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Abstract—In dense mobile network deployments, the coop-
eration of base stations in the uplink promises performance
gains w.r.t. area throughput and power efficiency. In this paper,
we propose the use of a distributed consensus-based estimation
algorithm for the linear equalization of multiple user signals
occupying the same resources. We will show that using an iterative
process, the same estimation quality can be achieved as if a
centralized joint detection of the signals was performed, and
that with a limited number of iterations, a satisfactory bit error
performance can be achieved.

I. INTRODUCTION

In the recent years, cooperative communication has been
identified as a promising way to overcome the throughput
bottlenecks and coverage inadequacies of mobile communi-
cation systems. In the EU FP7 ICT project iJOIN, a dense,
heterogeneous deployment of base stations, termed iJOIN
Small Cells (iSCs) is proposed. In such a dense deployment,
users often are in the coverage range of several iSCs, since
an overlap or overlay of cells, e.g., macro and femto cells
is unavoidable and desired. This scenario, e.g., allows for a
joint detection and decoding of the UE messages transmitted
in the uplink. A straightforward approach is the centralized
joint processing of raw baseband receive signals forwarded
from the iSCs to a central entity, as designed in cloud RAN
(e.g., [1]) deployments, often termed ”Distributed Antenna
System“ (DAS). There also exists a variety of distributed
approaches for Cooperative Multi Point (CoMP) processing,
as detailed, e.g., in [2], ranging from non-iterative techniques
such as interference subtraction [3] to iterative distributed
decoding schemes [4]. In this paper, we propose the joint
detection of multiple UE signals by means of a decentralized,
iterative distributed signal estimation algorithm. In [5], we
presented a generic consensus-based In-Network Processing
(INP) algorithm for use in arbitrary networks of sensors, which
was further investigated in [6] with regard to its behavior in
the presence of erroneous inter-sensor communication. The
algorithm directly was derived from an optimization problem
using strict mathematic theory and shows a faster convergence
than other algorithms.

The remainder of this paper is structured as follows: In
section II, we will present the scenario investigated and define
the system model. The subsequent section III will introduce
the consensus algorithm and explain its workings. In section
IV, the parameters of numerical simulations and their results
are presented in order to give an initial assessment of the per-
formance that can be achieved using the distributed estimation

Fig. 1. Illustration of the cooperative uplink scenario

algorithm. The paper is concluded by section V.

II. SCENARIO AND SYSTEM MODEL

In this work, we will apply this algorithm to the problem of
linear Multi-User Detection (MUD) in mobile communication
systems, as, e.g., an LTE system. Fig. 1 illustrates an example
of this scenario: 2 users, UE1 and UE2, operating on the same
time and frequency resources, are in reach of 3 iSCs. Since
UE1 has the best access link quality on the link to iSC2,
this is defined to be the primary access link for UE1. The
same is true for the link between UE2 and iSC3. At both
these iSCs, the corresponding “non-primary” UE appears as
interfering UE. iSC1 does not have any UE allocated on the
corresponding time and frequency resources and can assist in
the detection process by contributing its received superposition
of UE1’s and UE2’s transmit signals. In the example scenario,
every iSC is able to exchange information with every other iSC
through a logical interface termed J2, spanning a logical iSC
backhaul network. Through iterative information exchange, the
iSCs tend to find a consensus on the data symbols transmitted
by the UEs. This equalized data could then be forwarded into
a cloud based processing entity (named “RAN as a Service”,
RANaaS), where detection, decoding and all higher layer
processing takes place.

The transmitted data symbols of user ` on the different
spatial layers on a certain resource element, i.e., frequency
and time, are collected in a vector s(`) ∈ AN×1 of length N ,



with A being an arbitrary real-valued1 symbol alphabet2. At
the iSC j, a vector xj ∈ RM×1 of length M representing
the superposition of the NU users’ different signals, each
multiplied with an effective channel matrix Hj,` ∈ RM×N ,
comprising also precoding, if any, is received:

xj =

NU∑
`=1

Hj,`s
(`) + nj . (1)

nj here denotes an additional white gaussian noise (AWGN)
term with variance σ2

n. In our considerations, we assume that
the matrices Hj,` stem from a Gaussian distribution with zero
mean and certain per-link variance σ2

j,`, in order to be able
to consider different signal powers and fading on the different
links.

In order to give a more compact representation, we in-
troduce the data vector s ∈ ANUN×1 containing the vertically
stacked data vectors s(`) of all NU users and the channel matrix
Hj ∈ RM×NUN obtained from a horizontal concatenation of
the matrices Hj,`, ` = 1, . . . , NU. (1) can then be replaced by

xj = Hjs+ nj . (2)

To perform a joint Zero Forcing (ZF) MUD, the common
solution of the J seperate Least Squares (LS) problems

argmin
s′

||xj −Hjs
′||2 (3)

over all iSCs j has to be found. It can be obtained if the
receive vectors xj of all J receiving iSCs are stacked to vectors
x ∈ RJM×1 and the matrices Hj are combined in one large
matrix

H =


H1,1 . . . H1,NU

...
. . .

...
HJ,1 . . . HJ,NU

 .

The overall system can then be described by the expression

x = Hs+ n. (4)

The ZF solution, i.e., the solution of the optimization problem

ŝ = argmin
s′

||x−Hs′||2 (5)

is then obtained by the well-known Moore-Penrose pseudo
inverse:

ŝ = (HHH)−1HHx, (6)

since H can be assumed to be a tall matrix, i.e., JM > NUN .
This solution can easily be obtained if all received vectors
xj and all channel matrices Hj,` are available. In a wireless
network, these quantities would have to be collected and
merged in a central location, often termed “Data Fusion
Center” in the context of Wireless Sensor Networks (WSNs).
It is obvious that the forwarding of receive data and channel
state information consumes resources on the backhaul network,
which usually is of heterogeneous nature, and might here and

1The actual implementation of the estimation algorithm is only working on
real-valued variables, but an extension of it is straightforward. Furthermore,
using a widely linear representation, every complex valued system can be
described by a real valued system of double dimensions.

2If the different users employ different modulation alphabets, A is the union
of these. This is unproblematic, since the linear equalizer is unaware of the
discrete nature of the alphabet anyway.

there exhibit bottlenecks, e.g., on backhaul links implemented
using wireless technology. Therefore, the distributed process-
ing, consisting of local estimation on the iSCs combined with
iterative improvement, leveraged through mutual information
exchange, allows for a traffic relief on the backhaul links.
The workings of the proposed algorithm are detailed in the
following section.

III. ALGORITHM

The distributed linear estimation algorithm originally pre-
sented in [5] performs an estimation based on the LS criterion
and therefore allows for a ZF or Minimum Mean Square
Error (MMSE) equalization of the received signals. It shows
the advantage, that at the seperate iSCs, only local channel
knowledge (acquired through channel estimation, which is
beyond the scope of this paper) is required for calculation
of an initial estimate of the combined UE transmit signals.
Each estimate is then forwarded to the other iSCs who incor-
porate it into their estimation process and thus improve their
local estimates. Like for comparable algorithms (e.g., [7], [8],
[9]), through an iterative process of exchanging intermediate
estimates and other auxiliary variables, a consensus on the
estimates is achieved, which can be proven to be identical to
the centralized LS estimation result a central processing entity
would achieve. As detailed in [5], by use of the Augmented
Lagrangian method [10] and the Alternating Direction Method
of Multipliers [11], [12], the update equations of the iterative
algorithm are obtained:

ŝj(k + 1) =

(
HT

j Hj +
|Nj |+ 1

µ
I

)−1

(7)

·

HT
j xj +

∑
i∈Nj∪{j}

(
λj,i(k) +

1

µ
zi(k)

) ,

zj(k + 1) =
µ

|Nj |+ 1

∑
i∈Nj∪{j}

[
−λi,j(k) +

1

µ
ŝi(k + 1)

]
,

(8)

λi,j(k + 1) = λi,j(k)−
1

µ
(ŝi(k + 1)− zj(k + 1)). (9)

ŝj(k) here represents the jth node’s estimate of the stacked
user data symbol vector s at iteration k. zj(k) has the same
dimensions as ŝj(k) and serves as an intermediate, auxiliary
estimate at node j. The variables λi,j(k) correspond to the
Lagrange multipliers used internally for the solution of the
optimization problem and are specific to one direction of
one link between nodes j and i. It can be seen from eqs.
(7)-(9) that for the update of the variables at node j, other
variables from the set of neighboring nodes Nj are required.
The neighborhood Nj of node j is defined by the logical
topology of the network connecting the receiving nodes. For
example, the nodes might be connected by a ring, which means
that every node has two neighbors. It is furthermore also
possible, e.g., to connect the nodes using a line structure, i.e.,
the nodes at the end only have one neighbor, while those in
between have two neighbors. Please note that we are referring
to topology in a logical sense. The physical topology of the
backhaul might differ from the logical one and usually is fixed.
With regard to logical topology, there often is a degree of
freedom which can be exploited in order to accommodate
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Fig. 2. Simulated bit error rates for a system in ring topology with 2 UEs
transmitting 2 spatial layers each, and 3 receiving iSCs with 4 antennas each
using the distributed estimation algorithm for a fixed number of iterations (5
and 10) and iteration until convergence is achieved

the properties of the physical link. E.g., if the backhaul is
constrained w.r.t. throughput, it should be avoided to set up too
many logical links between the iSCs. The effect of different
logical topologies will be investigated in the following section.

IV. SIMULATION RESULTS

In order to assess the achievable bit error performance and
its dependency on the number of iterations, Matlab simulations
have been performed for a distributed ZF equalization. For
these simulations, the NU UEs were assumed to transmit unit
power BPSK symbols on each of their N spatial layers. For
each link between UE ` and iSC j, a channel matrix with real
valued, i.i.d., coefficients from a zero mean normal distribution
with variance σ2

j,` was assumed. At each of the NR receive
antennas at each of the J iSCs, a real valued, zero mean, i.i.d,
Gaussian noise of variance σ2

n was added to the superposition
of the UEs’ signals. The stepsize parameter µ was chosen to
1.

The uncoded bit error rate has been determined based on
the linear equalizer output after a fixed number of 5 and 10
iterations, and after sufficiently many iterations to ensure that
convergence has been achieved3. Fig. 2 shows the bit error
curves for NU = 2, J = 3, N = 2 and M = 4, which
means that every iSC is by itself generally capable to separate
the two users spatially. The individual channel gains per link

had been chosen to [σ2
j,`] =

[
0.1 1 0.5
0.15 0.2 1

]
. As can be

seen for the ring topology in Fig. 3, the average number of
iterations required until convergence was observed to be 16-18,
increasing with the noise power, with a standard deviation of 5-
7, also increasing with the noise power. Nevertheless, it can be
seen that with a fixed number of 10 iterations, the encountered
SNR loss is less than 1 dB. With only 5 iterations, however,
the BER performance degrades significantly. It shall also be
noted that in the low SNR regime, the bit error rate for the

3As stopping criterion, the sum over all nodes of the norms of the gradients
of the seperate cost functions had been compared to a threshold. The authors
are well aware that this centralized stopping criterion cannot be implemented in
a distributed system, but it shall only serve as a reference for these simulations.
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Fig. 3. Average number of required iterations ± standard deviation for
convergence in the case of a ring topology

fully converged case is slightly larger than for the cases of 5
or 10 iterations. This can be explained through investigation
of (7): In the first iteration, the initial estimate of the joint user
vector sj(1) at node j is given by

ŝj(1) =

(
HT

j Hj +
|Nj |+ 1

µ
I

)−1

HT
j xj . (10)

This expression can be interpreted as a modified solution
of (2), a non-cooperative ZF MUD with the pseudo inverse
regularized by |Nj |+1

µ . It is known that the MMSE solution
basically also contains a regularized pseudo inverse and out-
performs the ZF solution in the low SNR regime. Obviously,
our system is dominated by noise and not by interference in the
region below approx. 4 dB. Therefore, the use of the MMSE
criterion for the optimization problem (5) promises a better
performance in the low SNR regime. It is subject of ongoing
work.

If the number of spatial layers per UE is increased to
NU = 4, a single iSC is not able to spatially seperate the users
any longer, since (2) is underdetermined. Therefore, the initial
estimate of the iSCs before any neighboring iSC’s information
is incorporated is very poor. Thus, the number of required
iterations is increased drastically, to average values of 27-47,
depending on the noise power. The corresponding standard
deviation lies between 9 and 30. Not surprisingly, thus, at 5 and
10 iterations, the estimated signal still contains a significant
amount of interference, leading to an error floor visible in
Fig. 4.

The simulations have been repeated for a line topology
with iSC2 being placed in the middle and iSCs 1 and 3
at the ends of the line. The resulting bit error curves can
be seen in Figs. 5-6. It can be observed that the bit error
performance for the converged case is the same, as it is
expected, since it corresponds to the central solution (6). For
the cases with a fixed number of iterations, the bit error
performance is slightly improved. Investigating the average
number of required iterations and its standard deviation as
depicted in Fig. 7, one can see that it is slightly smaller than
in the case of the ring topology. This observation is contrary
to the general expectation that more links in a network with a
certain number of nodes will lead to a faster convergence. In
the investigated scenario, the use of 2 logical links between the
nodes obviously is sufficient. Interestingly, there is no relevant
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Fig. 4. Simulated bit error rates for a system in ring topology with 2 UEs
transmitting 4 spatial layers each, and 3 receiving iSCs with 4 antennas each
using the distributed estimation algorithm for a fixed number of iterations (5
and 10) and iteration until convergence is achieved
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Fig. 5. Simulated bit error rates for a system in line topology with 2 UEs
transmitting 2 spatial layers each, and 3 receiving iSCs with 4 antennas each
using the distributed estimation algorithm for a fixed number of iterations (5
and 10) and iteration until convergence is achieved
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Fig. 6. Simulated bit error rates for a system in line topology with 2 UEs
transmitting 4 spatial layers each, and 3 receiving iSCs with 4 antennas each
using the distributed estimation algorithm for a fixed number of iterations (5
and 10) and iteration until convergence is achieved
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Fig. 7. Average number of required iterations ± standard deviation for
convergence in the case of a line topology

difference in the average number of iterations if two other links
are set up, e.g., with iSC1 being in the center and iSC2 and
iSC3 at the ends. The mean value increases by only a fraction
of an iteration.

However, if the number of nodes is increased, a higher
connectivity will lead to a faster convergence. For instance,
previous own investigations [13] have shown that for e.g. 6
nodes, a ring topology requires less iterations with smaller
standard deviation than for the line topology. A full mesh,
however, leads to an even further reduced number of iterations.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the use of a consensus-based
estimation algorithm for the joint equalization of multi-user
signals in a cellular network environment. We reviewed the
algorithm and detailed on the information that needs to be
exchanged for the iterative updating. The bit error performance
was evaluated using numerical simulations for a given scenario
with varying parameters, in particular number of spatial layers
per user and network topology. We showed that even with a
limited number of iterations, an acceptable performance can
be achieved.

The results shown in this paper are supposed to be an initial
assessment of the performance gains achievable through base
station cooperation and therefore only use a simple model. A
more realistic scenario will comprise significantly more users
and iSCs and will also incorporate heterogeneous, non-ideal
backhaul.
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