by LRC algorithms is a topic for future research.
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Measure Method Reverberant Col./dist. Distant Overall

S
S

R
R

All EQs 0.332 0.290 0.432 0.403
LS-EQ 0.596 0.152 0.648 0.673
WLS-EQ 0.802 0.737 0.827 0.798
ISwPP 0.703 0.338 0.652 0.641

F
W

S
S

R
R All EQs 0.440 0.404 0.568 0.551

LS-EQ 0.792 0.037 0.821 0.852
WLS-EQ 0.943 0.778 0.989 0.984

ISwPP 0.807 0.458 0.763 0.752

W
S

S

All EQs 0.603 0.580 0.762 0.713
LS-EQ 0.788 0.441 0.866 0.847
WLS-EQ 0.892 0.760 0.959 0.981
ISwPP 0.909 0.580 0.874 0.860

IS
D

All EQs 0.639 0.347 0.693 0.684
LS-EQ 0.352 0.444 0.364 0.408
WLS-EQ 0.964 0.709 0.999 0.980
ISwPP 0.701 0.374 0.672 0.677

C
D

All EQs 0.627 0.414 0.702 0.674
LS-EQ 0.445 0.371 0.478 0.523
WLS-EQ 0.893 0.811 0.942 0.933
ISwPP 0.797 0.416 0.749 0.731

L
A

R

All EQs 0.517 0.384 0.612 0.588
LS-EQ 0.332 0.504 0.356 0.419
WLS-EQ 0.934 0.779 0.985 0.976
ISwPP 0.749 0.386 0.700 0.686

L
L

R

All EQs 0.663 0.432 0.753 0.713
LS-EQ 0.469 0.365 0.495 0.544
WLS-EQ 0.893 0.845 0.956 0.962
ISwPP 0.836 0.450 0.795 0.778

L
S

D

All EQs 0.735 0.480 0.814 0.780
LS-EQ 0.753 0.065 0.809 0.832
WLS-EQ 0.867 0.834 0.923 0.921
ISwPP 0.865 0.500 0.833 0.823

B
S

D

All EQs 0.043 0.303 0.237 0.195
LS-EQ 0.526 0.470 0.634 0.602
WLS-EQ 0.848 0.644 0.938 0.937
ISwPP 0.907 0.635 0.926 0.937

O
M

C
R

All EQs 0.051 0.134 0.028 0.052
LS-EQ 0.519 0.827 0.620 0.538
WLS-EQ 0.631 0.233 0.640 0.649
ISwPP 0.163 0.453 0.239 0.257

R
D

T

All EQs 0.670 0.505 0.790 0.746
LS-EQ 0.690 0.430 0.776 0.767
WLS-EQ 0.810 0.745 0.883 0.933
ISwPP 0.943 0.574 0.922 0.901

S
R

M
R

All EQs 0.526 0.242 0.593 0.511
LS-EQ 0.437 0.154 0.509 0.538
WLS-EQ 0.747 0.885 0.734 0.803
ISwPP 0.785 0.451 0.722 0.695

P
S

M

All EQs 0.803 0.627 0.902 0.866
LS-EQ 0.844 0.642 0.905 0.877
WLS-EQ 0.843 0.832 0.922 0.971
ISwPP 0.982 0.653 0.963 0.945

P
S

M
t

All EQs 0.915 0.611 0.950 0.942

LS-EQ 0.895 0.558 0.958 0.920

WLS-EQ 0.896 0.761 0.960 0.984

ISwPP 0.979 0.787 0.970 0.964

P
E

S
Q

All EQs 0.596 0.349 0.691 0.628
LS-EQ 0.465 0.354 0.503 0.552
WLS-EQ 0.842 0.772 0.898 0.874
ISwPP 0.893 0.458 0.847 0.816

Table 4: Correlations |ρ | of MOS values of subjective

ratings and signal-based objective measures (maxima are

indicated in boldface).
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