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L
attice reduction is a powerful concept for solving diverse problems 
involving point lattices. Signal processing applications where lat-
tice reduction has been successfully used include global positioning 
system (GPS), frequency estimation, color space estimation in 
JPEG pictures, and particularly data detection and precoding in 

wireless communication systems. In this article, we first provide some back-
ground on point lattices and then give a tutorial-style introduction to the 
theoretical and practical aspects of lattice reduction. We describe the most 
important lattice reduction algorithms and comment on their performance 
and computational complexity. Finally, we discuss the application of lattice 
reduction in wireless communications and statistical signal processing. 
Throughout the article, we point out open problems and interesting ques-
tions for future research.

INTRODUCTION
Lattices are periodic arrangements of discrete points (see “Lattices”). Apart 
from their widespread use in pure mathematics, lattices have found applica-
tions in numerous other fields as diverse as cryptography/cryptanalysis, the 
geometry of numbers, factorization of integer polynomials, subset sum and 
knapsack problems, integer relations and diophantine approximations, the 
spigot algorithm for p, materials science and solid-state physics (specifically 
crystallography), and coding theory. Recently, lattices have also been applied 
in a variety of signal  processing problems. 
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Lattices are used to develop powerful source and channel 
codes for many communications applications, specifically in 
scenarios with multiple terminals or with side-information 
(e.g., [1]). Different from that strand of work, our focus in this 
article is on the principle of lattice reduction. Lattice reduc-
tion is concerned with finding improved representations of a 
given lattice using algorithms like Lenstra, Lenstra, Lovász 
(LLL) reduction [2] or Seysen reduction [3]. It is a topic of 
great interest, both as a theoretical tool and as a practical 
technique. Since we feel that lattice reduction may be relevant 
to a much wider class of engineering problems than currently 
considered, this survey article targets a broader signal process-
ing audience. We give a tutorial-style introduction to lattices 
and lattice reduction algorithms, discuss the application of lat-
tice reduction in wireless communications and parameter esti-
mation, and as a  by-product provide convenient entry points 
to the literature on the topic. Wherever appropriate, we also 
point out possible  topics for future research. 

Lattice reduction plays an important role in the above-men-
tioned fields as it leads to efficient solutions for several classical 
problems in lattice theory. For example, lattice reduction is inti-
mately linked to the search for the shortest vector in a lattice, 
which in turn is related to the development of the now famous 
sphere decoding algorithm (e.g., [4] and [5]). With regard to sig-
nal processing applications, lattice reduction is potentially use-
ful in problems that involve integer programming (i.e., 

optimization problems with integer variables). An example is 
provided in [6], where an integer least squares problem—which 
is NP-hard—is solved in an approximate but efficient manner 
using lattice reduction techniques. While the application con-
text in that paper was GPS, the authors mention radar imaging 
and magnetic resonance imaging as other fields where 
their results could have impact. Another signal pro-
cessing application of lattice reduction is color 
space estimation in JPEG images [7]. Here, 
the quantized discrete cosine transform 
coefficients in the three color planes are 
viewed as lattice points in three-dimen-
sional (3-D) space, with the 3-D lattice 
being determined by the color space trans-
formation matrix. Building on the analogy to 
simultaneous Diophantine approximations, [8] and [9] 
use lattice reduction techniques for determining the intercept of 
multiple periodic pulse trains and for estimating their parame-
ters. A somewhat similar approach was used to develop a lattice-
reduction-based implementation of the maximum likelihood 
(ML) estimator for the frequency of a sinusoid in noise [10]. 
Lattice reduction has further been applied to various problems 
in wireless communications, e.g., to the equalization of frequen-
cy-selective channels [11], to receiver design for unitarily pre-
coded quadrature amplitude modulation (QAM) transmission 
over flat fading channels [12], to joint data detection and 

LATTICES 
A (point) lattice L  is a periodic arrangement of discrete 
points. Two-dimensional examples are the square, rhombic, 
and hexagonal lattices shown in Figure S1. 

Any lattice can be characterized in terms of a (nonunique) 
basis B 5 1b1 cbm 2  that allows any lattice point to be rep-
resented as a superposition of integer multiples of the basis 
vectors b,, i.e., any x [ L can be written as 

x 5 a
m

,51
z, b,,   z, [ Z.

If x1 [ L and x2 [ L, then kx1 1 ,x2 [ L for any k, , [ Z. 
To any lattice basis, there is an associated fundamental paral-
lelotope P 1B 2  , i.e., the set of points that can be written as 

x 5 a
m

,51
u, b,, 0 # u, , 1.

The Voronoi region V 1L 2 of a lattice is the set of points that are 
closer to the origin than to any other lattice point. The Voronoi 
region is a lattice invariant, i.e., it does not depend on a specific 
lattice basis. Translating either the fundamental parallelotope 
or the Voronoi region to all lattice points induces a tessellation 
of Euclidean space. Illustrations of the parallelotope (blue) and 
the Voronoi region (red) and the associated tessellations for our 
two-dimensional example lattices are shown in Figure S2. 
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[FIGS2] Illustrations of the parallelotope and the Voronoi 
region and the associated tessellations of two-dimensional 
example lattices.

Square Lattice Rhombic Lattice Hexagonal Lattice

[FIGS1] Two-dimensional examples of the square, 
rhombic, and hexagonal lattices.
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 channel estimation in quasi-synchronous code division  multiple 
access (CDMA) [13], and to equalization in precoded orthogonal 
frequency division multiplexing (OFDM) systems [14]. 

Recently (see, e.g., [15] and [16]), lattice reduction (and lat-
tice theory in general) turned out to be extremely useful for 
detection and precoding in wireless multiple-input multiple-out-
put (MIMO) systems, i.e., systems that use multiple antennas at 
the transmit and receive side [17] (see “MIMO Wireless” for the 
basic notions of MIMO systems). The fundamental idea here is to 
exploit the discrete nature of the digital data and view the chan-
nel matrix that acts on the data as a basis (generator) of a point 
lattice. Via this interpretation, detection and precoding problems 
can be tackled using tools from lattice theory. Typically, a three-
stage procedure is pursued: 

1) An improved basis for the lattice induced by the channel is 
determined via lattice reduction. The original basis and the 
reduced basis are related via a unimodular matrix. 
2) The detection/precoding problem is solved with respect to 
the reduced basis. 
3) The solution is transformed back to the original domain 
using the unimodular matrix.
Since the reduced basis has nicer mathematical properties 

(e.g., smaller orthogonality defect and smaller condition num-
ber), solving detection and precoding problems with respect to 

the reduced basis offers advantages with respect to performance 
and complexity. For example, it was shown recently that in 
some scenarios even suboptimum detection/precoding 
 techniques can achieve full diversity (see “MIMO Wireless”) 
when preceded by LLL lattice reduction (e.g., [18]–[23]). 

While the multitude of applications illustrates the theoreti-
cal significance of lattice reduction, its practical importance is 
corroborated by the fact that very-large-scale integration (VLSI) 
implementations of lattice reduction algorithms for MIMO sys-
tems have recently been presented [24]–[28]. These hardware 
implementations were motivated by the fact that two core prob-
lems in the practical realization of MIMO systems are data 
detection at the receive side and broadcast precoding at the 
transmit side, and that several groups have proposed to use lat-
tice reduction algorithms to solve these problems efficiently. In 
fact, it turned out that lattice reduction approaches have the 
potential to achieve high performance at low computational 
complexity. The hardware implementations of lattice reduction 
algorithms will be applicable to WiMAX, WiFi, and 3GPP/3GPP2 
systems, which constitute an economically significant market. 

POINT LATTICES
In this section, we discuss the basic concepts relating to 
point lattices in a real Euclidean space, we provide a simple 

MIMO WIRELESS
MIMO systems use multiple antennas at both link ends and 
offer tremendous performance gains without requiring addi-
tional bandwidth or transmit power. Two important MIMO 
gains are the multiplexing gain, which corresponds to an 
increase of the data rate, and the diversity gain, which corre-
sponds to an increase of the transmission reliability.

In this article, we consider MIMO systems with M transmit 
antennas that transmit parallel data streams s,, , 5 1, c, M. 
At the receive side, N receive antennas pick up mixtures of the 
transmit signals, i.e., yk 5  gM

,51 hk,, s, 1 wk, where wk 
denotes additive Gaussian noise (Figure S3). In the MIMO spa-
tial multiplexing system considered in the section “Lattice 

Reduction for Data Detection,” the receive antennas cooper-
ate and channel state information is available at the receive 
side. In contrast, the MIMO precoding scheme considered in 
the section “Lattice Reduction for Precoding” requires chan-
nel state information at the transmit side and allows for dis-
tributed noncooperative receive antennas.

A useful MIMO performance figure is the (spatial) diversi-
ty order, defined as the asymptotic slope of the error proba-
bility Pe 1SNR 2 as a function of signal-to-noise ratio (SNR) on a 
log-log scale (see Figure S4). The diversity order depends on 
the statistics of the MIMO channel and on the transceiver 
scheme. For spatial multiplexing the maximum diversity order 
(“full diversity”) equals N, whereas for MIMO precoding the 
maximum diversity order equals M. 
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[FIGS3] MIMO system using M transmit antennas and N 
receive antennas. 
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[FIGS4] Illustration of MIMO systems with diversity order 
1 (blue) and with diversity order 2 (red).  
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motivating example for the use 
of lattice reduction in MIMO 
wireless systems, and we dis-
cuss briefly the necessary modi-
fications for complex-valued lattices. Further details on the 
theory of lattices can be found in [4] and [29]–[33]. 

REAL-VALUED LATTICES
A real-valued lattice L is a discrete additive subgroup of Rn. 
Any lattice can be characterized in terms of a set of m # n lin-
early independent basis (or generator) vectors 5b1, c, bm6, 
b, [ Rn, as 

 L !  e x ̀  x 5 a
m

,51
z, b,, z, [ Z f .

Here, Z denotes the set of integers and m is referred to as the 
rank or dimension of the lattice. Lattices are periodic 
 arrangements in the sense that translations of the lattice by an 
arbitrary integer multiple of any lattice point leave the lattice 
unchanged; formally, for any x, y [ L there is y 1 kx [ L for 
all k [ Z. For convenience, we will often arrange the basis vec-
tors into an n 3 m matrix B 5 1b1 cbm 2  and simply call B 
the basis of the lattice. Since the basis vectors were assumed 
linearly independent, B has full (column) rank, i.e., 
rank 1B 2 5 m. Any element of the lattice can then be represent-
ed as x 5 Bz for some z [ Zm.

The simplest lattices are the cubic lattices, obtained for 
n 5 m by choosing the basis vectors as b, 5 e,, where e, 
denotes the ,th column of the n-dimensional identity matrix 
In 5 1e1 cen 2 . In this case we have B 5 In and L5 Zn. Note, 
however, that due to its periodicity, Zn can also be generated by 
the basis vectors 5e1, e2 1 ke1, c, en 1 ke16 , k [ Z, i.e., 
B|5 B 1 k 10 e1 ce1 2 . While B 5 In is an orthogonal basis, the 
columns of B| become more and more colinear as k increases 
(i.e., the condition number of B increases). Obviously, when 
working with Zn, the basis In is to be preferred over B|. Figure 1 
illustrates the case n 5 m 5 2 by showing the bases B 5 I2 and 
B|5 B 1 3 10 e1 2  along with some lattice characteristics defined 
later in this section. 

The foregoing example revealed that the basis for a given 
lattice is not unique. Indeed, it can be shown that there exist 
infinitely many bases for a lattice; it is exactly these degrees of 
freedom with the choice of a lattice basis that are exploited by 
lattice reduction algorithms (see the section “Lattice 
Reduction Techniques”). The requirement that two matrices B 
and BT (with T an m 3 m matrix) span the same lattice is 
equivalent to BZm 5 BTZm and thus Zm 5 TZm. The last 
equality holds if and only if T is invertible and both T and T21 
have integer elements. Equivalently, T must be a matrix with 
integer elements and determinant |det 1T 2 | 5 1; in fact, these 
two properties guarantee that the inverse exists and also is an 
integer matrix. This follows from the observation that the 
1k, l 2th element of T-1 equals 121 2 k1l det 1Tkl 2 /det 1T 2[ Z (Tkl 
is obtained by deleting the kth row and lth column of T). 

Matrices  satisfying these prop-
erties are called unimodular 
and form a group under matrix 
multiplication. 

Any lattice basis also describes a fundamental parallelotope 
according to 

 P 1B 2 ! e x ` x 5 a
m

,51
u, b,,  0 # u, ,  1 f . 

P 1B 2  is also a so-called fundamental region, i.e., a region that 
completely covers the span of B when shifted to all points of 
the lattice. Another important fundamental region is the 
Voronoi region, defined as the set of points in Rn that are clos-
er to the origin than to any other lattice point, 

 V 1L 2 ! 5x | y x y # y x 2 y y   for all y [ L6. 
Voronoi regions can be associated to all other lattice points by 
a simple translation of V 1L 2 . In contrast to the fundamental 
parallelotope P 1B 2 , the Voronoi region V 1L 2  is a lattice 
invariant, i.e., it is independent of the specific choice of a lat-
tice basis. 

Clearly, different bases lead to different fundamental paral-
lelotopes. However, the volume (here, volume is defined in 
the m-dimensional space spanned by the columns of B) of 
P 1B 2  is the same for all bases of a given lattice. This volume 
equals the so-called lattice determinant, which is a lattice 
invariant defined as the square-root of the determinant of the 
Gramian BTB, 

 kL k ! !det 1BTB 2 . (1)

If the lattice has full rank (i.e., if n 5 m), the lattice determi-
nant equals the magnitude of the determinant of the basis 
matrix B, i.e., |L| 5 |det 1B 2 |. For a transformed basis B|5 BT 
(with T being unimodular), we have in  deed det 1B|T

 B| 2 5

det 1TT BT BT 2 5 det2 1T 2det 1BT B 2 5 kL k2. The “quality” of a 

[FIG1] Example lattice Z2 with bases B 5 Q 1 0
0 1 R and |B 5 Q 1 3

0 1 R 
and associated fundamental parallelograms P 1B 2  (in red) and 
P 1 |B 2 (in blue). The lattice determinant [defined in (1)] equals 
kL k 5 1 and the orthogonality defects [see (2)] are j 1B 2 5 1 and 
j 1B| 2 5 !10.
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 lattice basis can be measured in terms of the orthogonality 
defect, defined as

 j 1B 2 5
1

|L|q
m

,51
||b,||. (2)

For any m 3 m positive definite matrix A with elements 
ak,,, the Hadamard inequality states that det 1A 2 # wm

,51 a,,, 
with equality if and only if A is diagonal. Setting A 5 BTB 
this implies that the orthogonality defect is bounded from 
below as j 1B 2 $ 1, with equality if and only if B is orthogo-
nal. The fundamental parallelotope, lattice determinant, 
and orthogonality defect are illustrated for the lattice Z2 in 
Figure 1. 

To any lattice, there is an associated dual lattice, defined by 

 Lw ! 5xw [ span 1B 2 | xT xw [ Z   for all x [ L6.
If B is a basis for the primal lattice L, then a basis Bw for the 
dual lattice Lw can be obtained via the right Moore-Penrose 
pseudoinverse, i.e., 

 Bw 5 B 1BT B 221. (3)

Since BT Bw 5 Im, it follows that the primal and dual basis 
 vectors are bi-orthogonal, i .e. ,  b,

T bk
w 5 0  for , 2 k . 

Geometrically, this means that the dual basis vector bk
w is 

orthogonal to the subspace spanned by the primal basis vec-
tors b1, c, bk21, bk11 , c, bm. This is useful since for any 
x 5 Bz [ L we can recover the kth integer coefficient via 
zk 5 xT  bk

w. The determinant of the dual lattice is easily seen to 
be given by 0Lw 0 5 1/|L|. The cubic lattice Zn is an example of 
a lattice that is self-dual in the sense that L5Lw. 

MOTIVATING EXAMPLE
To illustrate the relevance of lattices and lattice reduction to 
MIMO communications, we consider a system transmitting 
two integer symbols s 5 Q s1

s2
R [ Z2 over two transmit anten-

nas (see also “Motivating Example: MIMO Detection”). This 
example is inspired by a similar one in [34]. At the receiver, 
two antennas receive the samples y1 5 h1,1  s1 1 h1,2  s2 1 w1 
and y2 5 h2,1 s1 1 h2,2  s2 1 w2, where hk,, denotes the channel 
coefficient between receive antenna k and transmit antenna 
, and w1 and w2 denotes noise. We rewrite the observation 
model as y 5 Q  

y1
y2 
R 5 x 1 w with x 5 Q  

h1,1
h2,1

 
R  s1 1 Qh1,2

h2,2
R  s2 and 

w 5 Q  

w1

w2 
R. Clearly, the noiseless receive vectors x form a lat-

tice with basis given by the channel matrix H 5 Qh1,1 h1,2
h2,1 h2,2

R, 
i.e., x [ L 1H 2 . 

If the elements of the noise vector are independent and 
identically distributed (i.i.d.) Gaussian, optimal ML detection 
amounts to finding the lattice point x̂ML lying closest to y. This 
leads to decision regions that equal the Voronoi regions of the 
lattice and hence are independent of the specific lattice basis. 
While ML detection is optimal, the search for the closest lat-
tice point is computationally hard, especially in high dimen-
sions. As a computationally simpler alternative, we may use a 

zero-forcing (ZF) detector that first equalizes the channel by 
computing s|ZF 5 H21y 5 s 1 H21 w and then uses a simple 
component-wise slicer (quantizer) that delivers the element in 
Z2 closest to s|ZF. The square decision regions for s|ZF corre-
spond to decisions regions for y that are given by the funda-
mental parallelogram P 1H 2  centered around each lattice 
point. Unless the channel is orthogonal, the ZF decision 
regions are different from the ML decision regions, therefore 
resulting in a larger number of detection errors. 

The error probability of a detector is largely determined 
by the minimum distance of the lattice points from the 
boundaries of the associated decision region. This distance 
can be interpreted as the maximum amount of noise that can 
be tolerated without ending up in an incorrect decision 
region. This minimum distance is much smaller for ZF 
detection than for ML detection, thereby explaining the infe-
riority of ZF detection. The problem with the ZF detector can 
be seen in the fact that it is based on the (pseudo)inverse of 
the channel matrix H and that the component-wise slicer 
(quantizer) ignores the correlation introduced by the equal-
izer. This implies that ZF detection is not independent of the 
basis (induced by the channel matrix), which may often be 
rather unfavorable. The fundamental idea now is to apply 
ZF detection with respect to a different, improved basis 
H| 5 HT  (with unimodular T). This is possible since 
y 5 Hs 1 w 5 H|z1 w where z 5 T21s [  Z2 due to the uni-
modularity of T. Lattice-reduction aided ZF detection then 
performs equalization with the (pseudo)inverse of the 
improved basis H|, followed by component-wise integer quan-
tization (yielding an estimate of z) and multiplication by T 
(yielding an estimate of s). This procedure is equivalent to 
decision regions that correspond to the fundamental paral-
lelogram P 1H| 2 . Performance is improved by lattice reduc-
tion since P 1H| 2  is more similar to the Voronoi region V 1L 2  
than P 1H 2 . While ZF detection with respect to a reduced 
basis is generally not equivalent to ML detection, lattice-
reduction-aided ZF detection typically results in large perfor-
mance gains (see the sections “Lattice Reduction for Data 
Detection” and “Lattice Reduction for Precoding”). 

COMPLEX-VALUED LATTICES
In many practical problems, e.g., in wireless communications, 
the quantities involved are complex valued. The previous 
 discussion of real-valued point lattices can be generalized to the 
complex case in a more or less straightforward manner. 
Specifically, a complex-valued lattice of rank m in the n-dimen-
sion complex space Cn is defined as 

 L! e x ` x 5a
m

,51
z, b,, z, [ Zj f ,

with complex basis vectors b, [ Cn and Zj 5 Z 1 jZ denoting 
the set of complex integers (also known as Gaussian integers). 
By arranging the basis vectors into an n 3 m complex-valued 
matrix B and noticing that the complex mapping x 5 Bz can be 
equivalently expressed as 
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 aR5x6
J5x6 b 5 aR5B6 2J5B6

 J5B6    R5B6 b a
R5z6
J5z6 b , (4)

it is seen that any m-dimensional complex-valued lattice in Cn 
can be dealt with as a 2m-dimensional real-valued lattice in R2n. 
Yet, many of the concepts and algorithms from the real-valued 
space can be (and have been) formulated directly in the complex 
domain with minor modifications (see, e.g., [14] and [35]–40]). 
This is sometimes advantageous since the problem dimension is 
not increased, the basis matrix need not obey the structure in 
(4), and the algorithm complexity can be lower. 

LATTICE REDUCTION TECHNIQUES
Lattice reduction techniques have a long tradition in mathe-
matics in the field of number theory. The goal of lattice basis 
reduction is to find, for a given lattice, a basis matrix with 
favorable properties. Usually, such a basis consists of vectors 

that are short and therefore this basis is called reduced. Unless 
stated otherwise, the term “short” is to be interpreted in the 
usual Euclidean sense. There are several definitions of lattice 
reduction with corresponding reduction criteria, such as 
Minkowski reduction [41]–[43], Hermite-Korkine-Zolotareff 
reduction [44], [45], Gauss reduction [46], LLL reduction [2], 
[33], Seysen reduction [3], and Brun reduction [47], [48]. The 
corresponding lattice reduction algorithms yield reduced bases 
with shorter basis vectors and improved orthogonality; they 
provide a tradeoff between the quality of the reduced basis and 
the computational effort required for finding it. 

In the following, we discuss the basics of the various lattice 
reduction approaches and the underlying reduction criteria. 
MATLAB implementations of some of the algorithms are provid-
ed as supplementary material in IEEE Xplore (http://ieeexplore.
ieee.org). Since most of the lattice reduction techniques are 
based on an orthogonal decomposition of a lattice basis matrix, 

MOTIVATING EXAMPLE: MIMO DETECTION 
Figure S5 illustrates a rotated square receive lattice induced 
by the channel realization H 5 Q 2 1 4

2 2 3R and integer symbols 
s [ Z2. The channel matrix corresponds to the basis vectors 
h1 5 Q2 1

2 2R and h2 5 Q43R (shown in black in (b)), which are 
seen to be almost collinear. This means that H is poorly con-
ditioned; its orthogonality defect equals j 1H 2 5 !5. The ML 
decision regions, shown in (a), correspond to the Voronoi 
regions of the lattice and are rotated squares. For the specif-
ic receive vector shown as light-blue square, the closest lat-
tice point  is x̂ML 5 Q 2 2

1 R  (marked as red circle) which 
corresponds to the ML decision ŝML 5 H21x̂ML 5 Q 2 2

2 1R. With 
ZF detection, the decision regions are given by the shifted 
versions of the fundamental parallelogram P 1H 2  associated 
with H [see (b)]. Due to the poor condition number of H, 
the ZF and ML decision regions are markedly different. 
Indeed, the ZF estimates are given by x̂ZF 5 Q 2 1

3
R  and 

ŝZF 5 Q 2 3
2 1R Z ŝML. 

In both (a) and (b), green circles illustrate the detector’s 
noise robustness, which is determined by the distance of 
the lattice points from the associated decision boundaries. 
In this example, a reduced basis is obtained as h

|
1 5 h1 and 

h
|

2 5 h2 1 2h1, i.e., H
|

5 HT with T 5 Q1 2
0 1R . This new basis 

[shown in blue in (a)] is optimal in the sense that it consists 
of two orthogonal shortest vectors (in general, there is no 
guarantee that an orthogonal basis exists nor that it can 
be found via lattice reduction). The fundamental parallelo-
gram associated with H

|
 is congruent with the Voronoi 

region of the lattice. Thus, ZF equalization with respect to 
H
|

 followed by a Z2 slicer and a remapping z S s here (but 
not in general) is equivalent to ML detection. Specifically, 
the closest lattice point H|z 5 Q 2 2

1 R  corresponds to the 
(transformed) symbol vector z 5 T21s 5 Q 0

21R and hence to 

the symbol decision s 5 Tz 5 Q22
21R, which coincides with the 

ML result. 

ML Detector ZF Detector
y2 y2

y1 y1

(a) (b)

[FIGS5] A rotated square receive lattice induced by the channel realization H 5 Q 2 1 4
2 2 3R and integer symbols s [ Z2. (a) ML 

decision regions and (b) decision regions of ZF detector. 
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we first briefly review the QR decomposition. Some texts build 
on the (unnormalized) Gram-Schmidt orthogonalization instead 
of the QR decomposition (see “QR and Gram-Schmidt” for a dis-
cussion of their relation). In practical implementations, the QR 
decomposition is preferable since it can be performed efficiently 
and numerically more stable (using e.g., Givens rotations or 
Housholder transformations [49]) than Gram-Schmidt. 

QR DECOMPOSITION
Consider an n 3 m lattice basis B with n $ m and 
rank 1B 2 5 m. The (thin) QR decomposition factorizes B 
according to B 5 QR, where Q 5 1q1 cqm 2  is an n 3 m 
 column-orthogonal matrix and R is an m 3 m upper triangular 
matrix with positive diagonal elements. We denote the element 
of R in row k and column , by rk,,. Since Q has orthogonal col-
umns with unit norm, we have QTQ 5 Im. The QR decomposi-
tion amounts to expressing the ,th column of B in terms of the 
orthonormal basis vectors q1, c,q, as 

 b, 5 a
,

k51
rk,, qk .

Here, qk
T b, 5 rk,, characterizes the component of b, collinear 

with qk. Furthermore, r,,, describes the component of b, which 
is orthogonal to the space spanned by b1, c,b,21 or, equiva-
lently, by q1, c, q,21.

The QR decomposition gives a descriptive explanation for 
the orthogonality of a basis. A basis vector b, is almost orthogo-
nal to the space spanned by b1, c, b,21, if the absolute values 
of r1,,, c, r,21,, are close to zero. If these elements of R are 

exactly zero, b, has no component into the direction of 
b1, c, b,21 and is correspondingly orthogonal to the space 
spanned by these vectors. However, for general lattices such a 
strictly orthogonal basis does not exist and one has to settle for 
a basis satisfying less stringent criteria. 

BASIC APPROACH
As discussed in the section “Point Lattices,” the columns of 
the matrix B define the lattice L. The same lattice is also 
 generated by any matrix that is constructed from B by the fol-
lowing elementary column operations: 

1) Reflection: This transformation performs a sign change by 
multiplying a specific column by 21, i.e., b

|

, 5 2b,; the cor-
responding unimodular matrix reads 

 T
1,2
R 5 Im 2 2e, e,

T. (5)

2) Swap: Here, two columns of the basis matrix are inter-
changed. Swapping column k and , according to b

|
, 5 bk and 

bk
|

5 b, amounts to postmultiplication of the basis matrix 
with the unimodular matrix 

 TS
1k,,2 5 Im 2 ekek

T 2 e,e,
T 1 ek 

e,
T 1 e, ek

T. (6)

3) Translation: This operation adds one column to another 
column, i.e., b

|
, 5 b, 1 bk. Such a translation is character-

ized by the unimodular matrix

 TT
1k,,2

5 Im 1 ek 
e,

T. (7)

 A translation by an integer multiple corresponds to repeated 
application of TT

1k,,2, i.e., b
|

, 5 b, 1 mbk with m [ Z is 
obtained via postmultiplication with 3TT

1k,,2 4m 5 Im 1 mek e,
T. 

Subtraction of integer multiples of a column can be achieved 
by reflecting the corresponding column before and after the 
translation, i.e., b

|
, 5 b, 2 mbk corresponds to the unimodu-

lar matrix TR
1k2 3TT

1k,,2 4m TR
1k2 5 3TT

1k,,2 42m 5 Im 2 meke,
T.

We note that only a translation actually impacts the quality of 
the basis directly, whereas reflections and column swaps help to 
systematically perform the appropriate translations. Since uni-
modular matrices form a group under multiplication, any 
sequential combination of the above three elementary operations 
corresponds to post-multiplying B with a specific unimodular 
matrix T. The goal of lattice reduction algorithms is to determine 
a sequence of elementary column operations (equivalently, a uni-
modular matrix T) that transforms the given basis B into a 
reduced basis B|5 BT according to the specific requirements of 
the corresponding reduction criterion. In the following, we dis-
cuss various lattice reduction approaches. Hereafter, the QR fac-
tors of B|  will be denoted by Q|  and R| , i.e., B| 5 Q|R|. 

MINKOWSKI AND HERMITE-KORKINE-
ZOLOTAREFF REDUCTION
H. Minkowski [41]–[43] developed the field of geometry of num-
bers and exploited the concept of point lattices to formulate the 

QR AND GRAM-SCHMIDT 
The unnormalized Gram-Schmidt orthogonalization of a 
basis b1, p, bm is described by the iterative basis updates 

 b̂, 5 b,2a
,21

k51
 m,,K b̂k,  with  m,,k 5

bT
,  b̂k

y b̂k y
2
.

In contrast, the (thin) QR decomposition represents 
the given basis vectors in terms of orthonormal basis 
 vectors q1, …, qm as 

b, 5 a
,

k51
rk,, qk.

 

Some algebra reveals the following relations between QR 
decomposition and Gram-Schmidt orthogonalization: 
• The ,th column q, of Q is the normalized version of the 

corresponding Gram-Schmidt vector b̂,, i.e., q, 5 b̂,/ y b̂, y.
• The length of the ,th Gram-Schmidt vector equals the 

,th diagonal element of the triangular matrix R, i.e., 
y b̂, y 5 r,,,.

• The off-diagonal elements of the triangular matrix R are 
related to the Gram-Schmidt coefficients according to 
m,,k 5 rk,,/rk,k.

Using the above analogies, any lattice reduction technique for-
mulated in terms of the QR decomposition can be rephrased 
using Gram-Schmidt orthogonalization and vice versa.
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corresponding theory. He introduced a very strong reduction 
criterion that requires that the first vector b|1 of the ordered 
basis B|  is a shortest nonzero vector in L 1B| 2 . In the following, 
when we speak of “shortest vectors,” this is meant to implicitly 
exclude the trivial all-zeros vector. All subsequent vectors b|, for 
2 # , # m have to be shortest vectors such that the set of vec-
tors b

|
1, c, b

|
, can be extended to a basis of L 1B| 2 . Thus, b

|
, is a 

shortest vector in L 1B| 2  that is not a linear combination of 
b|1, c, b|,21. 

The definition of a Hermite-Korkine-Zolotareff-reduced basis 
is related to that of Minkowski. It requires that the projection of 
the basis vectors b|, onto the orthogonal complement of the 
space spanned by 5b|1, c, b|,216 are the shortest vectors of the 
corresponding projected lattices [44], [45]. Consequently, the 
first vector b

|
1 is again a shortest vector of L 1B| 2 .

Due to their high computational complexity (see the section 
“Complexity of Lattice Reduction”), the Minkowski and 
Hermite-Korkine-Zolotareff reductions will not be considered in 
the context of MIMO detection and precoding (cf. the sections 
“Lattice Reduction for Data Detection” and “Lattice Reduction 
for Precoding”). 

SIZE REDUCTION
A rather simple but not very powerful criterion is given by the 
so-called size reduction. A basis B| is called size reduced if the 
elements of the corresponding upper triangular matrix 

|R satisfy 
the condition 

 |r|k,,| # 1
2  |r|k ,k|  for 1 # k , , # m . (8)

Thus, the component of any vector b,
|  into the direction of q|k 

for k , , is not longer than half of the length of b
|

k perpendicu-
lar to span5q|1, c,q|k216. If this condition is not fulfilled for an 
index pair 1k,, 2 , the length of b|, can be reduced by subtracting 
a multiple of b|k where the integer multiplication factor is given 
by m 5 < r|k,,/ r|k,k; with < #; denoting the rounding operation. This 
subtraction corresponds to applying the unimodular translation 
matrix 3T T

1k,,2 42m [cf. (7)]. We note that size reduction does not 
involve any column swaps. A basis fulfilling (8) is often called 
weakly reduced.

GAUSS REDUCTION
In contrast to the other reduction approaches, the reduction 
method introduced by C.F. Gauss in the context of binary qua-
dratic forms is restricted to lattices of rank m 5 2, i.e., 
B 5 1b1 b2 2 [ Rn32 [46]. For such two-dimensional lattices, 
Gauss reduction constructs a basis that fulfills the reduction cri-
teria introduced by Minkowski and Hermite-Korkine-Zolotareff. 

In addition to size reduction, Gauss reduction also 
includes column swapping operations that correspond to 
applying the unimodular matrices TS 

1k,,2 defined in (6). In par-
ticular, after first size reducing the given basis matrix B, the 
columns of the resulting basis B|5 1 b|1 b

|
2 2  are swapped if the 

length of b|1 is larger than that of b|2 and the resulting basis is 
again size reduced. This process of successive size reduction 

and column swapping operations is repeated until the length 
of b|1 is shorter—after the preceding size reduction step—
than that of b|2, which implies that no further column swap-
ping operation is performed (see “Gauss Reduction”). After a 
finite number of iterations, this algorithm provides a Gauss-
reduced basis B| , where y b|1 y # y b

|
2 y  and the properties of a 

size-reduced basis are satisfied. In particular, b|1 and b|2 are 
the two shortest vectors in the lattice L that form a basis for 
L. “Example: Size and Gauss Reduction” illustrates these two 
reduction techniques with a simple example. 

LLL REDUCTION
A powerful and famous reduction criterion for arbitrary lat-
t ice dimensions was introduced by A.K.  Lenstra, 
H.W. Lenstra, and L. Lovász in [2], and the algorithm they 
proposed is known as the LLL (or L3) algorithm (see also [29] 
and [33]). It can be interpreted as an extension of 
Gauss reduction to lattices of rank m . 2. 

In particular, a basis
|
B with QR decomposition B

|
5 Q
|

R
|

 is 
called LLL reduced with parameter 1/4 , d # 1, if 

 |r|k,,| # 1
2 |r|  k,k|, for  1 # k , , # m, (9a)

 d |r|,21,,21|
2 # |r|,,,|

2 1 |r|,21,,|
2, for  , 5 2, c, m. (9b)

The choice of the parameter d affects the quality of the reduced 
basis and the computational complexity. Larger d results in a better 
basis at the price of higher complexity (see also the section “LLL 
Complexity”). A common choice is d 5 3/4. The inequality in (9a) 
is the condition for a size-reduced basis [cf. (8)] and (9b) is the so-
called Lovász condition. The quantities |r|,21,,21|

2 and 
|r|,,,|

2 1 |r|,21,,|
2 in the Lovász condition equal the squared lengths 

of the components of b|,21 and b
|

, that are orthogonal to the space 
spanned by b|1, c,b

|
,22. If the Lovász condition is not fulfilled for 

two vectors b
|

,21 and b|,, these vectors are swapped (similar to 
Gauss reduction) and the resulting basis matrix is again 
QR-decomposed and size reduced. This process of subsequent size 
reduction and column swapping operations [which corresponds to 
the application of the reflections, swaps, and translations defined in 
(5)–(7)] is repeated until—after a finite number of iterations—an 
LLL-reduced basis is obtained (see “The LLL Algorithm” and [2], 

GAUSS REDUCTION 
Below, we provide pseudocode for Gauss reduction. The 
algorithm takes a two-dimensional basis matrix B as input 
and success ively performs column swaps and size reduc-
tions until a Gauss reduced basis is obtained. 

1: |B d B

2:  repeat 

3:  
|
b1 4

|
b2

4:  
|
b2 d

|
b2 2 lb

|T
1 b
|

2

7b|1 7 kb
|

1

5:  until y b1
| y# y b|2 y
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[50], and [51] for more details). LLL reduction results in many 
interesting properties of the corresponding reduced basis B

|
. For 

example, it can be shown that (9a) and (9b) imply that the length of 
the shortest vector b

|
1 in an LLL-reduced basis is upper bounded in 

terms of the length of a shortest vector xmin in the lattice, i.e., 
y b|1 y # !am21 y xmin y  with a 5 Qd 2 1/4R21 (it was observed 
that in practice LLL reduction provides a much better approxima-
tion of the shortest vector than suggested by this bound). 
Furthermore, the orthogonality defect of an LLL-reduced basis is 
bounded (though not necessarily minimal),  i .e . , 
j 1B| 2 # !4 am1m212. This property has been used in [18] to show 
that suboptimum detectors aided by LLL lattice reduction achieve 
full diversity (see also [14] and [19]–[23]). We refer to the section 
“LLL Complexity” for a discussion of the complexity of LLL. 

DUAL LATTICE REDUCTION
Instead of applying a particular lattice reduction algorithm to 
the basis B, a reduction of the dual basis Bw defined in (3) can 
be performed. We note that a reduction of Bw by a unimodular 
matrix T corresponds to a reduction of the primal basis B by 
the unimodular matrix T21. For lattice reduction based on the 
LLL algorithm, this dual lattice-reduction approach was pro-
posed in [18] to improve the performance of lattice-reduction-
based linear equalization schemes (see the section “Lattice 
Reduction for Data Detection”). 

SEYSEN’S LATTICE REDUCTION ALGORITHM
The basic principle of Seysen’s lattice reduction algorithm 
[3], [52] lies in the simultaneous reduction of the basis B 

and the dual basis Bw. M. Seysen defined the orthogonality 
criterion 

 S 1B 2 5 a
m

,51
y b, y 2 y b,

w y 2
 ,

which achieves its minimum, S 1B 2 5 m, if and only if the 
basis B is orthogonal. A basis B is called S-reduced if 
S 1B 2 # S 1BT 2  holds for all possible unimodular transforma-
tion matrices T. Thus, for an S-reduced basis, no unimodular 
transformation matrix T leads to a further reduction of the 
corresponding Seysen’s measure. The determination of an S
-reduced basis in general is computationally too expensive. 
Hence, one typically considers relaxed versions of lattice 
reduction based on Seysen’s measure that successively per-
form elementary column operations with respect to just two 
basis vectors [cf. (5)–(7)] to find a local minimum of S 1B 2 . 
The greedy variant that selects the two columns involved in 
the basis update such that S 1B 2  is maximally decreased is 
referred to as S2 reduction. A MATLAB implementation of S2 
reduction is provided as supplementary material in IEEE 
Xplore (http://ieeexplore.ieee.org). The application of S2 
reduction for data detection has recently been proposed in 
[36] (see also the section “Lattice Reduction for Data 
Detection”). 

BRUN’S ALGORITHM
In 1919, V. Brun [47], [48] proposed an efficient algorithm for 
finding approximate integer relations (see also [8]), i.e., finding 

EXAMPLE: SIZE AND GAUSS REDUCTION
We illustrate size reduction and Gauss reduction with a small 
example. Figure S6 shows a two-dimensional lattice L spanned 
by the basis vectors b1 5 Q2.2

1 R and b2 5 Q3.2
1 R (shown in blue). 

The orthogonality defect of this basis equals j 1B 2 5 8.1.

Size Reduction
The QR decomposition of this basis yields R 5 Q2.417 3.327

0 0.414R. 
Since |r1,2| 5 3.327 . |r1,1|/2 5 1.208, the basis is not size 
reduced. The corresponding size  reduction step is to replace 
b2 with b|2 5 b22 mb1 where m 5 <3.327/2.417; 5 1, leading to 
the new basis vector b|2 5 Q10R (shown in red). The first basis 
vector  remains  unchanged,  i .e . ,  b|1 5 b1.  S ince 
r|1,2 5 r1,2 2 r1,1 5 0.91 , |r1,1| /2 5 1.208, the new basis is size 
reduced; its orthogonality defect is j 1B| 2 5 2.42.

Gauss Reduction
After the size reduction, b1

|  is more than twice as long as b2.
|  This 

suggests to perform a column swap b1
|  4 b| 2 that leads to the 

basis matrix Q1 2.2
0 1 R that is actually upper triangular. Since 

|r|1,2| 5 2.2 . |r|1,1| /2 5 1/2, we perform another size reduction 
step, i.e., b r|2 5 b2

|
2 <2.2/1; b1 5

| Q0.2
1 R and b r|1 5 b2

| . Since br1
|  is 

shorter than br2
|  no further column swap or size reduction is pos-

sible and a Gauss-reduced basis has been obtained, i.e., the basis 
Br| 5 Q1 0.2

0 1
R  consists of two shortest vectors that span L. The 

orthogonality defect of this basis is j 1Br| 2 5 1.02.

We note that the above sequence of size reduction, col-
umn swap, and size reduction can be described in terms of 
a unimodular matrix T that decomposes into the elementa-
ry column operations [see (5)–(7)] 

 T 5 T112 R  TT
11,22 TR

112 TS
11,22 TR

112 T   T 
11,22 TT

11,22 TR
112 

 5 a1 21
0 1

b a0 1
1 0

b a1 22
0 1

b 5 a21 3
1 22

b.

−b1

b2b2′
~

–2b1
′~

b1′
~b2

~
=

b1 b1
~

=

[FIGS6]  Illustration of size reduction (red) and Gauss reduction 
(green) for a two-dimensional lattice L spanned by the basis 
vectors b1 5 Q2.2

1 R and b2 5 Q3.2
1 R (shown in blue). 
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integer vectors t, [ Zn that are (almost) orthogonal to a given 
vector u [ Rn while being as short as possible. It has been real-
ized in [35] that Brun’s algorithm can also be used for lattice 
reduction. In particular, let us consider a transformed bases B

|
5

1b|1 cbm
| 25 BT where T 5 1t1 ctm 2  is unimodular. The 

orthogonality defect of B| is determined by the lengths of the basis 
vectors b|,, which equal 

 y b
|

, y
2

5 yBt, y
2

5 a
m

k51
lk 1uT

k t, 2 2,  (10)

where lk . 0 and uk, k 5 1, c, m, denote the eigenvalues and 
eigenvectors of the Gramian BT B. Assuming that l1 is the largest 
eigenvalue and that l1 W lk, k 2 1, (10) suggests that decreas-
ing the orthogonality defect by reducing y b|, y 2 requires t, to be as 
orthogonal as possible to u1; this is exactly the approximate inte-
ger relation problem solved by Brun’s algorithm. The assumption 
l1 W lk is particularly well justified for precoding in wireless 
MIMO systems; see the section “Brun’s Algorithm for Lattice-
Reduction-Assisted Precoding.”

Lattice reduction based on Brun’s algorithm performs itera-
tive column updates (translations/size reductions) such that |u1

Tt,| 
decreases (the column pair and the size reduction parameter can 
be determined very efficiently). This process is repeated as long as 
the orthogonality defect of the corresponding reduced basis 
decreases. Compared to LLL and Seysen reduction, Brun reduc-
tion performs poorer but has significantly lower complexity. A 
MATLAB implementation of Brun reduction is available as sup-
plementary material in IEEE Xplore (http://ieeexplore.ieee.org).  

REDUCTION PERFORMANCE
In the following, the quality of the different reduction schemes is 
compared by means of the condition number k 1B| 2  (the ratio of 
the maximum and the minimum singular value of B

|
), the 

orthogonality defect j 1B| 2 , and the normalized Seysen criterion 
S r 1B| 2 5 S 1B| 2 /m. These three performance metrics are lower-
bounded by one and should be as small as possible. The compari-
son here does not take into account the complexity of the various 
lattice reduction methods. While the preceding discussion of lat-
tice reduction methods was restricted to real-valued basis matri-
ces, we here compare the respective extensions to 
complex-valued basis matrices (cf. the section “Complex-Valued 
Lattices”) for the case of complex Gaussian matrices whose ele-
ments are i.i.d. with zero mean and unit variance. For the LLL 
algorithm, we used the common choice d 5 3/4. Better results at 
the expense of higher complexity can be achieved with larger d. 

For matrices of dimension 6 3 6, Figure 2 shows the cumula-
tive distribution functions (CDFs) of the different performance 

THE LLL ALGORITHM 
We provide pseudocode for the LLL algorithm, summariz-
ing the main algorithmic steps. The algorithm inputs are 
the basis matrix B and the reduction parameter d.

1: |B d B

2: 3|Q, 
|
R 4 d qr 1 |B 2

3: , d 2

4: repeat

5:  
|
b, d

|
b, 2 l

|r,21,,

|r,21, ,21
k |b,21

6:  if d |r|,21,,21|
2 . |r|,,,|

2 1 |r|,21,,|
2 then 

7:   
|
b,21 4 |b, 

8:   , d max 1, 2 1, 2 2  
9: else 

10:  for  k 5 , 2 2 to 1  do 

11:   
|
b, d

|
b, 2 l

|rk,,

|rk,k
k |bk

12:  end for 

13:  , d , 1 1 

14:  end if

15:  until , . m

In lines 5 and 11, a size reduction is performed, whereas line 7 
implements a column swap. In the above pseudocode, we 
omitted the updates of the QR decomposition, which essential-
ly consist of simple Givens rotations and are necessary after 
each basis change (lines 5, 7, and 11). Actual implementations 
of the LLL algorithm (e.g., [50]) operate directly on the QR fac-
tors and additionally provide the corresponding unimodular 
matrix T as output. MATLAB code for such an implementation 
is made available as supplementary material in IEEE Xplore 
(http://ieeexplore.ieee.org). 

[FIG2] Performance assessment of LLL, dual LLL, and Seysen S2 
reduction in terms of the CDF of (a) ln k(|B), (b) ln j(B|), and 
(c) ln S r(B|) (i.i.d. complex Gaussian basis matrices with zero mean 
and unit variance, m 5 n 5 6 ). LLL and dual LLL lie practically on 
top of each other.
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metrics (on a log scale) for the LLL-reduced basis, for the 
S2-reduced basis (labeled “SEY”), for dual LLL (“DLLL”—LLL 
applied to the dual basis Bw), and for the unreduced basis. All lat-
tice reduction algorithms scale the three performance metrics 
down significantly. Furthermore, SEY marginally outperforms 
LLL and DLLL (which perform identically). 

Figure 3 shows the CDFs of the squared length of the longest 
primal basis vector  b

|
, and of the longest dual basis vector  b

|w

,. It is 
seen that for the primal basis SEY and LLL perform identically 
and superior to DLLL; in contrast, for the dual basis SEY and 
DLLL achieve equivalent results with LLL being inferior. This con-
forms that SEY reduces the primal and dual basis simultaneously 
while LLL only reduces the primal basis and DLLL only reduces 
the dual basis. 

The metrics considered in this section give an indication of the 
performance of the various algorithms; they are not necessarily in 
one-to-one correspondence, though, with other performance met-
rics like bit error rate (BER) in a communication system. 

COMPLEXITY OF LATTICE REDUCTION

COMPLEXITY OF MINKOWSKI AND 
HERMITE-KORKINE-ZOLOTAREFF REDUCTION
The Minkowski and Hermite-Korkine-Zolotareff reductions 
are the strongest but also the computationally most demand-
ing to obtain. In both the Minkowski and the Hermite-
Korkine-Zolotareff-reduced lattice basis the first vector b

|
1 of 

the reduced basis B
|

 corresponds to the shortest vector in the 
lattice. This implies that the computation of the Minkowski 
and Hermite-Korkine-Zolotareff-reduced bases are at least as 
complex as the computation of the shortest lattice vector, a 
problem known to be NP-hard (under randomized reduc-
tions) [53]. In fact, the computation of a Hermite-Korkine-
Zolotareff-reduced basis essentially consists of solving m 

shortest vector problems, and any method for computing the 
shortest lattice vector is thus applicable for use in the 
Hermite-Korkine-Zolotareff reduction [4]. The sphere decod-
er [4] may be used to solve the shortest vector problems. 
Since the sphere decoder has a (worst case and average) com-
plexity that grows exponentially with the dimension m of the 
lattice [54], it is practically feasible only for lattices of moder-
ate dimension. In this context, it is interesting to note that 
the sphere decoding algorithm of Fincke and Pohst was in 
fact presented as a solution to the shortest vector problem in 
[5], rather than the closest vector problem to which it is typi-
cally applied in the context of detection and precoding. 

LLL COMPLEXITY
The complexity of the LLL algorithm is traditionally assessed 
by counting the number of LLL iterations, denoted K, where 
an iteration is started whenever the Lovász condition in (9b) is 
tested (this corresponds to one repeat loop in the pseudocode 
provided in “The LLL Algorithm”). Thus, an iteration may 
consist of the selection of a new pair of columns to operate on, 
or a column swap followed by a size reduction (cf. the section 
“LLL Reduction”). The number of LLL iterations required to 
reduce a given basis was treated already in [2], which made 
clever use of the quantity 

 D ! q
n21

k51
q

k

,51
|r|,,,|

2. 

It can be shown that D is decreased by (at least) a multiplicative 
factor d [cf. (9b)] whenever two columns are swapped by the LLL 
algorithm and left unchanged by the size reduction. If the origi-
nal basis matrix B is integer-valued, then D $ 1 throughout the 
execution of the LLL algorithm [2], which in turn implies that 
the number of swap operation carried out by the LLL algorithm 
is finite and that the algorithm always terminates. In fact, given 
integer basis vectors of bounded Euclidean length V , the algo-
rithm terminates after at most 

 K # m2logt  V 1 m 

iterations [2], [55], where t ! 1/ "d . 1. This also implies that 
the complexity (in terms of binary operations) of the LLL algo-
rithm is polynomial in the (binary) description length of the basis 
B—a widely celebrated result. For an integer-valued basis B, the 
binary description length is the number of bits required to speci-
fy the elements of B. A similar statement can be made also in the 
extreme case where d 5 1, although the proof of this statement 
requires some additional work [56]. 

The complexity analysis for the case of general (real- or com-
plex-valued) B is complicated by the fact that it is no longer nec-
essarily true that D $ 1. However, other strictly positive lower 
(and upper) bounds on D can be found in this case. Based on 
such bounds, it was shown in [55] that the number of LLL itera-
tions in general is upper bounded as 

 K # m2 logt 
A
a

1 m,  (11)

[FIG3] The CDF of maximum squared length of reduced basis 
vectors for (a) the primal basis and (b) the dual basis (i.i.d. complex 
Gaussian basis matrices with zero mean and unit variance, 
m 5 n 5 6 ).
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w h e r e  A ! max, |r|,,,|  a n d 
a ! min, |r|,,,|. The bound (11) 
implies that the LLL algorithm 
terminates for arbitrary bases. 
The expression in (11) was used 
in [55] to prove polynomial aver-
age complexity of the LLL algorithm for the case where the basis 
vectors are uniformly distributed inside the unit sphere in Rm. 
This result has subsequently been extended to i.i.d. real- and 
complex-valued Gaussian bases in the context of MIMO commu-
nications [40], [57]. 

It is possible to further upper bound (11) based on the condi-
tion number of B according to [57] 

 K # m2 logt k 1B 2 1 m .  (12)

This bound is valuable specifically because it applies to the LLL 
reduction of both the primal and the dual basis due to 
k 1B 2 5 k 1Bw 2 . It further follows from (12) that a large number 
of LLL iterations can occur only when the original basis matrix 
B is poorly conditioned. Although the opposite is not true (there 
are arbitrarily poorly conditioned bases that are simultaneously 
LLL reduced), it has been shown (by explicit construction of 
corresponding bases) that the number of LLL iterations can be 
arbitrarily large [57]. This means that there is no universal 
upper bound on the number of LLL iterations in the MIMO con-
text, or equivalently that the worst-case complexity is unbound-
ed. This said, it should be noted that (in addition to the 
polynomial average complexity) the probability mass function of 
K  has an exponential tail [57], which implies that atypically 
large values of K are rare. Numerical experiments also indicate 
that the complexity of the algorithm is  relatively low in practice. 

COMPLEXITY OF SEYSEN AND BRUN REDUCTION
There are much fewer analytical results for the complexity of 
Seysen and Brun reduction than for the LLL algorithm. That 
the number of S2 reductions performed by Seysen’s 

 algorithm must be finite fol-
lows  by  [3 ,  Corol lary  9] 
although the bound given there 
is too loose to be useful in a 
practical complexity analysis. 
There is, to our knowledge, no 

similar statement available for Brun’s algorithm. It is likely 
that an argument similar to [3] could be used to show that 
Brun’s algorithm also always terminates. It is also likely that 
(similar to the LLL algorithm) there are bases that require an 
arbitrarily large number of iterations to reduce, both for 
Brun’s algorithm and Seysen’s algorithm. 

Like the LLL algorithm, Seysen’s and Brun’s algorithm 
have a data-dependent complexity, which makes numerical 
studies of their complexity relevant. Such investigations have 
found that Brun’s algorithm tends to be an order of magnitude 
less complex than LLL and Seysen’s algorithm (at the expense 
of reduced performance) [35]. The overall complexity (in 
terms of floating point operations) of reducing real-valued 
bases is slightly lower for the LLL algorithm than for Seysen’s 
algorithm [58]. No comparable analysis has been made for the 
complex-valued case. 

NUMERICAL RESULTS
We illustrate the effective complexity of LLL and Seysen lattice 
reduction for random n 3 m bases whose elements are 
i.i.d. complex Gaussian with zero mean and unit variance. In the 
remainder of this article, such matrices will, for brevity, be 
referred to as i.i.d. Gaussian matrices. Figures 4 and 5 show the 
complementary cumulative distribution function (CCDF) of the 
number of (complex) LLL and Seysen iterations. For Seysen 
reduction, we used the greedy S2 implementation in which a pair 
of basis vectors is always selected so that the largest reduction in 
the Seysen measure over any pair of two basis vectors is obtained 
[3], [52]; here, an iteration is defined as the selection of a pair of 
basis vectors, followed by their S2 reduction. In Figure 4, one can 
clearly see that the probability of experiencing an atypically large 
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zero mean and unit variance.
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number of LLL iterations vanishes exponentially fast, and also 
that the number of iterations increases with the dimension of the 
basis. The number of Seysen iterations shows a remarkable 
 similarity to the LLL case; this observation has yet to be con-
firmed analytically. 

TOPICS FOR FUTURE RESEARCH
There are a number of open problems concerning the com-
plexity of lattice reduction. One is the lack of analytical results 
regarding the complexity of Seysen’s and Brun’s algorithm. 
Another important open problem is the development of better 
(probabilistic) bounds on the complexity of the LLL algorithm. 
In essence, bounds of the form (11) and (12) refer to the worst 
case complexity over some set of matrices, e.g., a set of matri-
ces with bounded condition number. However, as noted previ-
ously, given a specific condition number there are 
LLL-reduced bases with this condition number. This means 
that for some matrices the bound in (12) is overly pessimistic. 
Numerical evidence also indicates that the average complexity 
is significantly lower than what is suggested by currently 
available bounds. 

LATTICE REDUCTION FOR DATA DETECTION
The application of lattice reduction for efficient near-opti-
mum data detection in MIMO wireless systems has attract-
ed a lot of attention over recent years (see “MIMO Wireless” 
and, e.g., [15], [16], [18], [20], [21], [23] [36], [50], [51], 
and [59]). Here, parallel data streams are transmitted using 
multiple antennas to increase the spectral efficiency at the 
cost of increased complexity for data detection at the 
receiver. Optimal ML detection achieving full diversity can 
be performed using sphere decoding [4], [5], [60], whose 
 complexity has been analyzed, e.g., in [54], [61], and [62]. 
Less complex suboptimal detection schemes are abundant 
but mostly do not achieve full diversity. Interestingly 
though, suboptimal detectors augmented with lattice 
reduction perform close to optimal and have the potential 
to achieve full diversity. This is of practical interest since 
lattice-reduction-aided detection also has two major com-
plexity advantages over sphere decoding: 1) lattice reduc-
tion complexity is low (LLL has polynomial average 
complexity as opposed to exponentially growing average 
complexity of sphere decoding) and 2) with lattice reduc-
tion, the main computational burden accrues only when 
the channel changes whereas with sphere decoding the 
computationally expensive steps have to be performed for 
each new data vector. 

SYSTEM MODEL AND BACKGROUND
In the following, we consider a spatial multiplexing MIMO sys-
tem with M transmit and N $ M receive antennas as shown in 
Figure 6. Here, the lattice concepts and lattice reduction algo-
rithms apply with n 5 N and m 5 M. 

At the transmitter the data is demultiplexed into M parallel 
data streams that are mapped to symbols from the QAM alphabet 
S ( Zj and simultaneously transmitted over the M antennas. For 
QAM constellations, the condition S ( Zj can easily be satisfied by 
an appropriate combination of scaling and translation. Consider 
S 5 52 11 1 j 2 /!2 , 11 2 j 2 /!2, 2 11 2 j 2 /!2, 11 1 j 2 /!2 6, 
i.e., power-normalized 4-QAM. By adding 11 1 j 2 /!2 and then 
multiplying by 1/!2, this constellation is transformed to 
50,1, j,1 1 j6 ( Zj. The fixed additive offset can be moved into the 
observation whereas the multiplicative scaling can be incorporat-
ed into the channel (see, e.g., [16] and [50] for details). We consid-
er one time slot of the discrete-time complex MIMO baseband 
model. Let s denote the complex-valued transmitted data vector 
with i.i.d. elements, each of which has power normalized to one. 
The corresponding received vector y is given by (see, e.g., [17]) 

 y 5 Hs 1 w (13)

with the N 3 M (tall) channel matrix H and the noise vector w. 
The noise is assumed to be spatially white (in case of spatially 
correlated noise, a spatial whitening filter can be used to obtain 
an equivalent model with white noise) complex Gaussian with 
variance sw

2 . 

CONVENTIONAL MIMO DETECTORS
The ML detector for detecting the transmitted data vector based 
on (13) amounts to 

 ŝML 5 arg min
s[S

M
y y 2 Hs y 2, (14)

where SM denotes the set of possible data vectors. For a rea-
sonable number of antennas and modulation order, solving 
this closest vector problem via exhaustive search is typically 
not feasible. Consequently, various more efficient optimum 
and suboptimum data detection algorithms have been pro-
posed in the literature. In particular, this includes efficient ML 
implementations based on sphere decoding (see, e.g., [4] and 
[60]) and low-complexity suboptimum algorithms based on 
linear equalization and successive interference cancelation 
(SIC) (see, e.g., [17]). 

With linear equalization, the received vector is first passed 
through a linear spatial filter and the resulting filter output is 
then quantized (sliced) component-wise with respect to the 
symbol alphabet S. For linear ZF equalization, the filter is 
designed to completely suppress spatial interference in the fil-
ter output signal. To this end, the received vector is multiplied 
with the (left) Moore-Penrose pseudoinverse of the channel 
matrix H1 5 1HHH 221HH, 

 s|ZF 5 H1y 5 s 1 H1w.  (15)

[FIG6] Block diagram for a MIMO spatial multiplexing system.
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Note that this is the unconstrained least squares solution of 
(14). ZF detection is optimal (i.e., equivalent to ML) for orthog-
onal channel matrices but otherwise suffers from noise 
enhancement. An alternative to ZF equalization with improved 
performance is the minimum mean-square error (MMSE) 
equalizer, which minimizes the overall error consisting of resid-
ual spatial interference and noise at the filter output. As shown 
in [63] and [64], MMSE detection is mathematically equivalent 
to ZF detection with respect to an extended system model with 
the 1N 1 M 2 3 M  channel matrix H 5 QHswIR  and length-
1N 1 M 2  receive vector y 5 Qy

0
R, i.e.,

 s|MMSE 5 H1y 5 1HHH 1 sw
2  I 221HHy.

Even better performance can be achieved by nonlinear 
detection schemes such as SIC (or decision-feedback) detec-
tion [17], [64], [65]. With these methods, data symbols are 
detected successively by canceling the effect of previously 
detected symbols. Hence, the order in which the symbols are 
detected affects the performance and can be optimized. For 
example, the V-BLAST detection ordering algorithm [65] finds 
the ordering that leads to the maximum postequalization SNR   
at each detection step. Several computationally efficient algo-
rithms have been proposed for this task in the literature, 
e.g., [63]–[66]. During SIC detection, the yet undetected data 
symbols have to be suppressed (“nulled”), which can be done 
again using either a ZF or an MMSE approach (see [64] for 
more details). 

LATTICE-REDUCTION-AIDED DETECTION
For common suboptimal detection approaches like linear 
equalization and SIC detection (see the previous section), 
the performance strongly depends on the specific channel 
realization (see, e.g., [50] and [67]). For example, ZF detec-
tion is optimal if the channel realization H happens to be 
orthogonal but results in poor performance otherwise. It is 
therefore natural to try to apply the detector not directly to 
H, but rather to a transformed system model with a “more 
orthogonal” channel matrix H

|
 [16], [50], which can be 

obtained with lattice reduction. To this end, the channel 
matrix H is interpreted as a basis for the discrete lattice of 
noise-free received vectors given by Hs. To determine a cor-

responding reduced basis H
|

 with better properties, one can 
use one of the lattice reduction algorithms described in the 
section “Lattice Reduction Techniques” with B 5 H. Since 
H is in general complex-valued, we note that either the cor-
responding lattice reduction algorithm has to be adapted to 
the complex-valued case or the equivalent real-valued sys-
tem model has to be used (cf. the section “Complex-Valued 
Lattices”). Figure 7 illustrates the application of lattice 
reduction to data detection. 

We first rewrite the system model (13) as 

 y 5 HTT21s 1 w 5 H|z 1 w, (16)

where H| 5 HT and z 5 T21s. Assuming for the moment that 
the symbol alphabet is given by the complex integers, i.e., 
S 5 Zj, it follows from the unimodularity of T that z [ Zj

M. 
Note that Hs and H|z describe the same lattice point but the 
reduced matrix H| is more orthogonal than the original channel 
matrix H. Thus, equalizing with the pseudoinverse H

|1 leads to 
z|ZF 5 H|1y 5 z 1 H|1w, which suffers less noise amplification 
than conventional equalization according to (15). Consequently, 
a quantization based on z|ZF is more reliable than that based on 
s|ZF. Denoting the quantization result obtained with the reduced 
channel H| by ẑZF, the final detection result is obtained as TẑZF. 

For practical systems, the symbol alphabet is a finite subset 
of the infinite set of integers, i.e., S ( Zj (recall that we 
assumed S to be appropriately scaled and translated). 
Consequently, the domain of the transformed symbols z is also a 
subset of Zj

M. Appropriately taking into account the constella-
tion boundary in the transformed domain leads to a shaping 
problem, which is illustrated in Figure 8 for a two-dimensional 
real-valued pulse amplitude modulation (PAM) constellation. 
For the original constellation, the optimum quantizer is equiva-
lent to rounding (quantization with respect to Zj

M) followed by 
clipping to enforce the constellation boundary. In contrast, the 
decision regions for the transformed constellation differ from 
those of Zj

M at the constellation boundary. Implementing these 
decision regions would again be computationally very expensive 
[68]. A simple but suboptimal alternative consists of the follow-
ing three steps [16], [68]: 1) quantize (i.e., round) z| with 
respect to Zj

M; 2) return to the original symbol domain by mul-
tiplying with T; and 3) requantize (i.e., clip) the result with 

[FIG7] Block diagram for a MIMO spatial multiplexing system with lattice-reduction-aided data detection.
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respect to SM (the last step need not be performed if the inter-
mediate result already belongs to the symbol constellation). 
This simple approach entails a noticeable performance loss [68], 
specifically for small constellation size. 

The extension of linear lattice-reduction-aided detection 
according to the MMSE criterion is achieved by applying lattice 
reduction to the extended channel matrix H 5 QHswIR [50], [51]. In 
addition to improved performance, MMSE-based lattice reduction 
has a significantly smaller complexity than ZF-based lattice 
reduction; this can be explained by the fact that (due to the scaled 
identity matrix at the bottom) the extended channel matrix H is 
more orthogonal and better conditioned than H. Furthermore, as 

shown in [69], applying the MMSE criterion also limits the 
 performance loss when quantizing with respect to Zj instead 
of Sj. To further improve the detection performance, lattice 
reduction can be combined with SIC detection [50], [51]. The 
resulting method is equivalent to the algorithm for finding the 
so-called Babai point [70]. While the reduced channel generally 
does not fulfill the V-BLAST ordering criterion, such an ordering 
can be achieved by using a postsorting algorithm [64]. We note 
that lattice-reduction-aided SIC detection can be interpreted as 
generalization of V-BLAST in which not only column swaps but 
also translation/size-reduction steps are performed. 

PERFORMANCE RESULTS
In the following, we compare the performance of various lattice-
reduction-aided data detection algorithms. Gauss reduction will 
not be considered, since it only applies to lattices of rank two. 
Furthermore, Hermite-Korkine-Zolotareff reduction is not con-
sidered as it results only in marginal performance improve-
ments compared to other lattice reduction methods but features 
a much higher computational complexity [71], [72]. To compare 
the different combinations, the BER performance is investigated 
for a MIMO system with M 5 N 5 6 antennas employing 
4-QAM. The SNR is given by Eb/N0 with Eb denoting the aver-
age receive energy per bit. 

Figure 9 shows BER versus Eb/N0 for the ML, ZF, and MMSE 
detectors along with their lattice-reduction-aided versions. 
Lattice reduction was achieved using LLL, S2 reduction 
(referred to as SEY), and DLLL (LLL applied to the dual basis). 
It can be observed that lattice-reduction-aided linear equaliza-
tion achieves full diversity order (in this case six), leading to 
strong performance improvements compared to conventional 
linear equalization that achieves a diversity order of only one. 
For the case of V-BLAST transmission over an i.i.d. Gaussian 
channel, the property of achieving full diversity was proven for 
LLL and DLLL in [18] (see also [14], and [19]–[23]). For general 
channel statistics and space-time mappings, full diversity of lat-
tice-reduction-aided detection based on the LLL algorithm and 
the MMSE criterion follows from recent results in [69]. 
Furthermore, we can observe that SEY and DLLL noticeably 
outperform LLL. This can be explained as follows (cf. [59]). For 
ZF equalization, the layer with the worst postequalization SNR 
dominates the overall performance. The postequalization SNR 
of layer , equals 1/ 1sw

2 y hw
, y 2 2  and is thus inversely proportion-

al to the Euclidean length of the dual basis vector h,
w [59]. Thus, 

for lattice-reduction-aided linear equalization, the goal is to find 
a reduced basis for which the longest dual vector is as short as 
possible so that the worst postequalization SNR is maximized. 
Both, SEY and DLLL reduce the dual basis Hw and thus achieve 
a strong reduction of the longest dual basis vector 
[cf. Figure 3(b)], thereby explaining the performance advantage 
over LLL-aided linear equalization. 

Figure 10 shows BER versus Eb/N0 for plain SIC detectors 
based on ZF and MMSE and with V-BLAST ordering (referred to 
as OSIC) and for their lattice-reduction-aided variants. It can be 
observed that lattice reduction significantly improves the 

[FIG9] BER versus Eb 
/N0 for a MIMO system using ZF detection 

(red) and MMSE detection (blue) and their lattice-reduction-
aided variants. ML detection is shown as an ultimate benchmark. 
Note that the SEY and DLLL variants lie virtually on top of each 
other. The MIMO system used N 5 M 5 6 antennas, a 4-QAM 
symbol constellation, and an i.i.d. Gaussian channel.
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 performance of SIC detectors. Furthermore, OSIC-LLL, OSIC-
SEY, and OSIC-DLL perform almost identically. OSIC-LLL 
offers the advantage that the QR decomposition required for 
SIC detection can be directly provided by the LLL algorithm. 

TOPICS FOR FUTURE RESEARCH
The application of lattice reduction to MIMO detection is 
an active research area with several interesting open 
 problems. Specifically, the impact of imperfect channel 
state information on lattice reduction aided detection is lit-
tle understood. Numerical evidence (e.g., [50]) suggests 
that lattice reduction gains are preserved with imperfect 
channel knowledge. However, there are neither analytical 
performance results for this case nor specifically tailored 
detector designs. 

Another topic of high practical relevance is the extension 
of lattice-reduction-aided hard-output detectors (as dis-
cussed in this article) to the soft-output case. This is relevant 
for coded MIMO systems where iterative detection and 
decoding is enabled by exchanging soft information 
(e.g., log-likelihood ratios). Apart from list-based approaches 
(e.g., [73]–[75]), extensions into this direction seem difficult 
since the required quantization has to be performed in a 
transformed domain, where the information about the bit 
labels is not explicit. 

Furthermore, no analytical performance results along the 
lines of [18], [20], and [21] (i.e., diversity order and SNR gap 
for LLL) are known for Seysen’s lattice reduction algorithm. 
Finally, it would be very important to develop efficient hard-
ware architectures for the various lattice-reduction-aided 
data detection algorithms (first results in this direction have 
been reported in [25] and [26]).

LATTICE REDUCTION FOR PRECODING
Another promising application of lattice reduction in wireless 
communications is efficient precoding. Precoding is used to 
realize MIMO gains in the following scenarios: 1) the receive 
antennas are not colocated (e.g., if they belong to distinct users) 
so that no spatial receiver processing is possible and 2) as much 
computational complexity as possible shall be shifted from the 
receiver to the transmitter (base station). The main prerequisite 
for precoding is channel state information at the transmitter. 
We will focus on precoding schemes that consist of pre-equal-
ization in conjunction with a perturbation of the data vector to 
minimize the transmit power [76]–[78]. Such vector perturba-
tion (VP) precoding schemes enable simple per-antenna (or, per-
user) receiver processing. 

As with data detection (see the section “Lattice Reduction 
for Data Detection”), the problem of finding the optimum (in 
the sense of minimizing the transmit power) perturbation vec-
tor is equivalent to a closest lattice point problem [cf. (14)], 
which can be solved using sphere-decoding approaches (in the 
precoding context, this is often referred to as sphere-encoding 
[77]). However, since this optimum approach may be compu-
tationally too expensive, several efficient approximate (i.e., 

suboptimum) VP techniques have been developed in the litera-
ture. Examples include linear precoding, Tomlinson-
Harashima precoding (THP) [77], [78], and variants involving 
lattice reduction [16], [79]. Recently, it was shown that 
approximate VP preceded by lattice reduction using the LLL 
algorithm can achieve full diversity [18]. 

SYSTEM MODEL AND BASIC APPROACH
We again consider the linear input/output relation (13), where 
the transmitter is equipped with M transmit antennas and there 
are N single-antenna users (or a single user equipped with N  
receive antennas). However, in contrast to the section “Lattice 
Reduction for Data Detection,” we now assume N # M (i.e., 
there are more transmit antennas than receive antennas/users 
and the channel H is a fat matrix). In this context, the discus-
sion from the sections “Point Lattices” and “Lattice Reduction 
Techniques” applies with n 5 M and m 5 N to the lattice gener-
ated by the M 3 N right pseudoinverse P 5 HH 1HHH 221 of the 
channel H. Note that this right pseudoinverse P is different 
from the left pseudoinverse H1 used in the context of MIMO 
detection. At each time instant, the base station transmits N  
data symbols. The ,th data symbol d, [ S is intended for user 
(or receive antenna) ,. With perfect channel state information 
at the transmitter, interference free transmission to each user is 
achieved by using ZF precoding/pre-equalization (e.g., [76]). For 
simplicity, we do not consider MMSE-based precoding 
(e.g., [76]), even though it generally performs better than ZF 
precoding.

Here the transmit vector is obtained by multiplying the data 
vector d 5 1d1 cdN 2T with the pseudoinverse P. The main 
problem of this linear ZF precoding scheme lies in the fact that 

[FIG10] BER versus Eb/N0 for a MIMO system using optimally 
ordered SIC (OSIC) based on ZF (red) and MMSE (blue) and their 
lattice-reduction-aided variants (all of which lie practically on top 
of each other). ML detection is shown as an ultimate benchmark. 
The MIMO system used N 5 M 5 6 antennas, a 4-QAM symbol 
constellation, and an i.i.d. Gaussian channel.
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the transmit power y Pd y 2 of the pre-equalized signal can 
become very large. This happens specifically if H is poorly con-
ditioned and d is oriented along a channel singular vector asso-
ciated to a small singular value. This power enhancement can 
be combatted by VP [77] (see Figure 11 for a block diagram). 
With VP, the transmit vector is formed by adding a (scaled) inte-
ger perturbation vector z [ Zj

N to the data vector before pre-
equalization, i.e., s 5 P 1d 1 tz 2 , with t a real-valued constant. 
This allows the data vector to be reoriented into a more favor-
able signal space direction. VP amounts to using a periodically 
extended symbol constellation S 1 tZj

N in which all possible 
perturbed versions of a symbol vector constitute an equivalence 
class that actually carries the information (see Figure 12 for an 
illustration). The real-valued constant t is chosen such that all 
translates of the symbol alphabet are nonoverlapping. The 
 integer perturbation vector z [ Zj

N is designed to minimize the 
transmit power, i.e., 

 zopt 5 arg
z[Zj

N
min y P 1d 1 tz 2 y 2. (17)

The receive vector y 5 Hs 1 w 5 d 1 tz 1 w is free of spatial 
interference and hence allows for per-antenna detection based 
on y, 5 d, 1 tz, 1 w,. The perturbation can be removed by 
subjecting the receive values to a modulo-t operation (i.e., shift-

ing the translated constellation back to the origin). Data detec-
tion then amounts to slicing y, mod t with respect to the 
constellation S. We note that VP precoding has been shown to 
achieve the full diversity order of M. 

Finding the optimum perturbation vector according to (17) 
amounts to a closest vector problem that can be solved by 
sphere-encoding [77]. In fact, we look for z [ Zj

N such that tPz 
is closest in Euclidean distance to the vector 2Pd. This problem 
is very similar to the ML detection problem (just replace H, s, 
and y in (14) with 2tP, z, and Pd, respectively), with the differ-
ence that the perturbation vector z comes from the infinite lat-
tice Zj

N, whereas the symbol vector s is taken from the finite 
constellation SM.

Several suboptimal precoding techniques can be interpreted 
as approximations to (17). Specifically, (17) can be solved 
approximately by first computing the (unconstrained) least-
squares solution by applying the pseudoinverse of 2tP to Pd 
and then rounding the result to the nearest integer. This leads 
to the perturbation vector 

 zZF 5 l 12tP 21Pd k 5 l2
1
t

 dk 5 0 (18)

(the last equality follows from the fact that the real part and the 
imaginary part of d,/t are less than 1/2). We thus reobtain plain 
ZF precoding, i.e., sZF 5 Pd. The diversity order achieved by ZF 
precoding is only M 2 N 1 1. 

Alternatively, using a decision feedback approach (similar 
to SIC detection) for finding the elements of the perturbation 
vector z leads to nonlinear THP [78]. THP can be interpreted 
as successive optimization of the elements of the perturbation 
vector instead of a joint optimization. It performs better than 
ZF precoding, but its diversity order also equals only 
M 2 N 1 1. 

LATTICE-REDUCTION-AIDED PRECODING
As with lattice-reduction-aided data detection (see the section 
“Lattice Reduction for Data Detection”), using lattice reduc-
tion for precoding is motivated by the fact that optimum and 
good approximate choices of the integer perturbation can be 
found much more efficiently if the lattice basis that appears in 
the closest vector problem (17) is more orthogonal. In con-
trast to lattice-reduction-aided data detection, lattice reduc-
tion for precoding does not suffer from the shaping problem, 
i.e., the relaxation from a finite to an infinite lattice. Hence, in 
the context of precoding lattice reduction itself does not imply 
any performance loss (cf. [68]). 

s1

s2

[FIG12] Illustration of the main idea of VP for the real-valued 
constellation S2 5 521,162 (shown in blue). The periodic 
extension of S2 is obtained with t 5 4 (boundaries are shown 
as dashed lines). The equivalence class for the symbol vector Q1

1
R 

is indicated with stars; this equivalence class contains the 
vectors Q11R 1 tQ2k

k R 5 Q24k 1 1
4k 1 1R , which become increasingly 

orthogonal to Q1
1
R as |k| increases.
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[FIG11] Block diagram for a MIMO precoding system using VP.
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We now briefly review the basic concepts of lattice-reduc-
tion-aided precoding [16], [18], [79]. In the following, the rela-
tion between the original precoding matrix P and the 
corresponding reduced matrix P| is given by P|5 PT, where T is 
an unimodular transformation matrix obtained by a certain lat-
tice reduction algorithm (see the section “Lattice Reduction 
Techniques” with B 5 P). 

The cost function in (17) can be rewritten in terms of the 
reduced matrix P| as 

 y P 1d 1 t z 2 y 2 5 y PTT21 1d 1 t z 2 y 2 
 5 y P| 1 d|1 t z| 2 y 2, (19)

where d
|

5 T21d and z|5 T21z. The transformed perturbation 
vector z| is still integer-valued since T is unimodular. Hence, we 
arrive at a cost function that is completely equivalent to that used 
in the original formulation (17). Consequently, the optimum per-
turbation vector in (17) can also be found by first minimizing the 
lattice-reduction-transformed cost function (19) over z| and then 
applying the transformation T to the corresponding result z|opt, 
i.e., zopt 5 T z|opt. Clearly, lattice reduction itself does not imply 
any loss of optimality. However, the optimum solution can be 
found more efficiently via sphere-encoding since P

|
 is more 

orthogonal than P. Furthermore, using conventional approxima-
tion techniques (like linear ZF or nonlinear THP) results in a bet-
ter approximation quality when preceded by lattice reduction. 

As an example, let us consider lattice-reduction-aided ZF pre-
coding. Here, the reduced basis P| is used to compute the (uncon-
strained) least squares solution of (19) followed by a rounding 
operation [cf. (18)], 

     zZF
| 5 l 12t

|
P 21 |P|d k 5 l2

1
t

 
|
dk .

In general, zZF
| 2 0 since d

|
5 T21d is an integer linear combina-

tion of data symbols and thus can have elements that are larger 
than t. Finally, the perturbation vector obtained by lattice-reduc-
tion-aided ZF precoding is given by T z|ZF. If T is obtained by the 
LLL algorithm (see the section “LLL Reduction”), this approach 
can be shown to achieve the full diversity order of M [18]. 

BRUN’S ALGORITHM FOR 
LATTICE-REDUCTION-ASSISTED PRECODING
The use of Brun’s algorithm for lattice reduction algorithm in 
the context of precoding in wireless systems has been pro-
posed in [35]. This was motivated by the fact that under the 
usual i.i.d. Gaussian model, the channel matrix H typically has 
just one small singular value associated with the left singular 
vector u1 [67], [76]. When reducing P, this means that 
PHP 5 1HHH 221 has one dominating eigenvalue with associat-
ed eigenvector u1. As explained in the section “Brun’s 
Algorithm,” P can be reduced by finding approximate integer 
relations for u1 via Brun’s algorithm. Full details are provided 
in [35]. A high-throughput VLSI implementation of Brun’s 
algorithm for lattice-reduction-aided precoding (including 
fixed-point considerations) can be found in [24]. 

PERFORMANCE
Figure 13 illustrates the symbol-error-rate (SER) versus SNR per-
formance for the various precoding schemes with M 5 8 transmit 
antennas, N 5 8 users, 4-QAM symbols, and i.i.d. Gaussian chan-
nels. We compared linear ZF precoding and nonlinear THP with 
and without lattice reduction. We considered the LLL algorithm 
and Brun’s algorithm for lattice reduction. The corresponding lat-
tice-reduction-aided precoding schemes are referred to as ZF-LLL, 
THP-LLL, ZF-Brun, and THP-Brun. As a  performance benchmark, 
we also considered the exact (optimum) solution of (17) via 
sphere-encoding. We can observe that lattice reduction significant-
ly improves the performance of the approximate (i.e., ZF and THP) 
precoding schemes. With lattice reduction using the LLL algo-
rithm, close to optimum  performance is achieved and the full 
diversity order (in this case, M 5 8) is obtained. The lattice-reduc-
tion-aided precoding schemes based on the simple Brun’s algo-
rithm suffer from a performance loss as compared to the 
corresponding schemes assisted by the LLL algorithm, but are still 
able to achieve a large part of the available diversity. This is in con-
trast to ZF and THP without lattice reduction, which just achieve a 
diversity order of one (cf. [76]). 

TOPICS FOR FUTURE RESEARCH
There are various interesting directions for future research 
dealing with lattice-reduction-aided precoding. In particu-
lar, no analytical results on the performance (i.e., diversity 
order and SNR gap) of lattice-reduction-aided precoding 
using Brun’s algorithm (complementing the analytical find-
ings of [18] for the LLL algorithm) are available. 
Furthermore, little is known about the computational com-
plexity of sphere-encoding (with and without lattice reduc-
tion), which is in contrast to sphere-decoding techniques 
for data detection, where various results on the complexity 
of sphere-decoding (without lattice reduction) have been 
provided in the literature (see [54], [61], and [62]). Indeed, a 

[FIG13] SER versus SNR for ZF precoding (red) and THP (blue) 
without lattice reduction, with Brun lattice reduction, and with 
LLL lattice reduction. Optimum VP (green) is shown as a 
performance benchmark. The results were obtained for 
N 5 M 5 8 antennas, a 4-QAM symbol constellation, and an 
i.i.d. Gaussian channel.
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theoretical underpinning of the complexity savings achieved 
with lattice reduction for sphere-encoding is completely 
missing. Here, only numerical complexity results are avail-
able (see, e.g., [79] for sphere-encoding aided by the LLL 
algorithm). Finally, similar to MIMO detection, little is 
known about lattice-reduction-aided precoding in situations 
with imperfect channel state information. 

PHASE UNWRAPPING
In the previous sections, we have studied applications of lat-
tice reduction in wireless communications in considerable 
detail. We next briefly discuss the usefulness of lattice reduc-
tion for a signal processing application outside MIMO wire-
less. Specifically, we focus on the phase unwrapping 
problem, which was used to formulate lattice-reduction-
based estimators of the frequency and phase of a single sinu-
soid [10] and of the parameters of polynomial-phase signals 
[80]. In line with the suggestions in [10, Sec. 7], we discuss a 
more general setup with a nonlinear phase and nonuniform-
ly spaced samples. This case has not been dealt with explicit-
ly up to now and is intended to stimulate further research. 
The model we consider is potentially useful in applications 
like radar, sonar, geophysics, biomedical signal processing, 
sensor networks, and communications. 

Consider the complex discrete-time signal x 3t 45  
e 

jc3t4 1 w 3t 4, where c 3t 4 is a phase function and w 3t 4 is addi-
tive noise. The phase function is modeled using a basis expan-
sion, i.e., 

 c 3t 45 a
K

k51
uk 3t 4 uk, 

where 5uk 3t 4 6k51
K  is a prescribed set of linearly independent 

basis functions and u 5 1u1 cuK 2T is an unknown parameter 
vector that we want to estimate. 

We assume that we are given measurements of the wrapped 
phase f 3t 4 [ 30, 2p 3  of x 3t 4  at L irregularly spaced time 
instants t1 c tL, i.e., w 3t, 45 gK

k51 uk 3t, 4 uk 1 e 3t, 4 mod 2p; 
here, e 3t 4 denotes the phase error caused by the additive noise 
w 3t 4. The case of polynomial phase signals with uniform 
sampling (t, 5 ,) considered in [80] is obtained with the model 
uk 3t, 45 ,k21 (frequency and phase estimation for a single sinu-
soid amounts to the special case K 5 2 [10]). 

By defining t he length-L vectors f 5 1f 3t1 4cf 3tL 4 2T, 
uk 5 1uk 3t1 4cuk 3tL 4 2T, ` 5 1e 3t1 4ce 3tL 4 2T, and the L 3 K 
matrix U 5 1u1 cuK 2 , we obtain the equivalent matrix-vector 
mod el 

 f 5 Uu 1 ` mod 2p.

If we had the unwrapped phase f| 5 Uu 1 ` to our disposal , the 
parameter vector u could be estimated according to a simple least 
squares approach. The wrapped and unwrapped phase are related 
as f| 5 f 2 2pz where the integer vector z [ ZL models the 
unknown unwrapping (see Figure 14). We use an extended least 
squares appro ach to jointly estimate u and z according to 

 1u^ , ẑ 2 5 arg
u[RK, z[Z

L

  min yf 2 2pz 2 Uu y 2.   (20)

For any given unwrapping vector z, the associated parameter 
estimate eq uals 

 û 1z 2 5 U1 1f 2 2pz 2 . (21)

Here, U1 denotes the (left) pseudoinverse of U. By inserting 
û 1z 2  into the cost function (20), we obtain after some al gebra 

 ẑ 5 arg
z[ZL

min y PU
'

 1f 2 2pz 2 y 2. (22)

Here, PU
' 5 I 2 UU1 denotes the rank-m (m 5 L 2 K) orthogo-

nal projection matrix onto the orthogonal  complement of the 
column span of U. The final parameter estimate is obtained as 
û 1 ẑ 2  according to (21) with ẑ the solution to (22).  

The integer least squares problem (22) is recognized to be 
a closest vector problem with respect to the m-dimensional 
lattice induced by PU

', similar to the MIMO detection  and 
precoding problems. Hence, all lattice-reduction-aided 
approximate solution techniques discussed in the MIMO con-
text can be applied to the phase unwrap ping problem as well. 
The main difference is that with MIMO the lattice is deter-
mined by the random channel matrix whereas here it 
depends on the underlying bas is 5uk 3t 4 6k51

K  and the sampling 
instants t1, c,tL. This difference prompts several questions 
regarding the performance and complexity of lattice-reduc-
tion-aided estimation o f the parameter vector u, which are 
left for future research. Furthermore, lattice reduction algo-
rithms are particularly interesting in the context of phase 

[FIG14] Illustration of the phase unwrapping problem with 
unwrapped phase (blue), wrapped phase (gray), and integer 
unwrapping function (red); sampling instants are marked with dots.
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 unwrapping since here the lat-
tice dimension grows linearly 
with the number of sampling 
points, which in practice can be 
much larger than the lattice 
dimension (i.e., n umber of 
antennas) for MIMO. 

CONCLUSIONS
In this article, we provided a survey of lattice reduction tech-
niques and their application to wireless communications and 
parameter estimation. After reviewing the bas ic concepts of 
lattices, we described the various lattice reduction algorithms 
that have b een proposed in the literature for solving classical 
problems in lattice theory (such as the shortest vector prob-
lem). MATLAB code for some of the lattice reduction algo-
rithms has been made available as supplementary material in 
IEEE Xplore (http://ieeexplore.ieee.org). We then discussed 
how the lattic e reduction principle can be applied to simplify 
the detection and precoding problem in wireless communica-
tions with emphasis on multiple antenna systems. These com-
munications problems were complemented by a discussion of 
the usefulness of lattice reduction algorithms in parameter 
estimation problems involving phase unwrapping. In all of 
these applications, the fundamental approach is as follows: 1) 
use a lattice reduction algorithm to determine an improved 
(i.e., “more orthogonal”) basis for the lattice of interest; 2) 
solve the given problem with respect to the reduced basis; and 
3) transform the solution back to the original domain. 

One of the key results in the literature showed that in cer-
tain setups lattice reduction using the LLL algorithm allows 
suboptimum detection and precoding techniques to achieve 
full diversity. By means of numerical results we demonstrated 
that the various lattice reduction approaches (such as LLL, 
dual LLL, and Seysen) offer different advantages depending on 
the specific performance target (such as the orthogonality 
defect of the lattice basis or the error rate of a subsequent 
data detector). In particular, we showed that suboptimum lin-
ear and nonlinear detection and precoding schemes aided by 
lattice reduction are able to achieve excellent error rate per-
formance. 

We reviewed the known analytical results about the complexi-
ty of the various lattice reduction algorithms that were comple-
mented by numerical complexity assessments. Here, one of the 
main results is that for lattices resulting from i.i.d. Gaussian 
channels (a model often used in wireless communications) the 
LLL algorithm has an average complexity that scales polynomial-
ly with the lattice dimension. This is in contrast to optimum 
detection and precoding approaches (e.g., sphere decoding), 
which feature an expected complexity that scales exponentially 
with the lattice dimension. We conclude that the tools provided 
by lattice theory are very powerful and at the same time easily 
applied to simplify the hard detection and precoding problems in 
wireless communications. The practical feasibility and impor-
tance of lattice reduction is corroborated by recent hardware 

implementations of various lat-
tice reduction algorithms. 

Lattice reduction and its 
application to wireless communi-
cations remains an active 
research area with several inter-
esting open problems, e.g., the 
analysis of performance and com-
plexity of lattice reduction in spe-

cific applications and practical hardware implementations. Our 
hope is that this survey article provides a convenient entry point 
to this exciting field and motivates a larger number of research-
ers to apply lattice reduction algorithms to a wider class of signal 
processing problems. 
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