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Abstract—The growing field of Machine-to-Machine commu-
nication requires new physical layer concepts to meet future
requirements. In previous works it has been shown for a
synchronous CDMA transmission that Compressive Sensing (CS)
detectors are capable of jointly detecting both activity and
data in multi-user detection (MUD). However, many practical
applications show some degree of asynchronicity. In order to
reduce transmitter complexity, we propose an enhanced CS
MUD that detects the delay in addition to activity and data.
This solves synchronicity issues for scenarios with a known
maximum delay, without requiring signaling or pre-compensation
of asynchronicity.

I. INTRODUCTION

The field of wireless Machine-to-Machine communication is
expected to grow tremendously in the future. This calls for new
and adapted physical layer concepts, as system requirements
differ from common applications such as high data rate access.
For uplink transmission in a sensor network using CDMA, it
has already been shown in [1]–[3] that reliable joint detec-
tion of both activity and data is possible using Compressive
Sensing (CS) in Multi-User Detection (MUD) [4], [5], even
for overloaded CDMA systems. The main requirement for CS
MUD is that the transmission is sporadic, i.e., each transmitter
is inactive most of the time.

The previous investigations of CS MUD in the context of
CDMA were focused on synchronous CDMA transmission.
However, synchronicity first has to be achieved by appropriate
techniques or protocols. While such techniques are known,
e.g., estimating asynchronicity after the transmission of fixed
synchronization words, or pre-compensation of asynchronicity
at the transmitter based on feedback, the transmission from
sensor nodes to the aggregation node can be made much
simpler if this is not required [6]. As sensor nodes ideally
should have low complexity, we propose an asynchronous
transmission scheme where delays are estimated as part of
the CS MUD.

The principle approach of detecting delays in CS MUD is
shown for a random on/off access channel (RACH) in [7]. We
expand this idea and propose a modified CS detection that
simultaneously detects activity, data and delay for all nodes.
For this detection we propose a modified greedy algorithm that
makes use of the knowledge that the transmission from a node
can only be received at one specific delay. We also provide
numerical results showing how reliable CS detection is for a
given amount of asynchronicity.

II. SYSTEM MODEL

A. CDMA Uplink Transmission

We consider a CDMA uplink transmission, where K sensor
nodes communicate with a central aggregation node. Here,
we assume that the transmissions from the sensor nodes are
sporadic, i.e., the sensor nodes are only active on occasion. As
a model for sensor node activity, we assume that each sensor
node is active for a short period of time with a given activity
probability pa. Further, we assume that this activity probability
is identical for all sensor nodes and rather small, i.e., pa � 1.
For a large number of nodes K this is a valid assumption for
practical applications.

For the transmitter setup of the sensor nodes we assume
that an active node ka transmits a data frame of NF modulated
symbols dka ∈ ANF , where A is the modulation alphabet. The
dimension of NF is predetermined by the higher layers. For
simplicity, we assume that BPSK is used for modulation. This
restriction simplifies the notation without loss of generality, as
we consider a real-valued model. Other modulation schemes
can easily be applied. An inactive node ki does not transmit
any data, thus we model the transmitted symbols as zero
symbols, i.e., dki ∈ {0}NF . Therefore, each sensor transmits
frames of NF consecutive symbols drawn from the so-called
augmented alphabet A0 = {A ∪ 0}, which is the BPSK
alphabet A augmented and extended by the zero symbol to
indicate inactivity.

For simplicity, we assume the uplink transmission is fa-
cilitated with Pseudo Noise (PN) sequences sk, where the
spreading factor NS, i.e., the number of chips per information
symbol, is identical for all sensor nodes. Further, we assume
that PN sequences sk are constant for a frame.

As a channel model, we assume that transmitted symbols
are distorted by a node specific frequency selective channel
hk ∈ RLh of length Lh chips, which is constant for a frame,
i.e., a block-fading channel. Here, we assume that the data
frames from all nodes are received with no interference by
either control signals or other data frames, such that we only
have to model interferences within a multi-user data frame.

B. Asynchronous CDMA Chip-rate Model

Assuming synchronicity in the chip-rate model, the
m = NFNS + Lh − 1 received chips from node k are defined



by Rkdk, where Rk ∈ Rm×NF is given as [6]

Rk =



rk,0 0 0
... 0 0

rk,NS+1 rk,0 0
...

... 0

0
...

. . .


. (1)

The vector rk ∈ R(NS+Lh−1) is determined by the convolu-
tion of the spreading sequence sk with the channel impulse
response hk, assuming perfect channel state information. As
both the channel hk and the PN sequence sk are constant for
a frame dk, the non-zero column entries of Rk are identical,
but shifted to different rows.

In contrast to the synchronicity assumption, many practical
applications show some degree of asynchronicity between
nodes. In order to keep the complexity of the transmitters
small, we incorporate this asynchronicity in the MUD model
and detect the delays simultaneously with the activity and data.
To address asynchronicity, we assume that the individual nodes
have an unknown delay of τk chips and that the delay of each
node is independently uniformly distributed in the range of
0 ≤ τk ≤ τmax ∀k. One example how this can be achieved is
the transmission of a frame clock signal, such that the sensor
nodes transmit after receiving this frame clock signal. As the
maximum delay τmax can only be estimated, we denote the
estimate used to build the detection model at the receiver as
τmodel. In the following, we consider all delays to be measured
in chip-rate.

In order to include asynchronicity in the detection, we
introduce a delay hypothesis for each possible delay τ̂kV of
node k, represented by a virtual node kV. Each virtual node
kV of node k models the reception of frame dkV spread with
Rk at a delay of τ̂kV . We write the set of all virtual nodes
of node k as Vk =

{
kV
∣∣dkV/(τmodel + 1)e = k

}
. As delay

hypotheses have to be considered for all K nodes, a total of
KV = K(τmodel + 1) virtual nodes are introduced. The multi-
user vector x for this model does not only contain NF symbols
for each node k, but rather for each virtual node kV. Thus,
x ∈ R(KVNF) is given as

x = [dT1 , . . . ,d
T
KV

]T . (2)

Consequently, for this multi-user vector the chip-rate MUD
problem is given as

y = Ax + n , (3)

where n ∈ R(m+τmodel) is real-valued AWGN noise N
(
0, σ2

n

)
and the system matrix A ∈ R(m+τmodel)×(KVNF) is given by

A =


R1 0 0 RK 0 0

... R1 0
... RK 0

0
...

. . . 0
...

. . .

 . (4)

Due to the delay hypotheses, the dimension of the detection
problem increases with increasing τmodel. More specifically,

the dimension of the multi-user vector increases by a factor
of (τmodel + 1), while the measurements are increased by
τmodel. This means that the detection problem becomes stronger
under-determined with increasing τmodel. However, increasing
τmodel does not increase the number of non-zero elements in
x, as the number of active nodes does not increase. Therefore,
even though the problem is stronger under-determined it can
still be reliably recovered with CS detectors, as the fraction
of non-zeros decreases.

C. Detection Model

As the size of the multi-user vector x is given by
n = KVNF, the computational complexity quickly gets pro-
hibitive for large frame sizes NF, large amount of nodes
K or large maximum delays τmodel. In order to be able to
implement the detection in practical communication systems,
the dimension of the detection problem has to be reduced.
Therefore, (3) is divided into ν = 1, . . . , NF/L sub-problems,
each considering L consecutive transmit symbols per virtual
node. Thus, each of those sub-problems has a reduced dimen-
sion of mν = LNS +Lh−1 + τmodel and nν = KVL. All sub-
problems are determined by a system matrix Aν ∈ Rmν×nν ,
which is the same for all ν, as both PN sequences and channels
are assumed to be constant for an entire frame. In order to
simplify the model, we neglect the ISI between sub-problems
in the detection. The sub-problem dimension L is chosen in
the system design, and defines the tradeoff between reduced
complexity and detection accuracy.

A common requirement for high detection accuracy in CS
literature is that the system matrix has unit norm columns,
i.e., columns with identical `2-norm. However, A does not
have this property as the channel coefficients hk only have
average values that satisfy ‖hk‖22 = 1. Thus, due to the random
influence of the channel, the system matrix Aν does not have
unit norm columns in most cases. To solve this problem, we
modify the system matrix Aν in each of the ν = 1, . . . , NF/L
CS detection sub-problems to have unit norm columns, as
shown in [8], such that

yν = Ãν x̃ν + nν , (5)

where nν ∈ RNSL is real-valued AWGN noise N
(
0, σ2

n

)
,

yν ∈ RNSL denotes the received sub-vector at the aggregation
node, and x̃ν = H̃νxν . Here, H̃ν is a diagonal matrix
containing the column `2-norms of Aν , and Ãν is the matrix
Aν with each column divided by its `2-norm. The values in
x̃ν for a virtual node kV are scaled according to the column
`2-norm, such that Ã0 = {0,±‖Aν,kV‖2}. For simplicity, we
treat the elements as being continuous during the detection
and then quantize the estimated frame for each virtual node
to d̂kV ∈ A

NF
0 .

III. COMPRESSIVE SENSING MULTI-USER DETECTION

A. Restricted Group Orthogonal Matching Pursuit (rGOMP)

The theory of Compressive Sensing (CS) is focused on the
reconstruction of compressible signals by recovery of sparse
signals even from under-determined equation systems [4], [5].



Algorithm 1 Restricted GOMP (rGOMP)

G0 = ∅, G0 =
⋃
k Vk, ` = 0, r0 = y

repeat
` = `+ 1

kmax = arg max
kV

∑
j∈Γ(kV)

∣∣AH
j r`−1

∣∣ with kV ∈ G`−1

G` = G`−1 ∪ kmax and G` = G`−1 ∩Vk with kmax ∈ Vk
x̂`Γ(G`) = A†

Γ(G`)
y and x̂`i = 0 with i /∈ Γ

(
G`
)

r` = y −Ax̂`

until ` = Ka

While there are many different approaches for CS, e.g., [9]–
[11], in this paper we focus on CS MUD using known greedy
algorithms. These algorithms are in general more efficient, but
less accurate than solving convex optimization problems, such
as [9].

In our scenario, the node activity is constant for a frame,
and thus a group of elements in x that belong to the same
virtual node kV is either all zero or non zero. This property is
called block-sparse or group-sparse. A greedy algorithm that
makes use of this property is the Group Orthogonal Matching
Pursuit (GOMP) [12] algorithm.

In our system model, in addition to x being block-sparse, we
have additional information about activity of virtual nodes. As
a transmitted frame from node k can only arrive at one delay
τk, only one virtual node kV of node k can be active for a
given frame. To exploit this knowledge, we propose a restricted
version of the GOMP. This approach is different from [7],
where neither group-sparsity nor the additional information
limiting the valid activity combinations were exploited.

In order to explain the restricted GOMP, we first introduce
our notation: For simplicity, we omit sub-problem index ν
in the notation of the algorithm, even though the detector is
applied to (5). G is a set of group-indices and G is the set of
all valid group-indices not in G. Γ(kV) specifies the vector-
indices corresponding to group-index kV and Γ(G) specifies
the vector-indices corresponding to any group in G. AΓ(G)

specifies the sub-matrix which only contains those columns
with vector-indices in Γ(G), and likewise xΓ(G) contains only
those elements of x with vector-indices in Γ(G). x`, A` and
G` each specify the respective variable during the `th iteration.
Herein, A† is the Moore-Penrose pseudoinverse of A, and AH

the Hermitian matrix of A.
The rGOMP iteratively determines the support of x̂, i.e., the

location of the non-zero elements. During each iteration, the
rGOMP determines the group of columns kmax from the set of
valid choices G that has the highest correlation to the previous
residual r`−1. For a generic GOMP, G is the complementary
set of G. Here, using the additional knowledge regarding active
virtual nodes, we define that set G contains those sets of virtual
node indices Vk, where no virtual node kV ∈ Vk is in G, i.e.,

G =
⋃

Vk∩G=∅

Vk = {kV : kV ∈ Vk ∧ Vk ∩G = ∅} . (6)

This ensures that for each node k only one virtual node
kV ∈ Vk can be estimated as active. Afterwards, the rGOMP
calculates the least-square (LS) estimate x̂` based on the
current and all previous node choices, and updates the residual
r`. For simplicity, we assume that the algorithm is terminated
after a number of iterations equal to the number of active nodes
Ka. For implementation, an appropriate termination criterion
needs to be found that is well suited for the current scenario.

B. Data Aggregation

Due to the independent detection of each sub-problem, the
delays will in general be estimated differently for each sub-
problem. If the delays are required for further processing,
a joint delay estimation across all sub-problems has to be
performed. Here, we assume that only the received data is
required by the higher layers, and therefore we can discard
the delays. For this, we first have to collect the estimated data
and activity for each virtual node kV. This is done by collecting
the L estimated symbols d̂kV,ν from each sub-problem ν into
the estimated frame d̂kV . Afterwards, we sum up the estimated
symbols across all virtual nodes kV ∈ Vk of node k with

d̂k =
∑
kV∈Vk

d̂kV . (7)

This reduces the node dimension to that of the original K
nodes and thus discards the estimated delay information. Due
to the restriction of the rGOMP only one delay hypothesis kV
of node k can be estimated as active in each sub-problem, en-
suring that in (7) no superposition of different data estimations
occurs.

IV. SIMULATION RESULTS

In this section, we will discuss simulation results for simul-
taneously detecting activity, data and delay in an asynchronous
CDMA transmission using the rGOMP. For comparison of
the symbol error rate (SER) over the augmented alphabet A0,
performance results for two detectors are given: On the one
hand, the best case performance and thus the lower bound for
the rGOMP is given by LS estimation for known activity and
delay. We call this ideal detector the oracle LS. On the other
hand, results of rGOMP detection for a synchronous CDMA
transmission are given, i.e., τmax = 0.

As a simulation setup, we focus on an overloaded CDMA
system. More specifically, we consider a transmission from
K = 128 sensor nodes, where each node transmits using a
PN sequence of length NS = 32, which leads to detection
equations that are under-determined by a factor of four. For
comparison, we will also consider a smaller system with only
K = 32 sensor nodes and spreading factor of NS = 8. Unless
otherwise noted, we assume that sensor nodes are only active
with a probability of pa = 0.02, so that the number of active
nodes is on average much smaller than K. Furthermore, the
frame length is NF = 56 symbols and the channel is modeled
by Lh = 6 i.i.d. Gaussian distributed taps with an exponential
decaying power delay profile. The CS detection uses L = 8
consecutive symbols per sub-problem. For the simulations, we
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Fig. 1. Symbol Error Rate over the Augmented Alphabet for K = 128 and
NS = 32.

initially assume that τmodel = τmax. Later, we show results for
a mismatch of τmodel and τmax.

The SER over the augmented alphabet A0 contains both
errors due to incorrect activity detection and errors due to
incorrect data detection. Fig. 1 shows the SER of the rGOMP
for different maximum delays τmax. From these results we
can see that the SER of the rGOMP increases slightly with
increasing τmax. A small maximum delay τmax = 1 only
has a minor influence on the detection performance, while
a delay of τmax = 5 approximately causes a 0.8 dB loss.
Once the maximum delay has reached a certain value it no
longer increases the SER significantly, as indicated by the
performance for τmax = 10. However, this only holds as long
as symbol synchronicity is still adhered. This can be seen by
the SER results for a smaller system shown in Fig. 2. Here, the
delay τmax = 10 is larger than the spreading factor NS = 8, and
therefore symbol synchronicity is no longer guaranteed. This
causes a mismatch of symbols and measurements for some
delays, and thus significantly increases the amount of data
detection errors. Thus, the transmission should be designed
such that τmax < NS to avoid data detection errors due to loss
of symbol synchronicity.

When comparing the rGOMP to the oracle LS in Fig. 1,
we can see that the errors of the rGOMP are primarily
activity errors, as the oracle LS does not result in any activity
errors and its SER performance is given by the LS data
estimation. There are two types of activity errors: On the one
hand estimating an active symbol as inactive, called missed
detection, and on the other hand estimating an inactive symbol
as active, called false alarm. The resulting Missed Detection
Rate (MDR) and False Alarm Rate (FAR) in Fig. 3 indicate
that the asynchronicity has a similar influence on the activity
errors as on the SER. This is due to the fact that the SER is
primarily determined by activity errors.

In addition to the previous SER results, Fig. 4 shows
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the SER of the rGOMP for fixed Es/N0 = 12dB and a
range of pa = 0.01, . . . , 0.1. Here, the main observation is
that for the asynchronous case the higher τmax is, the worse
rGOMP scales with pa. This means that for a given τmodel
increasing the activity probability pa also results in a larger
performance difference to the synchronous case. In general,
a higher activity probability pa makes higher activity levels
more likely, and thus increases the average number of active
nodes. By introducing the delay hypotheses, τmax additional
nodes that are correlated to the original node k are added
to the detection problem. This makes differentiating between
users in the MUD less reliable, which increases the detection
errors, especially for higher activity levels and larger τmax.

Finally, Fig. 5 shows the influence on the SER of a mis-
match of the delay τmodel, used to build the detection model at
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the receiver, and the maximum delay τmax that actually occurs
during the transmission. For cases where τmodel ≥ τmax, the
performance is independent of the actual value of τmax. This
can be seen by the constant SER for each τmodel as long as
τmodel ≥ τmax. This indicates that the SER performance is
mainly determined by the number of delay hypotheses intro-
duced and not the actual delays. Also as previously observed,
lower τmodel result in more accurate detection. In the opposite
case, where τmodel < τmax, the SER increases significantly for
increasing τmax. This is due to the fact that with increasing
τmax, there is an increasing probability that delays occur that
are larger than those expected by the receiver. As those delays
are not correctly captured in the detection, and transmitted
values at those delays are perceived as additional interference,
which increases the error probability. When comparing the
SER for different value of τmodel, we see that for τmodel ≥ τmax

smaller τmodel result in more detection errors. From the results
of both cases it is clear that larger τmodel result in a detection
that is less influenced by a mismatch of τmodel and τmax. This
comes at the cost of both a slightly higher SER for small
maximum delays τmax and a higher computational complexity.

V. CONCLUSION

In this paper, we have investigated how CS MUD can be
performed for asynchronous CDMA transmission. To this end,
we proposed a detection model that allows for simultaneous
detection of activity, data and delays, by expanding the de-
tection with delay hypotheses. Additionally, we introduced a
restricted GOMP algorithm that makes use of the knowledge
that for each node only one delay hypothesis can be true.
We have shown that even delays up to the spreading factor
just slightly increase the detection errors, as long as the
maximum delay is estimated appropriately. Thus, for scenarios
where delays have a known limit, asynchronicity can be fully
handled by CS MUD. This idea can be further improved by
more sophisticated CS MUD algorithms, such that the SER
performance of perfect activity detection in a synchronous
system can be approached.
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