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Abstract—In distributed networks several nodes aim to esti-
mate the signals broadcasted by the sources in a cooperative
fashion by exchanging information among neighboring nodes.
Consensus based estimation is a specific class of In-Network-
Processing (INP) techniques and the Distributed Consensus-
based Estimation (DiCE) algorithm is an efficient realization for
the Least Squares (LS) estimation problem. In this paper, we
modify the update functions of the DiCE algorithm by applying
Nesterov’s optimal gradient descend method leading to the novel
fast-DiCE algorithm. Furthermore, we extend the distributed
estimation algorithms with respect to the MMSE-criterion. The
performance of the discussed schemes will be evaluated consid-
ering two different applications: a cooperative sensor network
and the uplink of a small-cell mobile communication network.
The results indicate the improved convergence of the fast-DiCE
algorithm resulting also in a reduced communication overhead
among the cooperating nodes.

I. INTRODUCTION

The topic of consensus and cooperation has always been
discussed in the applications of cooperative networks [1]. A
variety of distributed consensus algorithms has been specifi-
cally applied to these cooperative networks, e.g., distributed
Wireless Sensor Networks (WSNs) [2], [3] or densely de-
ployed small cells mobile networks [4]. A common scenario
for the cooperative network is that a group of nodes (e.g.,
sensor nodes or base stations) is connected in a certain
topology (e.g. ring, mesh or random) via inter-node links.
A message is broadcasted from a source point to all these
nodes. The estimate of the common message can be obtained
locally at each node, but the estimate of the nodes may vary
due to the different channel conditions, so a consensus on this
broadcasted message is desired throughout the whole network.
A possible way to realize this, is that every node forwards
its local estimate to a central node, which reconstructs the
common message. But considering the system robustness, a
more reliable way, avoiding the failure of the central node is
that each node only exchanges, e.g., local estimates with its
neighbors for a number of iterations, and by doing so, the
common message can be recovered among all these nodes
cooperatively. Correspondingly, a variety of algorithms has
been proposed for this distributed processing in WSN [3], [5].
In [3], some distributed processing has been set up for the
consensus estimates with single hop exchange. But considering
the heavily directional communication between the nodes, the
overhead can be saved by the algorithm DiCE proposed in

[2], where each node broadcasts its own local estimates to
the neighbors to reduce the dedicated node to node trans-
mission. What we are interested in is a further reduction of
the overhead. From a mathematic perspective, this distributed
estimation can be viewed as a constrained convex optimization
problem. To solve such problems, a method named Alternating
Direction Method of Multiplier (ADMM) [6] was adopted by
the DiCE algorithm. But the ADMM can be further optimized
by an accelerated ADMM algorithm proposed in [7], which
is inspired by the optimal gradient descend method proposed
by Nesterov [8]. So referring to this accelerated method, we
have improved the DiCE algorithm and obtained our novel
algorithm fast-DiCE for cooperative communication. In this
paper, we will present its performance and also investigate
the behavior of both Zero-Forcing (ZF) and Minimum Mean
Square Error (MMSE) based distributed estimation algorithms
for selected scenarios.

The remainder of this paper is organized as follows. The
considered model is introduced in Section II and the consid-
ered approaches for signal estimation in the distributed net-
work are discussed in Section III. After recapping centralized
as well as local executed linear equalization schemes, the
DiCE algorithm is summarized and the modifications for fast-
DiCE are introduced. The performance of these approaches
are investigated in Section IV for two different applications.
The paper is concluded in Section V.

II. SYSTEM DESCRIPTION
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Fig. 1. A network with J nodes is receiving a message s broadcasted from a
common source. Each node exchanges information on s with its neighboring
nodes.



Fig. 1 shows a general scenario where an arbitrary message
vector s is observed by a network of J nodes. This network
of nodes is described by a geometric graph G := {J , E},
in which J := {1, ..., J} denotes the set of nodes and E
represents the set of edges for the linked nodes. For exchang-
ing information, each node j ∈ J can only communicate
with nodes in its neighborhood Nj ⊆ J . In this work it is
assumed that all inter-node links are ideal and time-invariant.
The impact of erroneous links has been investigated in [9].

It is assumed, that the message vector s is real-valued and
contains N elements. At each node j an observation vector
xj ∈ RM×1 of length M is achieved, which depends linearly
on the message s as indicated by the system equation

xj = Hjs + nj . (1)

Here, the disturbance is indicated by a real-valued matrix
Hj ∈ RM×N and nj denotes an additional Gaussian noise
term containing elements with variance σ2

n. Thus, (1) describes
a general multiple input multiple output (MIMO) system
and can be used to represent numerous applications like
multiple antenna point-to-point systems, multiuser scenarios,
and sensor networks. Without loss of generality, we assume
for the general system model continuous message vectors
s ∈ RN×1. However, discrete values are considered for
application scenarios discussed in Section IV as well.

Based on the observation vector xj each node can in princi-
ple estimate the message vector s separately. However, when
the rank of the disturbance matrix Hj is smaller than N , this
would lead to bad performance. In general, better estimation
quality compared to locally estimating the message s in each
node j can be achieved by processing all receive signals
xj , j ∈ J jointly. One possible way for joint processing is
achieved by forwarding all observations xj and all matrices Hj

to a central node and constructing the overall system model

x = Hs + n (2)

with the stacked observation vector x = [xT
1 , . . . , xTJ ]T ,

stacked matrix H = [HT
1 , . . . ,HT

J ]
T , and stacked noise vector

n = [nT
1 , . . . ,nT

J ]
T . The estimate can then be calculated

in the central node based on all observations. In order to
reduce the required communication overhead for forwarding
all local observations to the central node, distributed estima-
tion approaches are of particular interest as presented in the
subsequent section.

III. DETECTION SCHEMES

A. Linear Equalization

Based on the collected observations (2) the central node can
solve the Least Squares (LS) problem

ŝ = arg min
s
‖x−Hs‖2 (3)

achieving the estimate ŝ. The solution for (3) is given by the
well-known Zero-Forcing (ZF) linear equalizer

ŝZF = (HT H)−1HT x = H+x (4)

which filters the observation vector x with the Moore-
Penrose Pseudo-Inverse of the disturbance matrix H+ =
(HT H)−1HT x. It is well known, that the ZF equalizer suffers
from noise amplification and better results can generally
be achieved by applying the Minimum Mean Square Error
(MMSE) criterion. The MMSE criterion reduces the overall
estimation error and calculates as

ŝMMSE = (HT H + σ2
nIN )−1HT x (5a)

= (HT H)−1HT x = H+x , (5b)

with the augmented disturbance matrix H = [HT , σnIN ]T and
the augmented observation vector x = [xT , 01,N ]T [10]. As
can be seen in (5b), the MMSE equalization can be written
as a ZF solution with respect to the augmented disturbance
matrix H and the augmented received signal vector x.

In case each node contains at least as much observations as
unknown symbols, i.e. M ≥ N , each node may also perform
a local linear estimation with respect to (1). Thus, the local
ZF estimate at node j is given by

ŝj,ZF = (HT
j Hj)

−1HT
j xj = H+

j xj . (6)

and the MMSE solution corresponds to ŝj,MMSE = H+
j xj .

However, in general the estimates ŝj,ZF at the different nodes
will usually differ and the performance compared to the central
solution is worse.

B. DiCE Algorithm

The DiCE algorithm proposed in [2] solves the LS problem
(3) in a distributed fashion by information exchange among
neighboring nodes. The distributed processing is performed
by decomposing the central estimation problem into local
problems with the consensus constraint si = sj for i ∈ Nj ,
resulting in the consensus-constrained quadratic optimization
problem

{ŝj |j ∈ J } = arg min
{sj |j∈J}

J∑
j=1

‖xj −Hjsj‖2 (7a)

s.t. sj = si ∀ j ∈ J , i ∈ Nj . (7b)

According to the constraint (7b), the local estimate sj of
node j should be in an agreement with the estimates si of
its neighboring nodes i ∈ Nj . However, due to the direct
coupling of the estimates sj , j ∈ J , this set of local estimation
problems cannot be solved in parallel. In order to realize
a distributed calculation of the problem, auxiliary variables
zj are introduced at each node j for decoupling the local
estimates leading to the new constraint equation

s.t. zj = sj , si = zj ∀ j ∈ J , i ∈ Nj . (8)

In order to solve the underlying constrained optimization
problem, the linear distributed estimation is derived with the
help of the Augmented Lagrangian method (ALM) [11] and
Alternating Direction Method of Multipliers (ADMM) [6],



leading to the update equations for the local variables per
iteration at node j [2]

sk+1
j =

(
HT

j Hj +
|N+

j |
µ

IN

)−1

·

HT
j xj +

∑
i∈N+

j

(
1

µ
zik + λk

ji

) , (9a)

zk+1
j =

µ

|N+
j |

∑
i∈N+

j

[
1

µ
sik+1 − λk

ij

]
, (9b)

λk+1
ij =λk

ij −
1

µ

(
sk+1
i − zk+1

j

)
. (9c)

Here, the set N+
j = Nj ∪{j} contains the neighboring nodes

of node j and itself. sk+1
j and zk+1

j are the estimates at node
j after iteration k + 1 and λk+1

ij represent the Lagrangian
multiplier at node j.

By initializing the variables z0j = λ0
ij = 0 the first estimate

s1j at node j depends only on the local observation xj and the
disturbance matrix Hj

s1j =

(
HT

j Hj +
|N+

j |
µ

IN

)−1
·HT

j xj . (10)

After exchanging the local estimates among neighbors, each
node j determines the auxiliary variables according to (9b)
and shares these estimates again with its neighbors. Finally,
the Lagrangian multipliers are updated (9c) to prepare the
calculations in the next iteration. Thus, in each iteration the
local estimates sk+1

j and the auxiliary variables zk+1
j are

updated by considering information from the neighboring
nodes and the previous own estimates, i.e., taking information
from nodes i ∈ N+

j . Each update is afterwards broadcasted
again to these neighbors.

In contrast, the Lagrangian multiplier λk+1
ij could be cal-

culated at node j based on the locally available estimates
sk+1
i and zk+1

j . In a network with error-free inter-node links,
the exchange of these variables is not corrupted. Thus, the
Lagrangian multipliers do not have to be shared among the
neighboring nodes. However, if the exchange of local estimates
is not perfect (i.e., error-prone network), the convergence of
the DiCE algorithm can only be ensured by exchanging also
the Lagrangian multipliers. To this end, node j has to unicast
to each of its neighbors i ∈ Nj the variable λk+1

ij and has
to receive the variables λk+1

ji [9], [12]. In order to reduce
the required overhead for these unicast transmissions, the
recently published Reduced Overhead DiCE (RO-DiCE) omits
the exchange of Lagrangian multipliers using a approximated
update function [13]. After some iterations, all of the local
estimates will approximately be the same, and the local
estimates approaches the centralized solution for a sufficient
number of iterations. Please note, that an optimization of the
penalty term µ in (9) is beyond the scope of this paper and is
set to the constant value of 1 similar to [2].

In order to improve the estimation performance, the DiCE
algorithm can also be extended to the MMSE criterion by
considering the augmented disturbance matrix Hj and the
augmented observation vectors xj in (9).

C. Fast-DiCE Algorithm

In each iteration step of DiCE the local variables sj , zj
and λij have to be exchanged among the neighboring nodes
leading to a considerable communication overhead. In order to
increase the convergence speed and thereby reducing also the
communication overhead, we propose here a modification of
the DiCE algorithm by adopting Nesterov’s optimal gradient
descend method [8]. To this end, the underlying ADMM
approach is improved by predicting the auxiliary variables and
the Lagrangian multipliers as proposed by [7].

The main idea is to calculate at node j a predictor z̃k+1
ji

for the auxiliary variable of node i based on the two latest
received estimates zk+1

i and zki from node i by

z̃k+1
ji = zk+1

i + γk+1

(
zk+1
i − zki

)
. (11)

Thus, the newest estimate zk+1
i is basically extended by the

gradient of the auxiliary variable zk+1
i − zki weighted by the

step size γk+1. All predicted auxiliary variables z̃k+1
ji , i ∈ Nj ,

are then used for the next update of the local estimate sk+2
j

(12a). Similarly, predictors λk
ji for the Lagrangian multipliers

are calculated in the same way and used in the update
equations for sk+2

j and zk+2
j in (12a) and (12b), respectively.

Thus, the update equations for the novel fast-DiCE algorithm
are given by

sk+1
j =

(
HT

j Hj +
|N+

j |
µ

IN

)−1

·

HT
j xj +

∑
i∈N+

j

(
1

µ
z̃kji + λ̃

k

ji

) , (12a)
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µ
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∑
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[
1

µ
sik+1 − λ̃

k

ij

]
, (12b)

λk+1
ij =λ̃

k

ij −
1

µ

(
sk+1
i − zk+1

j

)
, (12c)

with the calculation of the predictors

z̃k+1
ji = zk+1

i + γk+1

(
zk+1
i − zki

)
, (13a)

λ̃
k+1

ji = λk+1
ji + γk+1

(
λk+1
ji − λk

ji

)
(13b)

and step size parameter in iteration k + 1 [8]

γk+1 =
αk − 1

αk+1
and αk+1 =

1 +
√
1 + 4α2

k

2
. (14)

By initializing α0 = 1 the step size γk takes the values listed
in Tab. I and is increasing from 0 up to 0.5. As the difference
between two consecutive estimates of the auxiliary variables
and the Lagrangian multipliers will be rather large, the step
size is chosen to be small. With an increasing number of



iterations, the difference will be reduced, so the step size
is increased to still achieve a prediction gain. As shown
by the authors in [7] the convergence rate of the ADMM
can be increased from O(k) to O(k2) by this Nesterov-type
modification.

TABLE I
PARAMETER αk AND STEP SIZE γk IN STEP k

k 1 2 3 4 5 8
αk 1.725 1.912 1.971 1.990 1.997 1.999
γk 0 0.379 0.463 0.488 0.496 0.499

By initializing the predictors as z̃0ji = λ̃
0

ji = 0 the fast-
DiCE algorithm achieves the same estimates s1j , auxiliary
variables z1j and Lagrangian multipliers λ1

ij at node j as
the DiCE algorithm (9) in the first iteration. Afterwards, the
predictors are updated according to (13) leading to z̃1ji = z1i
and λ̃

1

ji = λ1
ji due to the step size γ1 = 0. Correspondingly,

also the updates in the second iteration lead to the same results
as the DiCE algorithm. However, for k ≥ 2 the step size γk is
non vanishing such that the predictors z̃ij and λ̃ji from now
on depend on the last two latest received estimates for the
auxiliary variables and the Lagrangian multipliers.

Like the DiCE algorithm, once the local estimate sk+1
j ,

the auxiliary variable zk+1
j , and the multipliers λk+1

ij at node
j are updated according to (12), they are delivered to its
neighboring nodes i ∈ Nj . Based on these exchanged variables
the predictors z̃k+1

ji and λ̃
k+1

ji are then updated at every node
j ∈ J following (13) improving the estimation of the local
variables in the next iteration step.

It should be noted, that the predictors z̃ji and λ̃ji are
calculated locally in each node j and do not have to be ex-
changed among the nodes. Thus, the communication overhead
per iteration remains the same for fast-DiCE and DiCE. Nev-
ertheless, as demonstrated in the subsequent section, the fast-
DiCE algorithm requires fewer iterations to achieve the same
estimation quality as the DiCE algorithm. Correspondingly, the
overall communication effort as well as the latency is reduced
by this novel algorithm. However, for the fast-DiCE each node
j needs 2 · |N+

j | additional buffers for storing the auxiliary
variables and Lagrangian multipliers from the last iteration
and complexity per iteration is slightly increased.

IV. PERFORMANCE EVALUATION

In the following, the performance of the proposed fast-
DiCE algorithm will be compared to the DiCE algorithm by
investigating the estimation error and the bit error rate (BER)
with respect to the number of iterations for three different
scenarios. Furthermore, both approaches will be implemented
with respect to the ZF- and the MMSE-criterion and will be
compared also to the corresponding central and local linear
estimators.

A. Scenarios
In scenario A, a cooperative sensor network as depicted in

Fig. 2 is considered. Here, J = 6 sensor nodes each equipped

with nR = 4 antennas monitor one common source with nT =
2 transmit antennas resulting in a MIMO system with N =
nR = 2 input variables and M = nR = 4 output variables
per node j. For each link between the source and sensor j the
channel coefficients are assumed to be real valued and zero-
mean normal distributed with the variance σ2

j representing the
individual channel gains[

σ2
j

]
= [0.8 0.15 0.5 1 0.2 0.7] . (15)

Here, the message broadcasted from the source is assumed to
be zero mean, normal distributed with variance σ2

s = 1. A
fully connected sensor network without link errors is assumed
such that all sensors exchange erroneously messages with each
other.

Sensor 1

Sensor 2

Sensor 3

Sensor 4

Sensor 5

Sensor 6

Source

Fig. 2. Scenario A: Fully connected wireless sensor network where J = 6
sensors with nR = 4 receive antennas monitoring a source containing nT =
2 transmit antennas.

Scenario B considers an uplink scenario of a mobile com-
munication network with J = 3 small cells (SC), each
equipped with nR = 4 receive antennas as shown in Fig. 3.
The U = 4 users transmit uncoded BSPK messages simultane-
ously on the same frequency band by their nT = 2 antennas.
Thus, the source vector s ∈ AN comprises the N = U ·nT
transmit symbols of all users and

[
H(u−1) ·nT+1

j . . .Hu ·nT
j

]
denotes the channel coefficients between the receive antennas
at small cell j and the nT transmit antennas of user u.
Obviously, the local system equation (1) is underdetermined,
whereas the central system (2) achieved by collecting all
receive signal in a central node remains overdetermined. In
this scenario, the aim of the cooperating network of small
cells is to perform joint multiuser detection in a distributed
fashion. In the case of J = 3 SCs the full meshed backhaul
network reduces to a simple ring topology.

It is assumed, that the channel coefficients are again zero-
mean normal distributed with variance σ2

uj indicating the
channel gain between user u and small cell j. For scenario
B we assume

[
σ2
uj

]
=

 1 0.5 0.3 0.1

0.6 1 0.8 0.6

0.1 0.5 0.8 1

 . (16)

Scenario C equals scenario B but assumes channels with equal
gain, i.e.,

[
σ2
uj

]
= 13,4.
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Fig. 3. Scenario B &, C: U = 4 users each with nT = 2 transmit antennas
send messages simultaneously to J = 3 SCs in the uplink, where each SC
has nR = 4 receive antennas and all SCs are connected in a ring with each
other.

B. Estimation and Convergence Performance

In order to investigate the convergence behavior of the fast-
DiCE and the DiCE algorithm, the estimation performance
after iteration k is evaluated by means of the average Mean
Squared Error (aMSE). The aMSE is defined as the square
error between the local estimates skj and the message s
averaged over all receiving nodes j and realizations

aMSE(k) =
1

J

J∑
j=1

E{
∥∥s− skj

∥∥2} . (17)

The simulation will be conducted by means of the Monte Carlo
method, i.e., for each scenario, a large number of random
realizations of the message vectors s, the channel matrix Hj

and the noise vectors nj are considered. The ZF- and MMSE-
based fast-DiCE and DiCE algorithms are compared with the
central and local linear estimators based on the ZF and the
MMSE criterion. For the central estimation, the (17) simplifies
to aMSE = E{‖s− ŝ‖2}.
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Fig. 4. Averaged Mean Square Error (aMSE) for Scenario A at SNR = 5 dB

Fig. 4 shows the performance of all approaches for scenario
A and SNR = 5 dB. Compared to the local estimators, the
error is significantly reduced by the centralized solutions. As

the overall system is strong overdetermined (N = 2 input and
M · J = 24 output variables), almost no difference between
the central ZF and MMSE solution can be observed. The
aMSE of the DiCE and the fast-DiCE implementations in the
first iteration is slightly higher compared to the local MMSE
solution but converges to the centralized solution after some
iterations. The fast-DiCE implementation shows an improved
convergence behavior compared to DiCE approach.
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Fig. 5. Averaged Mean Square Error (aMSE) for Scenario B at SNR = 5 dB

For Scenario B the aMSE of all approaches is shown in
Fig. 5. As each local estimation problem is underdetermined
(N = U ·nT = 4 · 2 = 8 input and M = 4 output
variables), the local ZF and MMSE estimators can not achieve
sufficient results. By collecting all receive signals in central
node, an overdetermined system with M · J = 4 · 3 = 12
output variables is obtained leading to promising estimates
by the centralized solutions, and the MMSE criterion leads
to significant improvements compared to the ZF solution.
Overall, the fast-DiCE shows a better performance than DiCE
algorithm for both ZF and MMSE criterion. Additionally,
it can be seen in the figure that the aMSE curves of both
ZF-based distributed algorithms approach the central MMSE
solution and then return back to the central ZF solution after
certain iterations, and they drop even faster than the MMSE-
based algorithms within the first few iterations, which needs
to be further investigated.

Furthermore, we have investigated the convergence of fast-
DiCE and DiCE in another way by taking the gradient of the
Lagrangian cost function regarding the objective function (7a)
and the constraint (8) is as a stopping criterion [9], which
can indicate the convergence behavior of the distributed algo-
rithms. The simulation will be terminated when the stopping
criterion falls below a threshold, and accordingly the total
number of iterations for each simulation will be counted. The
value for the threshold should not be set too low otherwise
both fast-DiCE and DiCE will take many iterations to reach
the threshold and the difference becomes not obvious.

Regarding the convergence performance, Fig. 6 and Fig. 7



depict the cumulative density function (CDF) of the required
number of iterations for all distributed algorithms applied in
scenario A and B, respectively. It can be observed that in
both scenarios, the fast-DiCE always has a better performance
than DiCE. In general, fast-DiCE needs fewer iterations to
converge. But when we compare both MMSE- or ZF-based
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Fig. 6. Empirical cumulative density function (CDF) of required number of
iterations for terminating the simulation over 1000 random realizations for
Scenario A, at SNR = 5 dB
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Fig. 7. Empirical cumulative density function of required number of iterations
for terminating the simulation over 1000 random realizations Scenario B, at
SNR = 5 dB

estimation, approximately the same performance can be found
in scenario A at SNR of 5 dB. As shown in Fig. 6, the CDF
of MMSE-based distributed algorithms is only slightly faster
than the ZF-based algorithms, which perfectly matches with
the aMSE curves shown in Fig. 4. But in scenario B at the
same SNR, the MMSE-based algorithm outperforms the ZF-
based algorithm as the CDF shown in Fig. 7, where all of
MMSE-based simulations can be finished within 50 iterations

while the ZF-based needs a lot more iterations to terminate the
simulation for most runs, which is also corresponding to the
behavior of aMSE shown in Fig. 5. The CDF can only show
the convergence behavior of the algorithm, but it does not
reflect the estimation quality between MMSE and ZF-based
algorithms due to simple stopping criterion.

C. Bit Error Rate Performance

With regard to the bit error performance of all the algorithms
in scenario B and C. The uncoded BPSK messages transmitted
by the users are locally estimated and exchanged among the
SCs. After some number of k iterations according to the
distributed estimation algorithms, the local estimate sj is then
obtained by a hard decision at SC j. The bit errors are
then counted and averaged over all the SCs and realizations.
As a comparison, the bit errors for central ZF and MMSE
estimation are also counted.
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Fig. 8. Simulated averaged bit error rate (BER) of the algorithms for the
Scenario B at the first iteration

Fig. 8 depicts the BER performance of all algorithms at the
first iteration for the scenario B. It can be clearly seen that
a large gain is achieved by the central estimation compared
to the local estimation. Then look at the performance of the
distributed estimation algorithms, they are similar at the first
iteration. But when compared to the local-ZF they just achieve
a small gain at low SNRs and lose the gain at high SNRs. At
the second iteration as shown in Fig. 9, still no big difference
can be found among the distributed algorithms, but they start to
converge to the central MMSE solution according to the aMSE
curve shown above, and their performance has much improved
compared to the local estimation. After several iterations, the
performance of fast-DiCE will be better than DiCE as can be
seen in Fig. 10 for a fixed number of 30 iterations. In this
figure, the fast-DiCE has a much lower error floor than DiCE
due to its faster convergence. The error floor is formed because
of the insufficient number of iterations for the distributed
algorithms to converge at high SNRs (due to a more accurate
central solution). Thus less communication effort is required



−5 0 5 10 15 20 25
10−3

10−2

10−1

100

SNR in dB

B
E

R Central-ZF
Local-ZF
ZF-DiCE
ZF-fastDiCE
Central-MMSE
Local-MMSE
MMSE-DiCE
MMSE-fastDiCE

Fig. 9. Simulated averaged bit error rate (BER) of the algorithms for the
Scenario B at the second iteration

between SCs by using fast-DiCE compared to DiCE in order to
achieve the same performance. But with increasing of SNR,
approximately from 13 dB, the BER curve of MMSE-fast-
DiCE and ZF-fast-DiCE start to merge together while the
central MMSE and ZF still apart, since both MMSE- and
ZF-based algorithms behave similarly at first few iterations
as approaching to the central MMSE solution, therefore their
BER curves are overlapped in the high SNR range when the
number of iterations is not sufficient. As a comparison, we
also look at the performance of all algorithms for the scenario
C at the k = 30 iteration, which is shown in Fig. 11. It can be
seen that the performance of central estimation as well as the
distributed estimation are better than the results shown in Fig.
10 due to the good channel conditions, and because of that,
the error floors are lower, since fewer iterations are needed for
the distributed algorithm to converge. Besides, it can still be
found that the MMSE-fast-DiCE outperforms ZF-fast-DiCE at
low SNRs and has a better performance than MMSE/ZF-DiCE
at high SNRs.

V. CONCLUSION

In this paper, we presented an improved algorithm named
fast-DiCE that outperforms the previous DiCE algorithm for
In-Network-Processing. In this algorithm, two “predictors” are
introduced to optimize the update of the estimates in order to
accelerate the convergence of the distributed estimation, and
the overall communication overhead can be reduced through-
out all the receiving nodes without losing accuracy. Both
algorithms with respect to the MMSE and ZF equalization
have been investigated in two different example applications.
We showed that the fast-DiCE always has a better performance
than the DiCE, and the MMSE-based estimation shows a
faster convergence than ZF-based algorithms in general, but
a good stopping criterion needs to be investigated, which will
be done in future work. Besides, the fast-DiCE algorithm will
be investigated in an error-prone network where the inter-node
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Fig. 10. Simulated averaged bit error rate (BER) of the algorithms for the
Scenario B at k = 30 iterations
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Fig. 11. Simulated averaged bit error rate (BER) of the algorithmsfor the
Scenario C at k = 30 iterations

links are noisy and sparsely disconnected. The convergence
rate of fast-DiCE also needs to be investigated mathematically,
and the performance of fast-DiCE may be possibly further
optimized.
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