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Abstract—Performing joint activity and data detection has
recently gained attention for reducing signaling overhead in
multi-user Machine-to-Machine Communication systems. In this
context, Compressed Sensing has been identified as a good
candidate for joint activity and data detection especially in
scenarios where the activity probability is very low. This paper
augments activity and data detection for frame based multi-user
uplink scenarios where nodes are (in)active for the duration of
a frame. We propose a two stage detector which first estimates
the set of active nodes followed by a data detector. Our detector
outperforms symbol-by-symbol Maximum a posteriori detection.

I. INTRODUCTION

Machine Type Communication (MTC) is a fast growing
field which constantly raises new demands on existing commu-
nication systems. Compared to human driven communication,
MTC is quite often sporadic and of very low data rate making
extensive signaling and complex scheduling inappropriate [1],
[2]. Recent research has shown how signaling and scheduling
complexity can be reduced by physical layer joint activity
and data detection [3]–[5]. Physical layer joint activity and
data detection assumes a multi-user uplink network, where
nodes sporadically transmit data to a central aggregation node
for further processing. Given some knowledge about the node
activity, the detector blindly estimates the set of active nodes
and the data. The reliability of the activity detection is crucial
for the data-detection as erroneous activity detection strongly
impacts the overall performance. In [6], [7] the authors have
derived the Bayes-Risk detector for symbol-by-symbol joint
activity and data detection. This detector allows to control the
error rates with respect to activity detection by an additional
risk parameter such that certain system dependent error rate
requirements are met.

This paper augments symbol-by-symbol Bayes-Risk detec-
tion by considering a multi-user uplink scenario where nodes
transmit frames to a central aggregation node. For this setup, a
two-stage detector is proposed where the first stage estimates
the activity with respect to some pre-adjusted Bayes-Risk and
the second stage estimates the data of the nodes. As this
detection scheme utilizes a whole frame of observations to
reliably estimate the activity, it outperforms symbol-by-symbol
activity and data detection at the cost of additional complexity.
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grant DE 759/3-1.

We start by formulating a general communication model
involving a frame based MTC like uplink transmission with a
low per-node activity probability in Section II. Section III-A
contains the main part of this paper, where we introduce
the two step detector for joint activity and data detection. In
Subsection III-C the processing of estimated activity pattern
is described, which is implemented via a sphere decoder.
We show that both stages, i.e., activity detection and data
detection, can utilize the same sphere decoder implementation
as the two problem formulations are equivalent to each other.
The performance of two stage detection is demonstrated in
Subsection IV by comparing the error rates with respect to
the activity detection for two stage detecting with symbol-by-
symbol MAP detection. Moreover we show the impact of the
Bayes-Risk factor on the activity detection by investigating the
Receiver Operating Characteristic (ROC).

II. SYSTEM MODEL

We start by formulating a general Machine-to-Machine
(M2M) uplink communication model where nodes desire to
transmit a frame of data to a central aggregation node. The
timing is assumed to be synchronized among the nodes. More
specifically the system consists of K nodes that transmit a
frame of L symbols to a central aggregation point. Motivated
by smart-metering and industrial applications [8] each node
transmits only occasionally and the probability that the kth
node transmits is pa. If a node is active, it transmits a frame
of L consecutive data symbols modulated by a modulation
alphabet A, which can be, e.g., Phase shift keying (PSK).
For the sake of simplicity modulation symbols in A are
assumed to be distributed uniformly. If a node is inactive,
the node does not access the medium and keeps silent for
the duration of the whole frame. The detector models inactive
nodes as transmitting zeros instead of modulation symbols and
uses an augmented alphabet A0 = A ∪ {0} for detection.
This model interprets the set of nodes at any time instance
as transmitting symbols from the augmented alphabet A0.
Stacking the symbols of all users at time instance i, results
in the multi-user signal vector xi ∈ AK0 . Concatenating L
multi-user vectors of a frame yields the matrix X ∈ AK×L,
where the kth row xk̄ contains L consecutive symbols from
node k. As a general model, we assume transmission over a
wireless channel that can be expressed via the linear input-



output relation
Y = TX + N. (1)

Here, Y ∈ RM×L is the matrix of observations, T ∈ RM×K
summarizes the channels from the nodes to the aggregation
point and the medium access, e.g., Code division Multiple
Access. The matrix N ∈ RM×L contains white Gaussian
noise samples with zero mean and variance σ2

n. If M < N , the
system (1) is under-determined like most common Compressed
Sensing (CS) problems. In the following we mainly focus on
the case where M < N holds.

The previously introduced activity model allows to dis-
tinguish between two disjoint events modeling the node
(in)activity on a frame basis, i.e., for each row vector denoted
as xk̄ we can have

xk̄ ∈ AL → E1k (Node is active) (2a)

xk̄ = 0L → E2k (Node is inactive) (2b)

with event probabilities Pr (E1k) = pa and Pr (E2k) = 1−pa.
Here E1k denotes the event that the kth node is active and
E2k denotes that the kth node is inactive, respectively. Given
a frame of observations, the goal is to estimate E1k or
E2k ∀K correctly. In the following we analyze this activity
detection and Table I shows the possible outcomes that occur
while hypothesizing E1k and E2k. Note that the two error
events False Active and False Inactive also known as False
Alarm and Missed Detection are of major concern as they
differently affect the system performance. Having a high False

xk ∈ A xk = 0
x̂k ∈ A True Active False Active
x̂k = 0 False Inactive True Inactive

TABLE I
POSSIBLE OUTCOMES FOR ACTIVITY DETECTION

Inactive rate leads to a loss of data since the detector tends
to decide more in favor of inactivity, on the other hand a
high False Active rate complicates processing at higher layers
as obviously wrong symbols are forwarded to higher layers.
To this end, we proposed to augment joint activity and data
detection by taking the risk for erroneous activity detection
into regard resulting in the so called Bayes-Risk MAP detector
introduced in [6], [7]. This detector takes cost for an erroneous
activity detection into account which is done via the two
factors
• CFi : Cost for False Inactive errors
• CFa : Cost for False Active errors.

As a major result of [6], the ratio of costs Ω = CFa
CFi

steers
the detector between being more liberal and decide more in
favor of activity or to be more conservative and decide more in
favor of inactivity. This paper aims at extending the symbol-
by-symbol Bayes-Risk MAP detector to a frame based Bayes-
Risk detector.

III. FRAME BASED ACTIVITY ESTIMATION

A. Overview of Frame Wise Processing

Given a frame of observations, this section focuses on
estimating E1k and E2k for all nodes correctly. Previously,

MAP detection has been employed on a symbol-by-symbol
basis to jointly estimate activity and data [4], [6]. MAP
detection could be extended for frame based systems which
is possible in principle but due to the enormous complexity
infeasible with state of the art processing capabilities. Instead
we make use of the fact that the events E1k and E2k are
always true for L consecutive symbols and we have the events
for the individual symbols

E1k = E1k,1 = E1k,2 · · · = E1k,i · · · = E1k,L (3a)
E2k = E2k,1 = E2k,2 · · · = E2k,i · · · = E2k,L. (3b)

Our approach is to estimate node (in)activity E1k or E2k
for a frame by splitting the estimation problem up into L
smaller problems where the solution to the ith problem gives
the estimate E1k,i or E2k,i. More specifically, we propose a
two stage detector based on an activity estimation followed
by a data detecting stage. The general structure is shown in
Fig. 1. Starting from a frame of observations, some a priori
information λ and the current Bayes-Risk Ω, the detector first
decomposes the problem into L symbol-by-symbol estimation
problems (2) and combines the results to obtain an estimate
for E1k and E2k. This information is the fed as a priori
information to a data detector which provides an estimate of
the data contained in the frames of active nodes.

Act-Est Detector
Y ω X̂

Ω, λ

Fig. 1. Signal flow diagram of proposed two stage detector, which first
estimates the set of active nodes and then estimates their data.

B. Activity Estimation
We start with the activity estimation by decomposing the

frame-wise estimation problem into L individual problems by
generalizing the Bayes-Risk MAP detector proposed in [6]
for frame based MTC. The symbol-clock Bayes-Risk MAP
performs the following Generalized Log-Likelihood Ratio Test
(GLRT)

cf. [6] log
p (yi|xk,i = 0) Pr (xk,i = 0)CFa

maxx∈A p (yi|xk,i) Pr (xk,i)CFi

E2k,i

≷
E1k,i

0 (4)

in order to obtain a per-symbol estimate for the events E1k,i
and E2k,i. Note that the denominator of (4) constitutes a
composite hypothesis for the kth node being active at time
instance i involving all possible modulation symbols from
the alphabet A. As, the likelihood p (yi|xk,i) is a marginal
density (with respect to xk,i) from the distribution p (yi|xi)
it has to be computed via marginalization. Subsequently,
Xxk=ν = {x ∈ AK0 : xk = ν} denotes the set of K dimen-
sional vectors with elements from A0 where the kth element
is equal to ν. This allows to express (4) explicitly as

log

∑
s∈Xxk=0

p (yi|s) Pr (s)

maxν∈A
∑

s∈Xxk=ν
p (yi|s) Pr (s)︸ ︷︷ ︸

Activity LLR

E2k,i

≷
E1k,i

log
1

Ω︸ ︷︷ ︸
decision threshold

, (5)



where s is the test-vector taken from the set X defined previ-
ously. Interestingly, the left side of (5) equals the calculation
of an activity log-likelihood ratio (LLR) and the right side is
the threshold determining when a node is considered to be
active or inactive. This threshold is solely determined by the
previously defined risk factors as Ω = CFa

CFi
. With (1), and the

assumption of white Gaussian noise, the likelihood p (yi|s)
can be written as

p (yi|s) ∝ exp

(
− 1

2σ2
n

‖yi −Ts‖22
)
. (6)

Considering (6), we see that (5) evaluates a sum including
O
(
|AK |

)
summands which leads to a high computational

effort, especially if K is large. The sum in (5) over exponential
terms can be simplified by utilizing the so called max-log
approximation [9] and thus turning the evaluation of the sum
into an optimization problem yielding

min
s∈Xxk=0

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s))

]
− (7)

min
ν∈A

min
s∈Xxk=ν

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s))

]
E2k,i

≷
E1k,i

log
1

Ω
.

Using the activity model (2) and the corresponding event
probabilities, the a-priori probability for the vector hypothesis
s ∈ AK0 reads

log (Pr (s)) = log

(
(1− pa)

K−‖s‖0
(
pa
|A|

)‖s‖0)

log (Pr (s)) ∝ −‖s‖0 log

(
1− pa
pa/|A|

)
. (8)

Here, ‖s‖0 is the l0 norm and simply counts the number of
non-zero zero elements contained in s [10]. Without chang-
ing the two optimization problems in (7) we subtract log 1

Ω
from both minimizations. Moreover, inserting (8) into (7) and
summarizing two min operations yields,

min
s∈Xxk=0

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s)) + log Ω

]
− (9)

min
s∈Xxk∈A

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s)) + log Ω

]
E2k,i

≷
E1k,i

0.

Both optimization problems in (9) address the same problem
with different regions in the domains considered. Through the
decision with respect to E1k,i and E2k,i, both minimizations
can be summarized into one while this implies a decision to-
wards E1k,i or E2k,i. Minimizing over Xxk=0∪Xxk∈A = AK0
shows that the previously K different optimization problem
now turn be be equal to each other. In turn, we can get the
result of the estimated events E1k,i and E2k,i by considering
the elements of the optimal argument ŝ that optimizes

ŝ = arg min
s∈AK0

‖yi−Ts‖22 +‖s‖0 2σ2
n log

(
Ω

1− pa
pa/|A|

)
︸ ︷︷ ︸

λ

. (10)

Here the kth element ŝk indicates the estimation of E1k,i
or E2k,i with respect to the test defined in (9). Moreover, λ

reflects the a priori knowledge that is available to the detector.
The activity estimation is shown to be a direct application
of per-node activity Log-Likelihood ratios (5) where the
decision threshold separating between activity and inactivity
is determined by the quotient of the Bayes-Risk factors and
summarized in Ω.

Remark 1: The role of Ω can be seen very clearly by
comparing (5) with (10). Assume Ω � 1 then log 1

Ω � 0
and the detector decides hypothesis E2 as long as the activity
LLR is greater than log 1

Ω , which will be the case as long
as Ω is sufficiently large. In (10), Ω is linearly connected
to the sparsity promoting l0 norm and controls the cost for
estimating non-zero symbols. if Ω is sufficiently large, the
all zero vector will be always be the optimal value of the
optimization problem. In summary, Ω allows to move the
decision threshold for the activity Log-Likelihood between
deciding more likely in favor of inactivity Ω > 1 or deciding
more likely in favor of activity Ω < 1.

Having (10) solved for a whole frame allows to concatenate
the vector estimates column wise to the matrix Ŝ ∈ AK×L0

where each row contains estimates for the events E1k and
E2k. If the k, ith element of Ŝ, ŝk,i ∈ A, then the detector has
hypothesized E1k,i if ŝk,i = 0, the detector has hypothesized
E2k,i. Knowing that (in)active nodes repeat their selected
activity pattern L times (2) suggests to process the rows of
Ŝ with a majority criterion for hypothesizing E1k or E2k
on a per-frame basis. Estimation is done by making use of
the indicator function 1A (·) which is one if the argument is
contained in A and zero else. We define the majority criterion
as

ωk =

{
1
Lλ if

∑L
i=1 1A (ŝk,i) ≥ L

2

Lλ if
∑L
i=1 1A (ŝk,i) <

L
2

, 1 ≤ k ≤ K. (11)

As (11) shows, we setup a vector ω where the kth element
is the scaled version of the a priori assumption λ and the
scaling is dependent on the estimated node activity on a frame
observation.

C. Data Detection

In the following we use the vector ω, providing information
about the activity patterns, for estimating the data. This is done
by solving a problem similar to (10) with modified penalty
term

x̂i = arg min
x∈AK0

‖yi −Tx‖22 +

K∑
k=1

1A (xk)ωk (12)

As (12) shows, each element contained in xk is charged with
its individual prior ωk and sparsity is promoted only for node k
if ωk is large. This data detector directly uses the result of the
activity estimation for the data detection in a way that nodes
that were identified to be most likely active are preferred to
be considered to be active at data detection.

D. Implementation via Modified Sphere Decoder

In the following we first show how (10) can be implemented
via sphere decoding, the implementation of (12) is analogous



and shown later. As we address under-determined systems in
our analysis, the first step is to regularize the system matrix
T to be fully or even over-determined. To do so, we restrict
ourself to constant modulus modulation alphabets A, i.e.,
|xi| = 1 ∀xi ∈ A such as PSK. With this restriction, it is
possible to replace the penalty term based on the l0 norm
by any norm ‖s‖0 = ‖s‖1 = ‖s‖22 ⇔ |sk| = 1 ∀k which
reformulates (10) to

ŝ = arg min
s∈AK0

‖yi −Ts‖22 + ‖s‖22 + [λ− 1]︸ ︷︷ ︸
Θ

‖s‖0 (13a)

ŝ = arg min
s∈AK0

∥∥∥∥[yi0K
]
−
[
T

IK

]
s

∥∥∥∥2

2

+ Θ‖s‖0 (13b)

Sphere decoding relies on an accumulating metric in the
sequence of estimates symbols, which is clearly fulfilled by
the l2 and the l0 norm. However, for Θ < 0, (13) has to be re-
formulated. Without changing the optimization problem, (13)
is rewritten such that the penalty term remains positive even if
Θ < 0 holds. The key point is that we subtract the magnitude
of Θ and add the constant |Θ|K to the problem. After re-
arranging, [K − ‖s‖] can be written as a sum of indicator
functions 10 (·), which returns a one if the argument is zero
and a zero otherwise. For Θ < 0 we obtain

ŝ = arg min
s∈AK0

∥∥∥∥[yi0K
]
−
[
T

IK

]
s

∥∥∥∥2

2

− |Θ|‖s‖0 + |Θ|K

ŝ = arg min
s∈AK0

∥∥∥∥[yi0K
]
−
[
T

IK

]
s

∥∥∥∥2

2

+ |Θ| [K − ‖s‖0]

ŝ = arg min
s∈AK0

∥∥∥∥[yi0K
]
−
[
T

IK

]
s

∥∥∥∥2

2

+ |Θ|
K∑
k=1

10 (sk)

ŝ = arg min
s∈AK0

‖y′i −T′s‖22 + |Θ|
K∑
k=1

10 (sk) , (14)

where the penalty term is always positive. Comparing (14)
and (13) shows that the penalty term in both problems can be
summarized as

f (s,Θ) =

{∑K
k=1 Θ1A (sk) , if Θ ≥ 0,∑K
k=1 |Θ|10 (sk) , if Θ < 0,

(15)

yielding

ŝ = arg min
s∈AK0

‖y′i −T′s‖22 + f (s,Θ) , (16)

where f (·, ·) is always positive and reflects the penalty term.
Note that (16) can also be used for solving (12) by simply
following the steps above and using f (x,ω − 1K), where 1K
is a vector containing only ones.

Applying the skinny QR [11] decomposition on the aug-
mented system description (14) results in T′ = QR with
Q ∈ RM+K×K being a matrix with orthonormal columns
and R ∈ RK×K being an upper triangular matrix. Filtering
the received vectors ỹi = Qyi leads to

x̂ = arg min
x∈AK0

‖ỹi −Rx‖22 + f (x,Θ) . (17)

The problem (17) is straightforward to solve by common
sphere decoder implementations. For the sake of space reasons
we omit the algorithmic description of the utilized Sphere
Decoder and refer the reader to [12].

IV. SIMULATIVE RESULTS

A. Setup

In the following, we investigate the performance for an ex-
emplary multi-user uplink system. In particular, we investigate
a Multi-User Code Division Multiple Access (CDMA) System,
where a set of K nodes accesses the wireless channel via
CDMA transmitting data to a central aggregation node [13].
As stated in Section II, we assume a sporadic synchronous
frame based medium access of the nodes parametrized by the
per node activity probability pa. In the following we further
assume that the nodes are synchronous at chip level, which is
not a general restriction as shown in [14]. Moreover perfect
Channel State Information is assumed at the aggregation node,
which could, e.g., be obtained via a training phase at the
beginning of each frame or by random coding inspired tech-
niques as introduced in [15]. Each node spreads its modulation
symbols to a CDMA chip sequence of length N . These chips
are transmitted over a frequency selective Rayleigh fading
channel with length of Lh chips. We model the input-output
relation for this system by (1), where T ∈ RN+Lh−1×K

summarizes spreading and convolution with the underlying
frequency selective channel.

B. Performance Analysis

The performance is investigated in a fully loaded N = K
and overloaded N < K CDMA setup. For comparison,
we also apply symbol-by-symbol Bayes-Risk MAP detection
from [6]. The parameters of the simulation setup are sum-
marized in Table II. Fig. 2 compares the overall symbol

Simulation Parameters
Number of Nodes K = 20

Frame-length L = 100 symbols
Spreading Gain 1 ≤ N ≤ 20

Length of Channel Impulse Resp. Lh = 4 chips
Channel Type real valued block Rayleigh Fading

Activity Probability pa = 0.2
Modulation Type BPSK

TABLE II
SIMULATION PARAMETER

error rate of the Bayes-Risk two step detector with symbol-
by-symbol Bayes-Risk detection. The overall symbol error rate
summarizes activity and data errors, i.e., x̂ 6= x. We see that
overloading the system from N = 20 to N = 10 leads to
negligible performance losses at the aggregation node. Fig. 2
also shows the extreme case N = 3 where the system is highly
overloaded, leading to significant losses but, however, the de-
tector is still capable of estimating the activity and the data of
the nodes correctly. The performance gain of performing frame
based detection is approx. 3dB compared to symbol-by-symbol
Bayes-Risk MAP detection for N = 10. The performance
gains of two step processing compared to symbol-by-symbol
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Fig. 3. Comparison of Activity Error rates at SNR = 18 dB for varying
spreading sequence length N at Ω = 1

MAP over N can be observed in Fig. 3. The error rates
are shown at a fixed SNR = 18 dB while the spreading
sequence length varies from 1 ≤ N ≤ 20. Two step based
detection outperforms symbol-by-symbol MAP detection for
all simulated spreading sequence length N . Additionally, two
step detection converges faster to a lower error rate. In the
following we investigate the impact of the Risk quotient Ω
by investigating the Receiver Operating Characteristic (ROC).
With respect to Table I, ROC plots the True Active Rate vs.
the False Active Rate for different SNRs. The optimal detector
reaches the point (0|1) at high SNR. Of specific interest is the
path from low SNR to (0|1) showing if the detector allows
a low False Active rate (FAr) and can be considered to be
conservative or if the detector is more liberal having a high
True Active rate (TAr) at the cost of a also high FAr. We
see that while changing Ω, different detector profiles can be
achieved and in a practical system Ω has to be controlled by
higher layers such that certain error rates are met. Moreover
it might be useful to change Ω over the SNR to adaptively
choose optimal performance.

V. CONCLUSION

This paper derives a two stage detector that estimates
user activity in a multi-user framework based on frame-wise
Bayes-Risk MAP detection. This detector takes the risk for
erroneous activity detection as a free parameter into account
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Fig. 4. Receiver Operating Characteristic (ROC) parametrized by Bayes-Risk
quotient Ω

and outperforms symbol-by-symbol detection by approx. 3 dB.
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