
Relative Downlink Channel Calibration in OFDM Systems
with CORDIC QR Decomposition
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Abstract— Mismatched front-ends reduce the per-
formance of precoding in multi-antenna OFDM sys-
tems, which results in a poor bit error rate. With a
relative downlink channel calibration the transmission
quality will be enhanced. An excellent calibration
technique is based on a total least squares optimiza-
tion problem. For the hardware implementation an
efficient fixed-point computation will be presented,
which provides a brilliant calibration performance.
This approach has low complexity and can efficiently
be implemented in hardware by using the CORDIC
algorithm.

I. INTRODUCTION

Orthogonal frequency division multiplexing
(OFDM) is a very important technique for wireless
communication. Especially multi-antenna systems
are in researchers’ focus, and precoding at the base
station (BS) is a well-known technique to improve
the transmission performance, e.g., the bit error rate
(BER). But for precoding the downlink channel (DL)
must be known at the BS. In TDD systems usually
the reciprocity of the uplink (UL) and the downlink
channel is assumed, then the DL channel is equal to
the transposed UL channel which can be estimated
at the BS. Another way to get the DL channel at the
BS is to feedback the estimated DL channel from
the mobile stations (MS) to the BS. Both approaches
have disadvantages. Due to mismatched front-end
implementations the reciprocity is commonly not
given [1]. Also both channels are estimated and
usually have an estimation error. These errors lead
to a worse performance while using precoding.
Another problem is the reduced effective transmitted
data in the UL by a feedback of the channel state
information (CSI). With a relative calibration of
the DL, as in [2], [3], precoding will be usable for
systems with non ideal front-ends. The advantage of
the relative calibration is that errors in reciprocity
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and channel estimation will not cause a worse
BER. Furthermore, the transmitted data for the DL
feedback to the BS can significantly be reduced,
because a permanent CSI feedback of the DL is not
needed.

In this paper the calibration is realized by solving
a total least squares (TLS) problem. In general the
TLS utilizes the rightmost singular vector, which
requires calculation of a singular value decomposi-
tion (SVD). To reduce the complexity of the cal-
culation of the SVD, several methods are known
[4], as an alternative a partial SVD can be used
for the TLS [5]. As only the rightmost singular
vector is needed for the TLS solution, a two-sided
orthogonal decomposition instead SVD is possible
[6]. These decomposition are called URV or ULV
decomposition (URVD or ULVD), which generates
unitary matrices U, V and upper or lower triangular
matrices R or L. The matrix V of ULVD is an
approximation of the right singular vector and is
used for the calibration in this paper, which nearly
reaches the same transmission quality as a calibration
with SVD. This paper shows how the calculation
of V can efficiently be implemented in hardware
by two QR-decompositions (QRD), which only uses
multiplications and additions without any division or
square roots.

The remainder of this paper is organized as fol-
lows. In Section II the system model is presented.
The relative DL channel calibration is described
in Section III, where the calibration with use of
a TLS-solution is presented and the way how it
can be solved by two QR-decompositions. Section
IV considers hardware implementation issues of the
QRD. Performance evaluation results are shown in
Section V. Finally, in Section VI a conclusion and
an outlook are given.

II. SYSTEM MODEL

A multi-user (MU) MISO-OFDM system with NC

subcarriers is applied. It consists of one BS with
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Fig. 1. Simplified channel model with gain mismatch matrices
per subcarrier k

NB antennas and NM ≤ NB decentralized single-
antenna MS. The BS executes a linear precoding.
Then, for ideal front-ends the receive signal y(k) at
the MSs per subcarrier k is given by:

y(k) = β(k)H(k)F(k)s(k) + n(k), (1)

where H(k) denotes the DL channel, F(k) the pre-
coding matrix, s(k) the transmitted signal and n(k)
an additive white Gaussian noise vector. The scalar
β(k) is chosen such that the total sum power con-
straint per subcarrier is fulfilled [2]. Generally, the
quality of the precoding is given by the knowledge
of the transmission channel H. Due to mismatched
front-ends H is not perfectly known. In Fig. 1 the
channel model with non-ideal front-ends is shown,
where the physical DL and UL channels between the
antennas is given by H and HT , because reciprocity
is valid between the antennas. By mismatched real-
world front-ends both transmission channels change
independently, and the reciprocity assumption is not
valid for ”digital” channel. In Fig. 1 this is modeled
by diagonal gain mismatch matrices A[R/T ][B/M ]

caused by the receive or transmit components of BS
and MS front-ends. The error values in A[R/T ][B/M ]

are statistically independent zero mean complex
Gaussian random variables with variance σ2

δ [7]. It
can be assumed that these values do not change fast
in time and that they are equal for each antenna
on all subcarriers k. Considering these front-end
mismatches, the effective UL channel is defined by

G(k) = ARBHT (k)ATM , (2)

and the effective DL matrix can be written as

H(k) = ARMH(k)ATB . (3)

Another error is caused by channel estimation
(CE) in the BS and MSs. Based on the MMSE
channel predictor model, the estimated DL and UL
channels can be written as [7]

H̃(k) =
√

1− σ2
e H(k) +

√
σ2
e(1− σ2

e) ΨM (k) (4)

and

G̃(k) =
√

1− σ2
e G(k) +

√
σ2
e(1− σ2

e) ΨB(k) , (5)

where ΨB and ΨM are independent Gaussian error
matrices with entry variance one and estimation
error variance σ2

e . Due to these errors, precoding on
basis of G̃T or H̃ will deteriorate the transmission
performance as true channel is H. Now, the aim of
the calibration is to provide an approximation of H
out of mismatch and CE errors including UL G̃(k).

III. RELATIVE DL CHANNEL CALIBRATION

A. Calibration principle

The basic concept of relative DL channel cali-
bration was presented in [3]. The purpose of the
calibration is to approximate the DL transmission
channel H for precoding in the BS on basis of the
estimated UL channel G̃. By the CE error is ignored,
the physical channel H(k) can be calculated by (2)

H(k) = A−1
TMG

T
(k)A−1

RB . (6)

Using this result in (3) the relation of both effective
channel matrices is

H(k) = ARMA−1
TM︸ ︷︷ ︸

CM

G
T

(k) A−1
RBATB︸ ︷︷ ︸
CB

. (7)

Because A[R/T ][B/M ] are diagonal matrices, the
two calibration vectors cM , diag−1{C−1

M } and
cB , diag−1{C−1

B } can be defined1. The challenge
of calibration is to obtain these vectors cB and
cM so that the transmission channel H(k) can be
approximated to

H(k) ≈ G(k) = diag{c−1
M }G

T
(k) diag{c−1

B } (8)

with the estimated UL. Consequently, the calibrated
UL channel is labeled as G(k) for differentiation.

To obtain the two calibration vectors, estimated
matrices G̃(k) and H̃(k) have to be applied in the
calibration phase, at least for one subcarrier. Previous
works have shown that the more subcarriers are used,
the better results achieved by calibration [7]. For
this reason it is assumed, that H̃(k) is known for
Kc subcarriers at BS by feedback. After calibration
phase the calibration vectors cM and cB will be used
for calibration. Then, only the actual G̃(k), cM and
cB will be used in the BS to calibrate the UL and
to calculate G(k) described in (8). H̃(k) does not
have to be estimated and transmitted to the BS again
if the reciprocity error variance σ2

δ does not change
too much.

1diag−1{ · } transforms a diagonal matrix into a vector,
whereas diag{ · } transforms a vector in a diagonal matrix



B. Calibration with TLS
Following [2] and [3], the matrix

Ek =

 diag{h̃(1)(k)} −g̃(1)T (k) 0
...

. . .
diag{h̃(NM )(k)} 0 −g̃(NM )T (k)

 .
(9)

can defined for each used subcarrier out of the rows
of H̃(k) and G̃(k)2. Because Kc subcarriers are used
for calibration

E = [ET
1 , . . . ,E

T
Kc

]T (10)

can be composed. With the KcNTNB × NT + NB

matrix E the equation (7) can be reformulated with
c = [cTBcTM ]T to

Ec = 0 . (11)

To calibrate the UL channel the overdetermined
system of equations Ec = 0 must be solved. A so-
lution can be found by solving the TLS optimization
problem [2]

minimize
∆E

‖∆E‖F (12a)

such that (E + ∆E)c ≈ 0. (12b)

A perturbation matrix ∆E must be found with minu-
mum Frobenius norm that lowers the rank of E,
where ∆E denotes the correction term of the TLS
problem. The solution can be calculated by SVD of
E with sorted singular values

E = UΣVH (13)

where U and V are unitary matrices and
[ · ]H denotes the conjugate transpose. Matrix
V = [v1, . . . ,vNB+NM

] comprises the right singular
vectors vi. The solution to (12b) is given by the right
most singular vector vNB+NM

, which corresponds
to the smallest singular value in Σ. The calibration
vectors cM and cB in (7) are calculated by dividing
vNB+NM

with its last entry

c = − 1

vNB+NM ,NB+NM

vNB+NM
. (14)

C. TLS with ULVD

Different reduced complexity approaches for cal-
culating the solution vector are known [5], [4], [6].
As described before, the TLS solution comprises
of the right most singular vector, the left singular
matrix U and the singular values in Σ are not
needed. A good approximation of V provides the
two-sided orthogonal decomposition ULVD. For this

2h̃(i)(k) describes the i-th row of matrix H̃(k).

decomposition only two QRDs are required, which
can efficiently be implemented in hardware. E must
be decomposed such that

E = U′LV′
H (15)

where U′, V′ are approximations of U, V in (13)
and L is a lower triangular matrix. This ULVD will
be achieved by

E = QR = QR̃HQ̃H (16)

with RH = Q̃R̃ (17)

where Q , U′, Q̃ , V′ and R̃H , L. Then
the right most column of Q̃ contains the solution
vector c.

IV. QRD HARDWARE IMPLEMENTATION ISSUES

A. QR Decomposition

In order to reduce the amount of hardware for
calibration and to achieve a good quality of trans-
mission, some considerations on the arithmetic pre-
cision, calculation complexity and computing time
must be made. Because the DL channel estimation
is known at the BS during the calibration phase,
the precoding can be performed in this term on
basis of the estimated DL. So there is a latency
until the calibration vectors are needed. Also the
assumption that the reciprocity error does not change
fast, makes the calibration time less critical. Thus,
slower algorithms, which use fewer hardware, can
be chosen or the saved hardware can be spent to
reach a higher precision. The precision is critical for
achieving a good performance.

To compute the QRD especially three methods are
established: the Gram-Schmidt process, Householder
transformations and Givens rotations. In this paper,
Givens rotations are used because costly divisions
and square root operations should be avoided. An-
other advantage of the Givens rotation approach is,
that the QRD can adaptively be implemented in
hardware. If this is considered in the design, the QRD
can be used for undefined numbers of Kc. There are
only limitations in matrix-memory. In this way, an
adaptive calibration is possible. Because the number
of columns of E are independent of Kc, the Givens
rotations can be parallelized for a fixed number of
columns. If Kc is incremented only the computing
time is rising slightly.

Because E is overdetermined the first QRD in (16)
can be rewritten into

E = Q ·
(

R′

0

)
. (18)



Then the second QRD in (17) is performed on R′H .
Note that the dimension of R′ only depends on the
number of BS antennas NB and the number of users
NM . Also the orthogonal matrix Q in (16) or (18)
is not needed and the computional complexity is
significantly reduced, if it is not calculated.

B. CORDIC Algorithm

The CORDIC algorithm is a well-known itera-
tive method to calculate trigonometric and algebraic
functions like sine, cosine, square root or division
[8], [9]. The principle of CORDIC is to do serial mi-
cro rotations. As CORDIC only uses bitshifting- and
add/sub-operations, it is very suitable for hardware
implementation of complex algorithms. The disad-
vantage of iterative algorithms is that they require
more time, but this can be avoided by a pipelined
implementation. Because the Givens rotation is based
on trigonometric functions, the CORDIC is preferred
for the Givens rotation in the QRD here. The prin-
ciple implementation of one real valued CORDIC
iteration is shown in Fig. 2. In this example the
givens rotations are applied to the rows i and (i− 1)
of the matrix E for QRD in (16). The results are the
corresponding rows in R where the rotations gener-
ates r

(i)
j = 0. Generally, bitshift-operations on fixed-

point numbers are equivalent to a multiplication or
division of two on a floating-point number depending
on the shift-direction. In this case the bitshift to
the right produces a low complexity and hardware
efficient division by two.

e
(i)
j:end e

(i−1)
j:end

shift right shift right

Add/Sub Add/Sub

r
(i)
j:end r

(i−1)
j:end

Fig. 2. Principle hardware implementation of real valued single
iteration CORDIC for Givens rotation in the QRD of (16).

C. Fixed-Point Implementation

As a consequence of the iterative topology of the
CORDIC algorithm, the numerical accuracy depends
on the number of micro rotations. On the other
hand the accuracy is reduced by a conversion from
floating-point to fixed-point, which is necessary for
efficient hardware. To obtain an usable quantization
some simulations are necessary. The result of them is
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Fig. 3. Mean square error (MSE) of DL after calibration with
fixed-point CORDIC (16 fractional bits). m denotes the number
of micro-rotations. Reciprocity error variance σ2

δ is set to -20 dB,
NB = NM = 4 antenna system with Nc = 256 subcarries and
Kc = 1 subcarriers used for calibration.

that the floating-point SVD TLS solution can nearly
be achieved by using 16 fractional bits within the
CORDIC. For the results in Fig. 3 the mean square
error (MSE) between the transmission channel H
and the calibrated UL channel G depending on
the estimation error variance σ2

e is illustrated. The
reciprocity error variance is set to σ2

δ = −20 dB.
The effect of different numbers of micro-rotations
is shown. It can be seen that the number of rotations
must not be chosen to small to reach an acceptable
calibration.

D. Precision/Throughput Trade-off

The precision of the calibration has a fundamental
influence on the performance of the data trans-
mission. As shown before, the number of micro-
rotations has a significant impact on the accuracy
of the calibrated UL channel. But more CORDIC
iterations take more clock cycles in a hardware
implementation, which result in a longer computa-
tion time. Otherwise, the CORDIC and the QRD
can be parallelized to enhance the throughput. To
get a trade-off of precision and computing time a
programmable CORDIC-unit should be used, where
the CORDIC is optimized for, e.g., m = 4 iterations.
If this optimized CORDIC is used several times,
multiples of 4 micro-rotations can be achieved, e.g.,
m = 4, m = 8 or m = 12. Depending on the error
variance the fixed-point calibration with fewer micro-
rotations is not always worse than a calibration with
floating point SVD. Fig. 3 shows that with m ≥ 8
iterations nearly the floating-point SVD TLS solution
can be reached for an estimation error variance of
σ2
e = 10−3. If a short calculation time is needed, the

computation time can be reduced by fewer iterations
if CE and reciprocity errors allow this.
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e = 10−4. The applied
channel code in b) is a half-rate punctured Turbo Code.

V. RESULTS

The performance evaluation presented in this pa-
per are obtained from the described MU-MISO-
OFDM system in Section II. The number of BS
antennas is set to NB = 4 and the number of
single antenna MS is also NM = 4. There are
Nc = 256 subcarriers used for transmission and
Kc = 3 subcarriers used for the calibration. Rayleigh
fading channel model with tap length of 6 is applied.
16-QAM modulation is chosen and MMSE pre-
equalization on basis of the calibrated UL channel
is performed. The reciprocity error variance is set
to σ2

δ = −20 dB and the channel estimation error
variance is set to σ2

e = 10−4. The simulation results
in Fig. 4 show the impact of micro rotations on
the BER of the OFDM-system. In a) an uncoded
transmission is chosen whereas in b) a half-rate
punctured 3GPP Turbo Code is applied. The red lines
show the BER for reciprocal UL and DL channels
and perfect channel knowledge without any estima-
tion errors. A deactivated calibration is illustrated
by the green lines whereas the blue lines show the
calibration with a floating-point SVD. It can be seen,
that without calibration an acceptable BER cannot
be achieved even if coding is used. The worse coded

BER for higher Eb/N0 is described in [2] with the
dependency of the interference from a reciprocity
mismatch being inversely related to the noise power.
The influence of the number of micro rotations m on
the uncoded BER is larger than the influence on the
coded case. The difference of the calibration with
a floating-point SVD and the fixed-point CORDIC
based ULVD is vanishing for m ≥ 10 in the uncoded
and for m ≥ 8 in the coded case.

VI. CONCLUSION

In this paper the idea of relative calibration is
analysed to achieve an efficient calculation in hard-
ware like FPGAs or VLSI circuits. It is described
how the relative calibration is used to improve the
MMSE precoding in MU-MISO-OFDM systems.
By using the presented ULVD the complex SVD
can be avoided to obtain the TLS solution, which
is needed for the calibration. With the illustrated
CORDIC algorithm the ULVD can be performed by
two QRDs. These QRDs can efficiently be imple-
mented in fixed-point on hardware. The simulation
results demonstrate that the CORDIC needs only
10 iterations for uncoded and 8 iterations for the
coded transmission to reach nearly the same BER
compared to the floating-point SVD. In future works
further sources of error, like mutual coupling, will be
analyzed. Also the efficient hardware implementation
of a recursive TLS algorithm will be investigated.
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