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Abstract—In a cooperative broadcast scenario, a group of
nodes in a network aims to reconstruct a common message.
We present a consensus-based linear estimation algorithm that
shows improved convergence speed compared to state of the art
techniques and whose signaling effort can be reduced without
performance loss under certain conditions. We investigate its
performance in the presence of erroneous inter-node links using
different models for these error influences. Additionally, we
propose a technique to mitigate the error influences and restore
satisfactory overall system performance. All results are corrob-
orated by computer simulations considering different system
parameters and network setups.

I. INTRODUCTION

Cooperative communication in wireless networks has
received much attention in the research community through
the past years. A common scenario is the cooperative broadcast
case, in which a group of nodes, connected via inter-node
links, intends to recover a common message broadcasted
by a detached station. The amount of information on the
message locally available at the sensing nodes often does not
suffice, so that cooperation among the nodes is necessary
for successful reconstruction. While it is possible to perform
centralized reconstruction in a dedicated Data Fusion Center,
this would be a single point of failure. Distributed algorithms
promise higher robustness against node and link failures.
By performing some amount of processing at nodes and
employing inter-node communication, we aim for obtaining
the centralized solution through in-network processing.
Recently, we presented an distributed, iterative algorithm [1]
that achieves this goal and establishes a consensus, i.e., that
eventually, the centralized solution is available at all nodes.
Compared to other algorithms from literature for consensus-
based distributed estimation (e.g., [2], [3], [4]), our approach
exhibits the advantage that every communication of nodes
with its neighbors can be realized in a broadcast fashion only,
resulting in relatively low communication effort, while still
showing fast convergence. In this paper, we will investigate
the algorithm’s behavior in the presence of different classes
of erroneous inter-node links; with additive errors as well as
link failures. Furthermore, we will propose countermeasures
against these effects, in particular, a digital filtering technique
for denoising. Finally, we will introduce an approximation in
order to reduce the required communication effort.

The remainder of this paper is structured as follows: In
section II, we introduce the system model and the estimation
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Fig. 1. A network of J nodes receiving different observations xj of the
same quantity s.

problem formulation. Also, we will describe our distributed
consensus-based linear estimation algorithm that will be used
in the following. In section III, we will introduce the error
models that are used to describe the error influences on the
inter-node links. In the following section IV, simulation results
will be presented. Here the presented error models are applied
to networks in which the distributed consensus algorithm is
implemented. Section V proposes a filtering technique on the
variables exchanged during the execution of the distributed
algorithm in order to mitigate the effects of erroneous variable
exchange. Finally, section VI concludes the paper and provides
an outlook to future work.

II. PROBLEM FORMULATION

Fig. 1 illustrates the cooperative broadcast scenario. J
nodes are connected with inter-node links, forming a sensor
network with adjacency matrix A. In the following, we assume
that the graph describing the network is connected, so every
node is able to reach every other node, albeit using several
hops. At every node j, knowledge of the original message s is
desired, but only a disturbed observation xj of it is available.
The relationship between these variables is modeled as linear,
using a disturbance matrix1 Hj and an additional noise term
nj . This results in the linear equation

xj = Hjs+ nj (1)

with s ∈ RN×1, xj ∈ RM×1, Hj ∈ RM×N and nj ∈ RM×1,
where N and M denote the dimensions of message and
observation vectors respectively.

1In communications applications, e.g., this corresponds to the source-sensor
channel matrix.



To reconstruct s in (1), individual Least Squares (LS)
estimation per node can be employed, resulting in J local
estimates ŝj :

ŝj = argmin
s′
||xj −Hjs

′||2. (2)

In general, these estimates will differ over j and therefore
cannot represent a consensus solution: The presence of noise or
a rank deficiency of Hj leads to poor estimation, in particular
if M < N and (1) therefore is underdetermined. In order to
exploit the entire information on s available in the network
and find a common, unique solution, the centralized problem

ŝ = argmin
s′
||xs −Hss′||2 (3)

using the stacked observation vector xs =
[
xT
1 , . . . ,x

T
J

]T
and

stacked disturbance matrix Hs =
[
HT

1 , . . . ,H
T
J

]T
needs to

be solved, e.g. through centralized processing in a data fusion
center. Obviously, to facilitate this, the sensors’ observations
and disturbance matrices need to be forwarded to this central
processing node, necessitating routing protocols and commu-
nication effort. Furthermore, an outage of the fusion center
will cause the whole network to fail, making it a single point
of failure.

Therefore, we are aiming to solve the centralized problem
(3) in a distributed fashion within the network. Recently, we
proposed an iterative algorithm that is able to achieve this aim
[1]. It is based on the solution of the optimization problem
(3) through the Augmented Lagrangian method [5] and the
Alternating Direction Method of Multipliers [6], [7]. In order
to facilitate this solution, the stacked problem is reformulated
as a set of local optimization problems which are coupled
through equality constraints:

{ŝj |j ∈ J } = arg min
{sj |j∈J}

J∑
j=1

||xj −Hjsj ||2

s.t. sj = si ∀i ∈ Nj .

Upon final solution of the optimization problem, the local
estimate sj of every node j in the set J of all nodes is
supposed to be identical with the estimates si of all nodes i in
its (graph theoretic) neighborhood Nj . Nj can be determined
by the positions of the nonzero elements of the j-th row of
the network’s adjacency matrix A. Obviously, the constraints
cause a direct coupling of the variables sj , so it is not possible
to parallelize this optimization problem without modification.
Our approach introduces auxiliary variables zj at each node,
which allows for a distribution of the local optimization
problems among the nodes: The single constraint sj = si is
replaced with 2 constraints sj = zj , zj = si, so the auxiliary
variable zj assumes the role of an “intermediate” estimate
and thus allows for a decoupling of the local optimization
problems.

After straightforward calculations which can be found in
[1], the following update equations for the local estimates sj ,
the auxiliary variables zj and a set of Lagrange multipliers

λi,j introduced in the course of the optimization are obtained:

sj(k + 1) =

(
HT
j Hj +

|Nj |+ 1

µ
I

)−1
(4)

·

HT
j xj +

∑
i∈Nj∪j

(
λj,i(k) +

1

µ
zi(k)

) ,
zj(k + 1) =

µ

|Nj |+ 1

∑
i∈Nj∪j

[
−λi,j(k) +

1

µ
si(k + 1)

]
,

(5)

λi,j(k + 1) = λi,j(k)−
1

µ
(si(k + 1)− zj(k + 1)). (6)

µ is a parameter that allows for control of the step size and
therefore the convergence speed.

These equations illustrate that for the update of the local
estimate sj(k + 1) in the k + 1st iteration, the auxiliary
variables zi(k) of the previous iteration from all the nodes in
the neighborhoodNj (and its own) have to be known, so do the
Lagrange multipliers λi,j(k). Similarly, the subsequent update
of zj(k+1) requires knowledge of the previously updated local
estimates si(k + 1) in the node’s neighborhood. Finally, the
update of the Lagrange multipliers λi,j(k + 1) relies on the
previously calculated local estimates and auxiliary variables.
This implies that all variables need to be exchanged with
neighboring nodes immediately after they have been updated.
Since sj and zj are only specific to their originating node and
not to the node at which they are processed, it is sufficient to
share these in a broadcast fashion. This does not hold for the
Lagrange variables λi,j , which are specific to only one edge
of the network graph, and in particular only to one direction
of this edge. But since the update of λi,j(k+1) only depends
on its previous value and the variables si(k+1) and zj(k+1)
which were already received previously within the k + 1st
iteration, it is possible to perform the update of all required
λi,j and λj,i locally. Later we will show that this simplification
is only allowed in the case of error-free exchange of variables.

III. ERRONEOUS NETWORKS

The basic performance of the algorithm, in particular com-
pared with [2], has been presented in [1]. These investigations
restricted on the case of error-free exchange of information
among the nodes. Nevertheless, in practical wireless networks,
communication among nodes in general is imperfect: Depend-
ing on the amount of effort spent on error correction, messages,
i.e., variables in our case, might get corrupted. This corruption
can either appear as an additional error on the exchanged
variable or as a loss of a variable on a certain link among two
nodes j, i. These error models are widely accepted and have
been employed for the analysis of wireless sensor networks
numerous times, e.g. in [3], also in [2] and [8], a general
model employing graph theoretic analysis was presented in
[9]. Therefore, we will use these model also for our subsequent
considerations. In particular, the three following cases will be
analyzed:

a) Additional errors on the inter-node links: The ex-
changed variables sj(k), zj(k) and (if actually exchanged)
λi,j(k) are superimposed with an additional error. This error is



modeled to be gaussian distributed and dependent on the inter-
sensor link’s SNR. Since the error is superimposed on the link
between the nodes, each neighboring node of j will receive
a replica of sj(k) with an individual, mutually uncorrelated
noise term. Consequently, the received noisy variable shall be
denoted as s̃j,i(k) = sj(k)+ns

j,i(k). For the rest of this paper,
we will model the elements of the additional error ns

j,i(k) as
gaussian distributed, zero-mean and uncorrelated.

b) Inter-node link failures: If an error correction mech-
anism is implemented on the inter-node links, it is possible to
discard a received message if it has been corrupted during
the transmission, e.g. through noise or interference. In this
case, occuring with a certain probability pf , this message (in
our algorithm sj(k), zj(k) or λi,j(k)) is not available for
use in the update equations. This effect can be modeled by
a time-dependent adjacency matrix A(k) and thus, a time-
dependent neighborhood Nj(k) of the node j. Of course, the
case that within one iteration k the transmission of si(k)
to node j succeeds, while the transmission of zi(k) fails
cannot be covered without further modification. We expect
that such an irregular update will result in a different network
performance compared to the case where Nj(k) is constant
over one iteration, but this case is not considered in this paper.

c) Combined effects: Above error models can be com-
bined, representing a network, in which the communication
between nodes is never error-free and might fail with a certain
probability pf .

IV. SIMULATION RESULTS

We investigate the convergence behavior of the algorithm
(4) – (6) by means of numerical simulations. As figures of
merit, the required number of iterations and the resulting
overall square error

OSE(k) =
J∑
j=1

||s− sj(k)||2 (7)

between the nodes’ estimates and the true value at iteration k
are employed. The stopping criterion for the iterative process-
ing is based on the gradient of the Lagrangian cost function.
The sum of the squared norms of the cost functions gradients
w.r.t. the variables is compared to a threshold τ :

J∑
j=1

||∇sjL(s, z,λ)||2 < τ2. (8)

In the following, the value τ = 0.1 shall be employed. It has
been determined experimentally and shows good results.

As a reference for performance comparison, we use the
algorithm presented in [2], whose parameters have been chosen
such that a fair comparison is assured, the stopping criterion
was also chosen identical. The algorithm parameter µ was
chosen to the value 1. The networks in which the consensus
algorithms are running have been generated randomly: J
nodes are placed onto a unit square randomly, following a
2-dimensional uniform distribution. If the euclidian distance
between two nodes i, j falls below a threshold rmax, the
two nodes are modeled to share an inter-node link and the
corresponding element of the adjacency matrix A is set to
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Fig. 2. SNR model based on path loss approximation with path loss exponent
α = 2

1 and to 0 otherwise. In order to ensure that the resulting
graph is connected, the so-called Fiedler eigenvalue [10] is
investigated: This second smallest eigenvalue of the graph’s
Laplacian matrix is larger than 0 if the graph is connected2.

For the properties of the inter-node links, different models,
based on the error models above are used: For the additional
error introduced above, the SNR is either equal on all inter-
node links or different depending on the distance between the
nodes using a path loss approximation. This approximation is
depicted in Fig. 2. If the distance r between two nodes lies
in a range rmin and rmax, the (linear) SNR is proportional to
r−α with α being the path loss exponent. If r is smaller than
rmin, the SNR saturates (due to the receiver’s impairments) at
SNRmax. If r exceeds rmax, as stated above, the two nodes
are assumed not to share a communication link. If additional
link failures occur with a probability of pf , no communication
is possible on the link, regardless of the distance of the nodes.

A. Link failures

Fig. 3 shows the cumulative density function (CDF) of
the required number of iterations nreq for a random network
consisting of J = 6 nodes with rmax = 0.3 for 1000
random realizations of s, Hj and nj with M = 5 and
N = 2. As elements for s and Hj , real valued, zero mean
gaussian distributed values of unit variance were chosen. The
elements of the noise vectors nj were also taken from a
real valued, zero mean gaussian distribution, but with an
exemplary variance of 0.1, resulting in an SNR of 10 dB on
the source-sensor links. The failure probability of the inter-
node links was chosen to pf = 0.4, with the state of the
link randomly determined for every iteration. On non-failing
links, the information exchange was assumed to be error-
free. It can be seen that the convergence of the algorithm
in [2] is slowed down significantly by such link failures. In
contrast to our algorithm, the average number of required
iterations is increased only slightly, whereas the minimum
number of iterations does not change significantly, indicating
a high robustness.

2Its value is a measure for the connectedness of the graph and an indicator
for the convergence speed of the algorithm. Investigations on this issue are
subject of future work.
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Fig. 3. Empirical cumulative density function (CDF) of required number
of iterations until fulfillment of stopping criterion over 1000 random signal,
channel and noise realizations in a randomly generated network with J = 6
nodes
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Fig. 4. Convergence behavior of the algorithm [1] in the presence of additive
noise with centralized solution as reference (dashed line) in a randomly
generated network with J = 6 nodes

B. Noisy links

While random link failures alone do not cause a significant
deterioration of the convergence behavior, this is not the
case for additive random errors on the exchanged messages.
Figure 4 shows the behavior of our algorithm in a network
with same parameters as above, but with perfect, error free
information exchange among the nodes in the first case and
the path loss-based SNR model in the second case, with
SNRmax = 20dB, α = 2, rmin = 0.1 and rmax = 0.3 and no
link failures. Depicted is the OSE over iteration k. While for
the error free case the LS solution (depicted as dashed line)
is achieved very fast, the erroneous exchange of sj(k), zj(k)
and λi,j(k) leads to a noisy behavior, i.e. the OSE varying
around the LS solution, due to which the stopping criterion
is never fulfilled. Therefore, in such scenarios, the number of
iterations must be limited to a sensible number. However, we
can evaluate the resulting (average) OSE for this number of
iterations and use it as a figure of merit for comparison of the
different algorithms.

Please note that in such a scenario, the exchange of
the Lagrange multipliers λi,j(k) is required. If these are all
updated locally, based on erroneously received variables s̃j,i(k)
and z̃j,i(k), our investigations indicated that no convergence
is achieved.
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Fig. 5. Mean OSE ± standard deviation after 25 iterations for 10 different,
randomly generated networks with J = 6 nodes, based on 1000 realizations
of signal, channel and noise each

C. Combined link errors

In the following, the combined error model, comprising
both additive errors and complete link failures shall be inves-
tigated. For this purpose, above path loss-based SNR model is
extended with the time-variant neighborhoodNj(k) introduced
in the previous section. Like above, the link failure probability
was set to pf = 0.4.

Fig. 5 shows the mean and its standard deviation of the
OSE after 25 iterations for 10 different, randomly generated
networks with J = 6 nodes, based on 1000 realizations of
signal, channel and noise each. While the error free, ideal link
case results in a very small average OSE with little variation,
the erroneous links cause quite large mean errors with also
significantly increased standard deviation. Therefore, in order
to mitigate this effect, we will investigate the possibility of
denoising using digital filtering techniques in the following.

V. FILTERING OF EXCHANGED VARIABLES

We propose a weighted moving average (MA) filtering in
temporal direction for the denoising of the s̃j,i(k) and z̃j,i(k)
variables exchanged among nodes. Of course, this approach
reduces the convergence speed, since older, outdated values
of the variable from the previous iterations are included in
every new update, so a trade-off between noise reduction
and reduction of convergence speed has to be found. Fig. 5
shows the resulting mean OSE after 25 iterations for a MA
filter of length 10 with linearly decreasing weights, weighting
s̃j,i(k − 1) most and s̃j,i(k − 10) least3. A normalization to
a sum of 1 for the coefficients of the MA filter was applied
to ensure convergence. This is motivated as follows: In the
equilibrium state, the variables do not change over iteration k
anymore, therefore the weighted sum of 10 past values equals
the equilibrium value of this variable multiplied by the sum of
the filter coefficients. In order not to introduce a bias, the sum
must be normalized as stated above. Further attention must be
paid to the fact that due to link failures, certain past values
s̃j,i and z̃j,i might not be available. To this end, our algorithm
uses a FIFO (First-In-First-Out) buffer that stores the 10 most
recent values, the MA filtering is always applied on these 10
most recent values, except for the very first iterations of the

3z̃j,i(k) correspondingly.



algorithm where the buffer is filled. Here, the MA filtering is
only applied on available values (with respectively corrected
filter coefficients). The alternative approach of using at most
10 values for filtering, and less if some have been lost due to
link outages, showed slightly worse performance and therefore
is not discussed here.

Evaluating the resulting mean OSE and especially its
standard deviation as depicted in Fig. 5 and comparing it to the
noisy case without filtering, it can be seen that these figures
of merit can be reduced significantly using this weighted MA
approach, improving the achievable estimation accuracy.

A. Approximation for reduction of communication overhead

Additionally, in order to reduce the transmission overhead
among the nodes, we propose the use of the local Lagrange
multipliers λj,j(k) at each node j only instead of the multipli-
ers λi,j(k). In this way, only variables sj(k) and zj(k) need
to be exchanged among the nodes. The resulting mean OSE is
also depicted in Fig. 5. It can be seen that there is only a slight
degradation in the error performance compared to the case
of exchanged multipliers4. This reduces the communication
effort significantly, since the exchange of λi,j(k) is particularly
costly: In constrast to the node-specific variables sj(k) and
zj(k), which can be broadcasted, the λi,j(k) variables are
edge-specific and therefore have to be exchanged between
nodes in a unicast fashion.

VI. CONCLUSION AND FUTURE WORK

In this paper, we have investigated the behavior of a
novel algorithm for the distributed consensus-based linear
estimation in the presence of erroneous inter-node links, like
those commonplace in wireless sensor networks. We have
presented models for these kind of errors and proposed a
filtering technique for their mitigation. In future work, we will
approach the problem of erroneous inter-node links through a
more robust approach w.r.t. the optimization criterion which is
the basis of our algorithm.
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