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Abstract—Machine-to-Machine communication requires new
physical layer concepts to meet future requirements. In previous
works it has already been shown that Compressive Sensing (CS)
detectors are capable of jointly detecting both activity and data
in Multi-User Detection (MUD). To date, the investigations on CS
based MUD have omitted the channel estimation and assumed
perfect channel knowledge. However, in practical applications
the channel also has to be estimated, such that the joint
detection of activity and data has to be extended by channel
estimation. Therefore, in this paper we investigate how to adapt
several approaches to channel estimation, such that they are
suitable for this joint detection and estimation. Further, we
provide simulation results, showing that low overhead channel
estimation can be achieved, with only a small loss in detection
accuracy compared to CS based MUD for perfect channel state
information.

I. INTRODUCTION

The field of wireless Machine-to-Machine communication
is expected to grow tremendously in the future. With low
data rates and sporadic communication, these applications
present new challenges for physical layer concepts, as system
requirements differ from many current applications, such as
high data rate access. Due to the sporadic communication, i.e.,
each transmitter being inactive most of the time, the system
is more severely impacted by transmission overheads than
in continuous transmission, necessitating a strong reduction
of the transmission overhead compared to current systems
designed for high data rates. One approach towards reducing
the transmission overhead is to avoid signaling of the activity,
and to detect both activity and data in the physical layer
processing at the receiver. This results in a random access
for higher layers.

For the scenario of a sporadic uplink transmission in a
sensor network, it has already been shown in [1]–[4] that
reliable joint detection of both activity and data is possible
using Compressive Sensing (CS) based Multi-User Detection
(MUD) [5], [6]. However, these investigations for simplicity
assume perfect channel state information (CSI), and so far
the aspect of channel estimation has not been incorporated
in the CS based MUD for sporadic communication. In order
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Fig. 1. Transmission scenario.

to include the channel estimation, the receiver simultaneously
has to detect activity, data and channels.

In this paper, we investigate different approaches to incor-
porate channel estimation in the joint detection of activity and
data for sporadic communication. First, we adapt the approach
of pilot based channel estimation, which is used in many
commercial systems, e.g. LTE, to sporadic communication,
by performing a joint estimation of activity and channels. For
this joint estimation, we introduce a new greedy algorithm,
which exploits hierarchical sparsity, i.e., block-sparse [7] per
node and symbol-wise sparse for each active node. As an
alternative method, we investigate blind channel estimation for
sporadic communication, following the ideas from [8]. Further,
we introduce a semi-blind channel estimation, based on the
blind estimation approach, in order to improve data detection
accuracy.

II. SYSTEM MODEL

A. Transmission Setup

We consider a wireless uplink transmission, where K sensor
nodes communicate with a central aggregation node, as shown
in Figure 1. Here, we assume that the transmissions from the
sensor nodes are sporadic, i.e., the sensor nodes are only active
on occasion. As a model for sensor node activity, we assume
that each sensor node is active for a frame with a given frame
activity probability pa. Without loss of generality, we assume
that this frame activity probability is identical for all sensor
nodes and rather small, i.e., pa � 1.

For the data of the sensor nodes, we assume that an active
node ka transmits NF modulated symbols dka ∈ ANF per
frame, where A is the modulation alphabet. Without loss
of generality, we assume BPSK modulation in the follow-
ing and simplify the notation to a real-valued model. Other



FP F

NF

NF

data symbols

pilot symbols

Chan. + Act.
Estimation

Data
Detection

Data + Act.
Detection

Chan.
Estimation

Data
Detection

Chan.
Estimation

b)

a) b) c)

Fig. 2. Different approaches to joint activity, data and channel estimation. a) Pilot based channel estimation, b) blind channel estimation and c) semi-blind
channel estimation.

modulations can easily be applied. An inactive node ki does
not transmit during this frame, and thus we model the data
symbols as zeros, i.e., dki ∈ {0}NF . Therefore, for each node,
a frame consists of NF data symbols drawn from the so-
called augmented alphabet A0 = {A ∪ 0}, which is the BPSK
alphabet A augmented and extended by the zero symbol to
indicate inactivity.

We assume that each node k encodes the symbols in dk
using random coding before transmission. This means that
node k encodes the nth data symbol dn,k ∈ A0 with a node
and symbol specific code word cn,k ∈ RF . The node k then
transmits the superposition of the F transmit-symbols for each
data symbol dn,k, as given by

sk =

NF∑
n=1

cn,kdn,k = Ckdk , (1)

where Ck = [c1,k, c2,k, . . . , cNF,k] ∈ RF×NF . Here,
we assume that each code word cn,k contains random
Gaussian distributed values that are normalized, such that
‖cn,k‖2 = 1 ∀n, k. The reasoning for the application of ran-
dom coding is that CS detection on average performs well for
measurements over random Gaussian matrices [9], and other
transmission techniques, such as CDMA and SC-FDMA, can
be interpreted as specific, structured cases of random coding.

As a time discrete channel model, we assume that for node k
the time discrete channel impulse response hk is determined
by Lh real-valued non-zero channel coefficients at unknown
delays within a maximum delay of τh transmit-symbols, as
shown in Figure 1. This means that for Lh < τh the channel
impulse response hk ∈ Rτh+1 is a sparse vector with Lh non-
zero elements, where neither the values nor the position of the
non-zero coefficients are known.

B. System Models for Data Detection and Channel Estimation

In sporadic communication, activity, data and channels have
to be estimated based on the same received values y ∈ RF+τh .
As we cannot reliably estimate all these properties at once, we
split the system model into two separate models. For known
channels hk, e.g., perfect CSI, the system model is given as

y =

K∑
k=1

HkCkdk + n = MHCx + n = Ahx + n , (2)

where Hk ∈ R(F+τh)×F is the convolution matrix for channel
hk and n ∈ RF+τh is a vector of uncorrelated Gaussian noise
N
(
0, σ2

n

)
. Additionally, the multi-user data vector x ∈ RKNF

is the stacked vector of all dk, H ∈ RK(F+τh)×KF and
C ∈ RKF×KNF are the block-diagonal matrices of all Hk and
Ck respectively, and M = [I, I, . . . , I] ∈ RF+τh×K(F+τh),
leading to Ah ∈ RF+τh×KNF . As has been shown in the
literature [1]–[4], CS based MUD applied to (2) is able to
jointly detect activity and data.

For known data dk, e.g., pilot symbols, the system model
is given as

y =

K∑
k=1

Skhk + n = MSh + n = Axh + n , (3)

where Sk ∈ R(F+τh)×(τh+1) is the convolution matrix for
transmit sequence sk, S ∈ RK(F+τh)×K(τh+1) is the block-
diagonal matrix of all Sk, the multi-user channel vector
h ∈ RK(τh+1) is the stacked vector of all hk, and Ax ∈
RF+τh×K(τh+1). In contrast to previous works, CS based MUD
applied to (3) is able to jointly detect activity and channels.

III. CHANNEL ESTIMATION

A. Pilot Based Channel Estimation
In pilot based channel estimation, shown in Figure 2a), first

we jointly estimate the activity and channels based on known
pilot symbols, and afterwards a data detection based on the
estimated activity and channels is performed. In this paper,
we assume that NF known BPSK pilot symbols are transmitted
encoded with independent code words. For these pilot symbols
there are two options, as depicted by the switch in Figure 2a):
• NF pilot symbols are transmitted in a separate frame of

length FP , only containing the encoded pilot symbols.
This increases the amount of transmit-symbols transmit-
ted by each active node by FP , and thus reduces the
spectral efficiency by F/(F + FP ).

• NF encoded pilot symbols are transmitted simultaneously
with the encoded data. This does not decrease the spectral
efficiency, but increases the interference both between
nodes and between the symbols of each node.

After estimating the channels, we remove the influence of the
pilots from the received measurements before performing the
data detection.



B. Blind Channel Estimation

For blind channel estimation, we follow the ideas from [8],
where the blind estimation is solely based on the knowledge
about the random codes and the statistics of the channel.
The blind estimation is structured as shown in Figure 2b):
First we perform a joint activity and data detection, based
on an initial channel assumption. Afterwards, we perform a
channel estimation utilizing the data detected in the previous
step. Finally, we re-evaluate the data detection using the newly
estimated channels.

For the initial detection, we assume a single tap channel
with a positive phase at an unknown delay within τh to model
the strongest channel coefficient. In order to incorporate the
unknown delay in the detection, the matrix Ah in (2) has to
be augmented with delay hypotheses for each possible delay
τ within 0 ≤ τ ≤ τh. This approach is explained in more
detail in [4]. As the initial channel assumption is in general
not an accurate model for the current channels, we can further
improve the data detection accuracy of this first detection
with estimated channels. Thus, based on the detected data an
estimation of the channels and then a data detection based on
these new channels is performed.

This process is similar to the iterative process described
in [8]. However, based on our transmission assumptions, the
number of non-zero channel coefficients is Lh for each node.
Thus, we only need to perform one step of the iterative process
estimating Lh channel coefficients for each active node.

C. Semi-Blind Channel Estimation

The main problem for blind channel estimation is that the
initial channel assumption is not accurate in most cases. This
is especially a problem if the phase of the strongest coefficient
is not positive, as this will likely result in an incorrect sign
for the detected data symbols. These errors are not detectable,
as CS detection algorithms are based on either vector norms
or absolute correlation, all of which are not influenced by a
change in the sign of the detected vector. This motivates the
approach of a semi-blind estimation.

The semi-blind estimation adds a simple channel estimation
step prior to the blind channel estimation, as shown in Fig-
ure 2c). This step requires that a single BPSK pilot symbol
dp,k is added to the data frame for all active nodes. Based on
the pilot symbol of node k, we model the received values as
being dependent only on dp,k, with

y = Sp,khk + n , (4)

where Sp,k is the convolution matrix for sp,k = cp,kdp,k. Then
we use (4) to estimate the phase of the strongest channel
coefficient for node k. This estimated sign is then used as
the sign of the initial single tap channel model for node k in
the blind estimation.

IV. COMPRESSIVE SENSING MULTI-USER DETECTION

The theory of CS is focused on the reconstruction of
compressible signals by recovery of a sparse representation
even from under-determined equation systems [5], [6]. Due

Algorithm 1 Hierarchical BOMP (HBOMP)
B0 = ∅, Γ0 = ∅, ` = 1, r0 = y

repeat
jmax = arg max

j

∣∣AH
j r`−1

∣∣ with j ∈ f
(
B`−1

)
b = g (jmax)

n = 0

repeat
n = n+ 1

imax = arg max
i

∣∣AH
i r`−1

∣∣ with i ∈ f (b)

Γ` = Γ`−1 ∪ imax

ĥ`Γ` = A†
Γ`y and ĥ`

Γ
` = 0

r` = y −Aĥ`

` = `+ 1

until n ≥ Lh

B` = B`−1 ∪ b
until ` ≥ KaLh

to the low activity probability of the nodes, both the multi-
user data vector x and the multi-user channel vector h are
sparse. Thus, by applying CS detectors to (2) and (3), we can
reliably recover these sparse vectors. While there are many
different approaches to CS detection, e.g., [10]–[12], we focus
on greedy algorithms. These are in general more efficient, but
less accurate, than solving appropriate convex optimization
problems, such as [10].

The greedy algorithm used depends on the sparsity structure
of x or h respectively. The symbols in data vector dk of node
k are either all zero or all taken from the modulation alphabet
A. Therefore, x in (2) is block-sparse or group-sparse [7], as
it contains blocks of dk and only a few nodes are active. Thus,
the Group Orthogonal Matching Pursuit (GOMP) [13] is well
suited, as this greedy algorithm exploits block-sparsity.

The multi-user channel vector h in (3) is sparse, as only the
channels of an active node are modeled as non-zero. However,
h is not block-sparse, as the channel coefficient vector hka of
an active node ka is also sparse, due to Lh < τh. Therefore,
we call the multi-user channel vector h hierarchical sparse,
as at the first layer h is block-sparse and at the second layer
each active block hka is sparse. To exploit this special sparsity
structure, we propose a new greedy algorithm, the Hierarchical
Block Orthogonal Matching Pursuit (HBOMP).

A. Hierarchical Block Orthogonal Matching Pursuit

In order to explain the HBOMP, we first introduce our
notation: B is a set of block-indices and Γ is a set of vector-
indices. B and Γ are the corresponding complementary sets.
Further, f(k) is a set function that defines all vector-indices
contained in block k, and g(j) is a set function that defines the
block-index of the block which contains vector-index j. AΓ

specifies the sub-matrix which only contains those columns
with vector-indices in set Γ, i.e., Aj specifies the jth column,
and likewise hΓ contains only those elements of vector h with
vector-indices in Γ. h`, r`,A`, B` and Γ` each specify the



respective variable during the `th iteration. Herein, A† is the
Moore-Penrose pseudoinverse of A, and AH the Hermitian
matrix of A. For notational clarity, we simply denote the
matrix Ax as A in the HBOMP.

The HBOMP shown in Algorithm 1 consists of two different
loops, an outer loop based on the Block Orthogonal Matching
Pursuit (BOMP) [13] and an inner loop based on the Orthogo-
nal Matching Pursuit (OMP) [11]. During each iteration of the
outer loop, the HBOMP selects the block b containing column
jmax, with the highest correlation to the current residual r`.
After this block selection step, a regular BOMP would add all
elements in block b to Γ`−1, thereby setting them as active.
However, due to the hierarchical sparsity only few of the
elements contained in a block are active. Thus, the HBOMP
continues with the inner loop for the currently selected block b.
In each iteration of the inner loop, the HBOMP determines the
strongest correlation within block b to the current residual r`

and then adds the vector index imax to the set Γ`−1. Afterwards,
the HBOMP estimates the non-zero elements ĥ`Γ` using LS
estimation, and then updates the residual r`.

In general, the correct number of iterations for greedy
CS algorithms is not known prior to detection. However,
due to our assumptions, the number of non-zero channel
coefficients is Lh is known. Additionally, for simplicity we
use a known number of active nodes Ka in the simulations.
For implementation an appropriate termination criterion has to
be found.

V. SIMULATION RESULTS

In this section, we will discuss simulation results for the
estimation approaches described in section III and compare
them with a GOMP detection assuming perfect CSI. Unless
otherwise noted, we set the length of the separate frame of
pilot symbols for pilot estimation to be the same as the data
frame, i.e., FP = F . For the semi-blind estimation one data
symbol is replaced by a pilot symbol in the data frame. In
these simulations, the GOMP is used for activity and data
detection, and the HBOMP is used for activity and channel
estimation. Prior to a detection or estimation, the system
matrix is normalized to have an identical column norm for
all columns, as described in [14].

As a simulation setup, we consider a transmission from
K = 64 sensor nodes that each transmit a data frame
containing NF = 8 data symbols. The random code for each
node k is given by code words of F = 128 or F = 512
i.i.d. real Gaussian distributed values, normalized such that
each code word has unit norm. The channel is modeled by
Lh = 3 i.i.d. real Gaussian distributed taps with the power
profile σ2

h = [0.873, 0.436, 0.218]. These taps are located at
equally distributed random but ordered delays within τh = 20
transmit-symbols. We assume that sensor nodes are only active
with a probability of pa = 0.02, so that the number of active
nodes Ka is on average much smaller than K, i.e., Ka � K.

For a fair comparison of the different approaches, we
incorporate the loss of spectral efficiency due to the separate
pilot frame as an SNR loss in the Es/N0. Therefore, for all
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Fig. 3. Symbol error rate over the augmented alphabet for K = 64 and
F = 512, i.e., fully determined case.

approaches without an additional pilot frame the Es/N0 is
given by 1/σ2

n. For the pilot estimation based on an additional
pilot frame the Es/N0 is given by F/(F + FP ) · 1/σ2

n.
Figure 3 shows simulation results for the symbol error

rate (SER) over the augmented alphabet A0 for a frame
length of F = 512 transmit-symbols, i.e., model (2) is fully
determined and model (3) is under-determined by a factor
of 2.5. First, it should be noted that pilot estimation using
a separate pilot frame has nearly a constant loss compared
to the error rate for perfect CSI. This loss is mostly defined
by the SNR loss due to the loss of spectral efficiency, as
this is not considered in the perfect CSI case. This means
that, with the transmission overhead of the pilot frame, the
performance assuming perfect CSI, e.g., [1]–[4], can almost be
achieved. Further, the results show that for pilot based channel
estimation, in the low SNR region it is better to transmit the
pilots within the data frame rather than in a separate frame,
as the detection is noise limited. Secondly, all approaches
with no additional pilot frame show a noticeable error floor
in the high SNR region. For pilot estimation this is caused
by the additional interference, which limits the achievable
error rate. Additionally, these results show that the semi-blind
estimation improves the results of blind estimation and that
pilot estimation has lower SER for pilots within the data frame.
The SER for pilot estimation with pilots in the data frame can
likely be improved with appropriate power-loading, but this is
beyond the scope of this paper.

In comparison to the previous simulations, we investigate
a system setup with a frame length of F = 512 transmit-
symbols, where the model (2) is under-determined by a factor
of 4 and model (3) is under-determined by a factor of 10.
For this setup, Figure 4 shows simulation results for the SER
over the augmented alphabet A0. In general, CS MUD is
still able to reliably detect activity and data with perfect CSI,
even in an under-determined system. This property is shown
by the fact that the SER increases only slightly for perfect
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CSI compared to Figure 3. However, the same does not hold
true for semi-blind and pilot estimation. These two approaches
have significantly increased SERs due to increased multi-user
interference. Comparing the pilot estimation for pilots within
the data frame with the semi-blind estimation, we see that for
the underdetermined case the semi-blind estimation is better
for high SNR. As pilot estimation transmits NF pilot symbols
in the data frame instead of one, the interference is increased
significantly.

Finally, we investigate the influence of the length of the
separate pilot frame FP for pilot estimation. Figure 5 shows
the SER for different values of FP . These results indicate
that a moderate size of the additional pilot frame, i.e., FP =
128, yields the best results, except for very high SNR. On the
one hand, shorter pilot frames have higher spectral efficiency,
but also a much higher error floor. On the other hand, longer

pilot frames have much lower error rates with no noticeable
error floor, but also a much lower spectral efficiency. Thus,
the length of the pilot frame FP defines a tradeoff between
detection accuracy and spectral efficiency.

VI. CONCLUSION

This paper shows that joint activity and channel estimation
for sporadic communication with very short packages is not
only possible, but can almost achieve the error rate of perfect
CSI. We investigated different approaches to estimating activ-
ity, data and channels in a sporadic multi-user transmission,
which is typical for Machine-to-Machine communication.
When avoiding signaling for activity, the best approach is to
jointly estimate activity and channels based on pilot symbols,
followed by a data detection. For high SNRs, these pilots
should be transmitted in a separate frame, which causes a loss
of spectral efficiency, while for low SNR the pilots should
be transmitted within the data frame. To reliably perform this
joint activity and channel estimation, we also introduced a new
greedy Compressive Sensing algorithm (HBOMP).
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