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Abstract—Performing joint activity and data detection has
recently gained ubiquitous attention for reducing signaling over-
head in multi-user Machine-to-Machine Communication systems.
To this end investigations on the application of Compressed
Sensing have focused on estimating data and node activity jointly
in scenarios where the per node activity is very low. The focus
of this paper is to enhance the performance of state of the art
detectors by the utilization of soft information. In particular we
provide a formulation of activity Log-Likelihood ratios, that we
utilize to improve the activity detection.

I. INTRODUCTION

Machine Type Communication (MTC) is a fast growing
field which constantly raises new demands on existing commu-
nication systems. Compared to human driven communication,
MTC is quite often sporadic and of very low data rate making
extensive signaling and complex scheduling inappropriate [1],
[2]. Recent research has shown how signaling and scheduling
complexity can be reduced by physical layer joint activity
and data detection [3]–[5]. Physical layer joint activity and
data detection assumes a multi-user uplink network, where
nodes sporadically transmit data to a central aggregation node
for further processing. Given some knowledge about the node
activity, the detector blindly estimates the set of active nodes
and the data. The reliability of the activity detection is crucial
for the data-detection as erroneous activity detection strongly
impacts the overall performance. Improving the performance
at the activity detection is therefore a major problem in joint
activity and data detection based systems.

This paper improves symbol-by-symbol joint activity and
data detection [4] by utilizing soft information concerning
the node activity. With attention to frame-wise processing we
employ a scenario where nodes desire to transmit frames of
data sporadically to a central aggregation node. Each node
is assumed to be active only with a low probability, making
the multi-user signal at the aggregation node sparse. In this
setup we make use of the knowledge that nodes are either
active or inactive for the duration of a whole frame. With
this information we first extract activity Log-likelihood ratios
(LLRs) indicating whether a node was more likely active
or inactive. Second, we use these activity LLRs as a priori
knowledge at the blind activity and data detector yielding a
two stage detector. The investigations in this works combine
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Compressed Sensing problems with the framework of soft
information.

As we show at an exemplary simulation setup, our two
stage detector outperforms symbol-by-symbol joint activity
and data detection. Moreover, it can be shown that this
two stage detection scheme performs very reliable, as the
rate of nodes that is wrongly estimated to be active nearly
vanishes. With the knowledge of a sparse multi-user signal,
we generalize our scheme for under-determined systems where
the number of variables exceeds the number of observations.
As a major result, it can be shown that to some degree
of under-determinedness the performance of this detector is
nearly preserved.

II. SYSTEM MODEL

We start by formulating a general Machine-to-Machine
(M2M) uplink communication model where nodes desire to
transmit a frame of data to a central aggregation node. The
transmissions are assumed to be synchronized on frame level.
More specifically the system consists of K nodes that transmit
a frame consisting of L symbols to a central aggregation point.
Motivated by smart-metering and industrial applications [6]
each nodes transmits only occasionally and the probability
that the kth node starts at the beginning of a frame is pa.
If a node is active, it transmits a frame of L consecutive data
symbols modulated by a modulation alphabet A, which can
be, e.g., PSK. If a node is inactive the node does not access
the medium and keeps silent for the duration of the whole
frame. The detector models inactive nodes as transmitting
zeros instead of modulation symbols and uses an augmented
alphabet A0 = A ∪ {0} for detection.

This model interprets the set of nodes at any time instance
as transmitting symbols from the augmented alphabet A0.
Stacking the symbols at time instance i, 1 ≤ i ≤ L, results in
the multi-user signal vector xi ∈ AK0 . Concatenating L multi-
user vectors into a frame yields the matrix X ∈ AK×L0 where
the kth row xk̄ contains L consecutive symbols from node
k. Without restricting to any specific communication scheme,
we assume a transmission over a wireless channel that can be
expressed via the linear input-output relation.

Y = TX + N. (1)

Here, Y ∈ RM×L is the matrix of observations, T ∈ RM×K
summarizes the channels from the nodes to the aggregation
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Fig. 1. Proposed two stage detector, which first estimates the set of active
nodes and then estimates their data.

point and any type of medium access, e.g., Code division
Multiple Access. The matrix N ∈ RM×L contains i.i.d.
zero-mean white Gaussian noise samples with variance σ2

n

The previously introduced activity model allows to distinguish
between two disjoint events modeling the node activity on a
frame basis

E1 : xk̄ ∈ AL → Node is active over frame (2a)

E2 : xk̄ = 0L → Node is inactive over frame, (2b)

with probabilities Pr (E1) = pa and Pr (E2) = 1 − pa. In
the following we make use of the knowledge about the events
E1 and E2 and extract soft information concerning the node
activity from a frame of observations Y.

III. L-VALUE BASED ACTIVITY ESTIMATION

A. Overview of Frame Wise Processing

Given a frame of observations, this section focuses on
estimating the set of active nodes correctly. Previously, MAP
detection has been employed on a symbol-by-symbol basis
to jointly estimate activity and data [4], [7]. MAP detection
could be extended for frame based systems which is due to the
enormous complexity infeasible. However, we point out that
symbol-by-symbol MAP detection fully neglects the fact that
nodes are either active or inactive for the duration of a whole
frame. Utilizing this knowledge can be used to improve the
performance of joint activity and data detection.

In this paper we propose a two step detector outlined
on Fig. 1 for separating activity and data detection. First,
we calculate soft information concerning the node activity
over a whole frame, thereby exploiting E1 and E2. Second,
this knowledge is provided as a-priori information to a data
detector, which performs symbol-by-symbol MAP detection
over the frame.

The activity soft-information of the whole frame can
be determined by first calculating activity LLRs for each
time instance i and then combining these for the whole
frame. For each source symbol, the corresponding activ-
ity LLR gives an indication for the likelihood function
L (xk,i) = log (Pr (xk,i = 0) /Pr (xk,i ∈ A)). Given the activ-
ity LLRs for a whole frame L (X), the node specific activity
LLR can be obtained by summing up the activity LLRs for
each node over a whole frame, i.e., summing over the columns
in L (X). This gives a reliable and robust per node activity
LLR, which can be utilized as a-priori information for data
detection.

B. Activity Log-Likelihood Calculation

With respect to the model given in (1), we now outline
the processing steps for activity LLR estimation. The activity
LLRs have to be calculated for each element xk,i via marginal-
ization. In the following we denote the set of K dimensional
vectors with elements from the set A0 where the kth element
is equal to ν as Xxk=ν = {x ∈ AK0 : xk = ν}. Given a vector
observation at time instance i, yi = Txi the activity LLR of
the kth node at this time instance can be cast as a Generalized
Likelihood Ratio Test (GLRT) [8] between two marginalized
distributions

L (xk,i) = log

∑
s∈Xxk=0

p (yi|s) Pr (s)∑
s∈Xxk∈A

p (yi|s) Pr (s)
. (3)

With the formulation (3) we interpret the node activity as
a binary hypothesis problem, i.e., node is active or inactive
corresponding to a symbol-by-symbol interpretation of the
events E1 and E2, respectively. Note, that the hypothesis for
node activity constitutes a composite hypothesis involving all
possible transmitted modulation symbols from the alphabet A.
With (1), the likelihood function p (yi|s) can be written as

p (yi|s) ∝ exp

(
− 1

2σ2
n

‖yi −Ts‖22
)
. (4)

Considering (4), we see that (3) evaluates a sum including
O
(
|AK |

)
summands which leads to a high computational

effort, especially if K is large. The sum in (3) over exponential
terms can be simplified by utilizing the so called max-log
approximation [9] and thus turning the evaluation of the sum
into an optimization problem yielding

L (xk,i) ≈ min
s∈Xxk∈A

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s))

]
(5a)

− min
s∈Xxk=0

[
1

2σ2
n

‖yi −Ts‖22 − log (Pr (s))

]
. (5b)

Using the activity model (2) and the corresponding event
probabilities, the a-priori probability for the vector hypothesis
s ∈ AK0 reads

log (Pr (s)) = log

(
(1− pa)

K−‖s‖0
(
pa
|A|

)‖s‖0)

⇒ log (Pr (s)) ∝ −‖s‖0 log

(
1− pa
pa/|A|

)
. (6)

Here, ‖s‖0 is the zero norm and simply counts the number
of unequal zero elements contained in s [10]. Inserting (6)
into (5) yields the max-log approximated activity LLR

L (xk,i) ≈

min
s∈Xxk∈A

[
1

2σ2
n

‖yi −Ts‖22 + ‖s‖0 log

(
1− pa
pa/|A|

)]
− min

s∈Xxk=0

[
1

2σ2
n

‖yi −Ts‖22 + ‖s‖0 log

(
1− pa
pa/|A|

)]
. (7)

The regularization term λ = log
(

1−pa
pa/|A|

)
can be interpreted

as a sparsity promoting term and the value of λ determines



how strong sparsity in s is promoted. It can observed that
a convex relaxation of (7), i.e., replacing the zero norm
by the l1-norm and allowing continuous alphabets, leads to
the so called least absolute shrinkage and selection opera-
tor (LASSO) which is commonly used for solving under-
determined Compressed Sensing problems [11] [12].

C. Implementation via Modified Sphere Decoder

Before describing the processing of the activity LLRs fur-
ther, we briefly outline the calculation of the activity LLRs
via a modified Sphere Decoding approach. Subsequently, it is
shown how the second summand of (7) is solved via Sphere
Decoding, the first summand is analogous and thus omitted.
In the following we restrict ourselfs to a constant modulus
modulation alphabet A, i.e., |xi| = 1 ∀xi ∈ A such as Phase
Shift Keying (PSK). With this restriction, it is possible to
replace the penalty term based on the zero norm by any norm
and we have

λ‖s‖0 = ‖λs‖1 = ‖
√
λs‖22 ⇔ |sk| = 1 ∀k. (8)

This allows reformulating the optimization (7) problem to

min
s∈Xxk∈A

1

2σ2
n

‖yi −Ts‖22 + ‖s‖22 + [λ− 1] ‖s‖0 (9a)

min
s∈Xxk∈A

1

2σ2
n

∥∥∥∥[yi
0K

]
−
[
T

IK

]
s

∥∥∥∥2

2

+ [λ− 1]︸ ︷︷ ︸
Θ

‖s‖0 (9b)

Sphere Decoding relies on an accumulating metric in the
sequence of estimated elements. This can only be guaranteed
if and only if Θ ≥ 0 holds. Without changing the optimization
problem, (9) is rewritten such that the penalty term remains
positive even if Θ < 0 holds. The key point is that we subtract
the magnitude of Θ and add the constant |Θ|K to the problem.
After re-arranging, [K − ‖s‖] can be written as a sum of
indicator functions 10 (·), which returns a one if the argument
is zero and a zero otherwise. For θ < 0 we obtain

min
s∈Xxk∈A

1

2σ2
n

∥∥∥∥[yi
0K

]
−
[
T

IK

]
x

∥∥∥∥2

2

− |Θ|‖s‖0 + |Θ|K

min
s∈Xxk∈A

1

2σ2
n

∥∥∥∥[yi
0K

]
−
[
T

IK

]
x

∥∥∥∥2

2

+ |Θ| [K − ‖s‖0]

min
s∈Xxk∈A

1

2σ2
n

∥∥∥∥[yi
0K

]
−
[
T

IK

]
x

∥∥∥∥2

2

+ |Θ|
K∑
k=1

10 (xk)

min
s∈Xxk∈A

1

2σ2
n

‖y′i −T′s‖22 + |Θ|
K∑
k=1

10 (xk) , (10)

where the penalty term is always positive and can be summa-
rized as

f (s,Θ) =

{∑K
k=1 Θ1A (sk) , if Θ ≥ 0,∑K
k=1 |Θ|10 (sk) , if Θ < 0.

(11)

Here, f(·) is a always positive function. Applying the skinny
QR [13] decomposition on the augmented system descrip-
tion (10) results in T′ = QR with Q ∈ RM+K×K being
a matrix with orthonormal columns and R ∈ RK×K being

an upper triangular matrix. Filtering the received vectors
ỹi = Qyi leads in combination with the QR decomposition
on (10) to

min
s∈Xxk∈A

1

2σ2
n

‖ỹi −Rs‖22 + f (s,Θ) . (12)

For the sake of space reasons we omit the algorithmic descrip-
tion of the utilized Sphere Decoder.

The key point is to consider solutions that lie within an
ellipsoid around the received vector and adaptively decrement
the search radius d2 until the optimal value has been attained.
The vector optimization problem (12) is thereby decomposed
into K coupled scalar optimization problems. This method
can only succeed if each scalar optimization problem is
strictly positive. Eq. (13) exemplary shows the scarlarized
optimization problem (12).

d2 ≥ 1

2σ2
n

‖ỹi −Rs‖22+f (s) =

1

2σ2
n

K∑
u=1

(
ỹi,u−

K∑
v=1

ru,vsv

)2

+f (su, θ) (13)

With f (·; ·) being always positive, allows for implementation
via Sphere Decoding [14].

At this point it should be noted that even though Sphere
Decoding is a quite efficient algorithm for solving the MAP
problem, its runtime can only be bounded to be exponential on
the dimensionality of the problem solved [15]. Besides Sphere
Decoding, there exists a variety of sub-optimal algorithms that
nearly achieve the performance of Sphere Decoding in polyno-
mial time. The most prominent candidates are are Successive
Interference Cancellation and K-Best detection [16].

D. Activity LLR Processing and Data Detection

Given a frame of observations Y, the calculation of activity
LLRs produces the matrix L (X) ∈ RK×L, where the (k, i)th
entry L (xk,i) denotes the activity LLRr of the the kth node
at time instance i and corresponds to a solution of (5). Note
that these LLRs only give an indicator for the activity of a
node without giving any indication for the transmitted data
itself. We decode the node specific activity pattern by summing
over the rows of L (X) yielding a vector λ ∈ RK whose
entries correspond to the estimated frame-wise activity LLRs
for the K nodes over one frame. Here, the kth element λk
corresponds to the activity LLR of the kth node providing an
estimate if the kth node was more likely active or inactive for
the duration of the considered frame. In particular the sign
of the kth element gives an estimator for E1 or E2 and the
magnitude the reliability of the estimation.

As shown in Fig. 1 we provide the vector containing the
node specific activity LLRs as a priori information to a
symbol-by-symbol data detector [7]. The processing is as
follows: the vector Θ = λ−1K is calculated and subsequently
used in a Sphere Decoder as penalty term. Again, f (·; ·) can



be used to handle the regularization and we have to solve

x̂i = arg min
x∈A0

1

2σ2
n

‖ỹi −Rx‖22 +

K∑
k=1

f (sk,Θk) . (14)

Solving (14) corresponds to the symbol-by-symbol MAP es-
timate for the data augmented by frame wise activity LLRs
as a priori information. Note that (14) can be implemented
via Sphere Decoding again. Solving (14) L times gives the
estimate for the complete data frame X̂ with taking the events
E1 and E2 into regard.

IV. SIMULATIVE RESULTS

A. Setup

In the following, we investigate the performance for an ex-
emplary multi-user uplink system. In particular, we investigate
a Multi-User Code Division Multiple Access (CDMA) System,
where a set of K nodes accesses the wireless channel via
CDMA transmitting data to a central aggregation node [17].
As stated in Section II, we assume a sporadic synchronous
frame based medium access of the nodes parametrized by
the per node activity probability pa. In the following we
further assume that the nodes are synchronous at chip level,
which is not a general restriction as shown in [18], [19].
Moreover perfect Channel State Information is assumed at the
aggregation node, which could, e.g., be obtained via a training
phase at the beginning of each frame [20] or by random
coding inspired techniques as introduced in [21]. Each node
spreads its modulation symbols to a CDMA chip sequence
of length N . These chips are transmitted over a frequency
selective Rayleigh fading channel with length of Lh chips. We
model the input-output relation for this system by (1), where
T ∈ RN+Lh−1×K summarizes spreading and convolution
with the underlying frequency selective channel. To ensure
fair comparisons, spreading sequences are normalized to have
the same power such that the effective SNR does not depend
on the spreading sequence length.

B. Performance Analysis

In the following, the performance is investigated in a fully
loaded N = K and overloaded N < K CDMA setup. For
comparison, we also apply symbol-by-symbol MAP detection
as introduced in [7]. This detector simply estimates each
source vector xi based the activity probability pa without
taking E1 and E2 into account and solves (14) L times.
The parameters of the simulation setup are summarized in
Table I. As the presented detector mainly focuses on enhancing

Simulation Parameters
Number of Nodes K = 20

Frame-length L = 100 symbols
Spreading Gain 1 ≤ N ≤ 20

Length of Channel Impulse Resp. Lh = 4 chips
Channel Type real valued block Rayleigh Fading

Channel State Information Perfect
Activity Probability pa = 0.2

Modulation Type BPSK

TABLE I
SIMULATION PARAMETER
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Fig. 2. Comparison of activity error rate of two step detector and symbol-
by-symbol MAP detector

the activity detection by calculating activity LLRs, we start
by investigating the performance of the activity detection for
different spreading sequence length N . The activity error rate
is simply the summation of false alarm and missed detection
errors yielding

η = E
(
|{x̂ ∈ A : x = 0}|+ |{x̂ = 0 : x ∈ A}|

KL

)
. (15)

Figure 2 shows the activity error rate η for different length
of spreading sequences. Decreasing the length from N = 20
down to 10 obviously does not affect the system perfor-
mance significantly. Even though the system is overloaded,
the detector is still capable of correctly estimating the set of
active nodes. Overloading the system further, N = 5 and
N = 3 leads to losses regarding the activity detection. For
comparison, Fig. 2 also shows the performance of a symbol-
by-symbol MAP detector [7]. The performance is exemplary
shown for a system with a spreading sequence length of
N = 10. The gain of the novel two step detection is quite
significant and accounts to approximately 5 dB performance
gain compared to symbol-by-symbol MAP detection. Figure 2
shows the activity error rate which is composed of false alarm
and missed detection errors. However, in our simulation we
observed that the false alarm error rate is very low, i.e.,
< 10−3 for all our simulations. For practical considerations it
is therefore justifiable to interpret the curves on 2 as missed
detection rates.

In the following we investigate the impact of the frame
length L on the performance of the activity detection. The two
step detector gains performance by utilizing the knowledge
of frame-wise activity of the nodes in the system. Figure 3
shows the dependence of the activity error rate on the frame
length L. The simulation parameters are the same as outlined
in I. The spreading sequence length is chosen to N = 10
and the SNR is 20 dB. Most significantly, huge performance
gains are already obtained for small frame lengths. A frame
length of L = 20 is nearly sufficient to significantly increase
the performance of the two-step detector compared to symbol-
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by-symbol MAP detection which does not utilize frame-wise
node activity. Beyond frame lengths of L = 20, gains are
nearly negligible, showing that reliable activity detection can
already be achieved with short frames of only a few symbols.

The performance gains of two step processing compared to
symbol-by-symbol MAP over N can be observed in Fig. 4.
The error rates are shown at a fixed SNR = 18 dB while the
spreading sequence length varies from 1 ≤ N ≤ 20. Two
step based detection outperforms symbol-by-symbol MAP
detection for all simulated spreading sequence length N .
Additionally, two step detection converges faster with a gain
of nearly a decade at the SNR considered.

V. CONCLUSION

This paper has presented a detector that estimates user
activity in a multi-user framework based on soft information
about the frame activity of the users. We have presented a two
step detector, where the first stage estimates the activity Log-
Likelihood ratios concerning the activity of the nodes in the
system. In a second stage, symbol-by-symbol MAP detection
is performed and the activity LLRs are utilized as a priori
information at the detector. It could be shown that utilizing

this type of prior information outperforms symbol-by-symbol
MAP detection. Additionally it could be shown that most of
the performance gains are obtained for small frame length
already.
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aware multiuser detection for machine to machine communication,” in
Second International Workshop on Machine-to-Machine Communication
at IEEE Globecom 2012, Anaheim, USA, Dec 2012.

[5] H. F. Schepker and A. Dekorsy, “Sparse Multi-User Detection for
CDMA transmission using greedy algorithms,” in 8th International
Symposium on Wireless Communication Systems (ISWCS), Aachen,
Germany, Nov. 2011, pp. 291 –295.

[6] B. Andrea, M. Dohler, J. Hernndez-Serrano, A. Kountouris, and
D. Barthel, “Low-Power Low-Rate goes Long-Range: the case for secure
and cooperative Machine-to-Machine communications,” in NETWORK-
ING 2011 Workshops. Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, vol. 6827, pp. 219–230.

[7] F. Monsees, C. Bockelmann, D. Wübben, and A. Dekorsy, “Compressed
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