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C
loud computing draws signifi-
cant attention in the infor-
mation technology (IT) 
community as it pro-
vides ubiquitous on-

demand access to a shared pool 
of configurable computing 
resources with minimum 
management effort. It gains 
also more impact on the 
communication technology 
(CT) community and is cur-
rently discussed as an enabler 
for flexible, cost-efficient and 
more powerful mobile network 
implementations. Although 
centralized baseband pools are 
already investigated for the radio 
access network (RAN) to allow for 
efficient resource usage and advanced 
multicell algorithms, these technologies 
still require dedicated hardware and do not 
offer the same characteristics as cloud-computing 
platforms, i.e., on-demand provisioning, virtualization, 
resource pooling, elasticity, service metering, and multitenancy. 
However, these properties of cloud computing are key enablers for 
future mobile communication systems characterized by an ultra-
dense deployment of radio access points (RAPs) leading to severe 
multicell interference in combination with a significant increase 
of the number of access nodes and huge fluctuations of the rate 
requirements over time. In this article, we will explore the benefits 

that cloud computing offers for fifth-genera-
tion (5G) mobile networks and investigate 

the implications on the signal process-
ing algorithms. 

INTRODUCTION
The evolution toward 5G mobile 
networks is characterized by an 
exponential growth of traffic. 
This growth is caused by an 
increased number of user ter-
minals, richer Internet con-
tent, more frequent usage of 
Internet-capable devices, and 
by more powerful devices with 

larger screens. This implies also 
the need for more scaling possi-

bilities in mobile networks to han-
dle spatially and temporally 

fluctuating traffic patterns, terminals 
with different quality requirements, and 

more diverse services. Current mobile net-
works are not able to support this diversity effi-

ciently but are designed for peak-provisioning and typical 
Internet traffic. 

The use of very dense, low-power, small-cell networks with 
very high spatial reuse is a promising way to allow for handling 
future data rate demands [1], [2]. Small cells exploit two funda-
mental effects. First, the distance between the RAP and terminals 
is reduced, which increases the line-of-sight probability and 
reduces the path loss. Second, the spectrum is used more effi-
ciently because each RAP uses the same spectrum. Small cells 
complement existing macrocellular deployments that are required 
to provide coverage for fast-moving users and in areas with low 
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user density. In Third-Generation Partnership Project (3GPP) 
long-term evolution (LTE), small cells draw significant attention 
on both the physical and higher layer [3], [4], where impacts on 
the RAN protocol and system architecture are discussed. 

As networks become denser, intercell interference increases 
and interference scenarios become more complex due to multitier 
interference. Furthermore, the higher the deployment density, the 
higher the chance that a RAP will carry no or only low traffic-load 
due to spatial and temporal traffic fluctuations. Currently, 15–20% 
of all sites carry about 50% of the total traffic [5]. Centralized pro-
cessing permits to selectively turn RAPs on and off to address the 
spatiotemporal traffic fluctuations. In addition, it allows for effi-
cient interference avoidance and cancellation algorithms across 
multiple cells as well as joint detection algorithms. Centralized 
RAN (C-RAN) recently attracted attention as one possible way to 
efficiently centralize RAN processing [6]. In C-RAN, remote radio 
heads (RRHs) are connected through optical fiber links to a data 
center where all baseband processing is performed [7], [8]. Thus, 
by pooling baseband processing in baseband units (BBUs), central-
ization gains are achieved. However, BBUs are based on specialized 
hardware platforms utilizing digital signal processors (DSPs) [9]. 
As a long-term goal, it is beneficial to deploy cloud-computing 
platforms running on general-purpose hardware, leading to a 
cloud-RAN system as outlined subsequently in this article. 

Only fiber links are capable of supporting the necessary data 
rates between the RRH and the BBU. This constitutes the main 
drawback of C-RAN, i.e., it requires very high data rate links to 
the central BBU. In [8], the authors report a required backhaul 
(BH) transmission rate of 10 Gbit/s for time-domain LTE (TD-
LTE) with eight receive antennas and 20-MHz bandwidth. Due to 
the use of optical fiber, C-RAN deployments are less flexible as 
only spots with existing fiber access may be chosen or fiber 
access must be deployed, which is very cost-intense. Future 
mobile networks will deploy heterogeneous BH solutions that are 
optimized for different scenarios. This mix of BH characteristics 
will also imply a mix of more C-RAN solutions that require high-
capacity BH and more decentralized solutions compatible with 
BH solutions that introduce high latency and stronger through-
put constraints [10]. 

The RAN as a Service (RANaaS) concept is introduced in [11]. 
It addresses the deficiencies of C-RAN to allow for a centralization 
over heterogeneous BH. The main characteristics of RANaaS are 
the flexible assignment of RAN functionality between the RAPs 
and the central processor, the deployment of commodity hardware 
at the central processor, and the tight integration of RAN, BH net-
work, and central processor. In this article, we focus on the chal-
lenges and benefits of implementing signal processing algorithms 
on a cloud-computing platform. Hence, in the following, we refer 
to the concept of centralization toward commodity cloud-comput-
ing platforms as cloud-RAN. More details on the architecture 
design of the underlying 5G mobile network as well as fundamen-
tal concepts from medium access control (MAC) and network 
layer of the cloud-RAN concept are given in [11]. Further chal-
lenges in 5G mobile networks, which are beyond the scope of this 
article, are introduced in [2] and [12], among others. However, 

cloud-RAN will foster approaches currently under discussion for 
5G such as massive multiple-input, multiple-output (MIMO) and 
multiple radio access technologies. 

FLEXIBLE CENTRALIZATION THROUGH CLOUD-RAN 

FLEXIBLE ASSIGNMENT OF RAN FUNCTIONALITY 
A flexible assignment of RAN functionality can consider both 
the cloud-platform resource availability and the small-cell BH 
characteristics. In addition, cloud-computing platforms allow 
for the scalability that is required to cope with temporal and 
spatial traffic fluctuations in mobile networks. This scalability is 
a fundamental requirement to improve the utilization of mobile 
networks and to allow for an economically and ecologically sus-
tainable operation of mobile networks. 

Cloud-RAN is a disruptive technology in many ways and 
imposes new challenges on the signal processing in 5G mobile 
networks. Most importantly, it will exploit standard processor 
technology [general-purpose processors (GPPs)] to execute RAN 
functionality. By contrast, currently discussed C-RAN technology 
considers a baseband pooling approach where a large number of 
DSPs are provided at a central entity [8], [9]. Although this allows 
for resource sharing, C-RAN still uses specialized and expensive 
hardware and software. Hence, it is misleading to consider C-RAN 
as an example of cloud computing according to the IT definition 
by the U.S. National Institute of Standards and Technology [13]. 

Cloud-RAN will further foster scalable algorithms that are 
designed for cloud-computing environments and leverage massive 
parallelism. This implies that algorithms should not be simply 
ported to cloud-computing platforms but rather redesigned to gain 
from the available computing resources. Cloud-RAN allows for the 
deployment of algorithms that scale with the need for cooperation 
and coordination among the individual cells, i.e., depending on the 
traffic demand and user density, RAPs may be differently grouped 
or different algorithms may be deployed. In the following sections, 
this article provides more detailed examples for algorithms that 
benefit from an application to cloud-computing platforms. 

To enable cloud-RAN, it is necessary to have a system architec-
ture that provides the required interfaces without disruptive 
changes to an existing deployment. This architecture has been 
introduced in [11]. It does not imply changes to existing interfaces 
but introduces the concept of a virtual eNodeB (veNB). A veNB is 
composed of one or more RAPs, a cloud-computing platform, and 
the necessary BH links between these nodes. It maintains the 
same interfaces as a 3GPP LTE eNodeB (eNB) to maximize back-
ward-compatibility. This system architecture requires 1) that the 
functionality at the eNB can be decomposed into reassignable 
functions and 2) that each function can be assigned either to the 
central processor or local RAPs. Furthermore, a tight integration 
of RAN, BH, and central processor is required, e.g., through joint 
coding as introduced in [14]. 

OPPORTUNITIES OF CLOUD-RAN 
Cloud computing offers the ability of computational load balan-
cing to RANs. This allows for spending more computational 
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efforts on critical operations, e.g., in the case of interference 
scenarios or difficult channel conditions. In these scenarios, 
more advanced and computationally intense algorithms may be 
needed and could be executed in a cloud environment. By con-
trast, traditional implementations are hard real-time systems. 
Hence, a certain task such as decoding or scheduling is always 
executed within the same time window. 

A flexible assignment of functionality will also allow for shaping 
the signaling load on the BH connection. For instance, in the case 
of high-capacity, low-latency BH, the central processor may process 
directly in-phase/quadrature (I/Q) samples. In the case of higher 
latency and lower bandwidth on the BH, the central processor may 
only perform upper-layer functionality. This will require changes to 
the operation of the BH and the signal processing platform, and it 
may require changes to the RAN protocol stack. 

Cloud-RAN will open the door for many new applications in 
5G. It offers the possibility of using signal processing software ded-
icated to a special purpose based on the actual service. It reflects 
the diversity of services, use cases, and deployments through flexi-
bility and scalability of the signal processing platform. In addition, 
it may even take into account the complexity and abilities of ter-
minals during the processing of signals. Finally, cloud-RAN avoids 
the typical vendor lock-in as in current deployments that follow a 
similar development observed in the mobile core network, which 
may be implemented on cloud-platforms [15]. 

The flexible centralization of RAN functionality will impact the 
operation of the 3GPP LTE RAN protocol stack and may even be 
limited by dependencies within the protocol stack. Table 1 pro-
vides an overview of promising functions of the 3GPP LTE radio 
protocol stack, which may be considered for a partial centraliza-
tion. In general, the lower we place the functional split within the 

protocol stack, the higher the overhead and the more stringent 
BH requirements are. Centralizing functionality on the physical 
layer (PHY) allows for computational diversity that depends 
directly on the number of users per RAP. Due to temporal and spa-
tial fluctuations, the computational load can be balanced across 
cells. Central processing also allows for implementing multicell 
algorithms to avoid or exploit interference, e.g., intercell interfer-
ence coordination and cooperative multipoint processing [16]. 

FUNCTIONAL SPLIT 
In this subsection, we introduce several functional split options 
that determine the execution of processing in the RAP or in the 
cloud-platform and directly influence the required BH data rate. 
The discussion is focused on the uplink (UL) since its process-
ing load dominates the downlink (DL) processing. Detailed 
investigations of such splits have also been conducted in [17], 
but here we focus more on the opportunities of a flexible split. 
By relying on GPPs as opposed to dedicated hardware as used in 
the C-RAN concept, and through extensive use of function vir-
tualization, the envisioned architecture allows us to adapt the 
functional split flexibly in time (e.g., according to traffic 
demand) and location (e.g., depending on the density of the 
deployment). Figure 1 illustrates the principle LTE signal pro-
cessing chain of an UL receiver and different options of placing 
a functional split. Notice that similar shifts are also possible for 
DL processing as considered, e.g., in the context of precoding 
for massive MIMO systems in [18]. 

Subsequently, we discuss these split options and give numer-
ical results on the required BH data rates per link between one 
RAP and the cloud-platform for a simple configuration as speci-
fied in Table 2. 

[Table 1]  The benefits and signal processing challenges for the centralization  
of selected 3GPP LTE radio protocol functionality on the PHY and lower MAC layer.

Centralized  
Functionality 

Centralized  
Requirements 

Centralization  
Benefits 

Challenges for  
Signal Processing 

Detection and  
FEC-Decoding 

■■ Depends on control  
overhead in UL 

■■ Latency req. depends  
on timing req. in DL 

■■ Strong reliability

■■ Cooperative receiver (Rx) 
■■ Computational diversity

■■ Predetection at RAP to reduce 
BH overhead 

■■ Optimal quantization of 
signals and exchange over BH

FEC-Encoding and  
Modulation  
and Precoding 

■■ Depends on control  
overhead in DL 

■■ Strong reliability

■■ Cooperative transmitter (Tx) 
■■ Advanced precoding 
■■ Computational diversity

■■ Separate precoding decision 
and execution at RAP and 
central processor 

■■ Optimal quantization of 
signals and exchange over BH

Link reliability  
protocols  
(e.g., HARQ) 

■■ Depends on entity that  
performs retransmission  
decision

■■ Simplified centralization of 
scheduling and decoding 

■■ Predefined timing of (N)ACK 
messages 

■■ Separation of retransmission 
decision and packet combining 

■■ Strong interaction with other 
functions, e.g., scheduler, en-/
decoder

Scheduling and  
InterCell RRM 

■■ flexible requirements  ■■ Multicell gains 
■■ Computationally expensive 

algorithms 
■■ Gains depend on BH quality

■■ Scalable latency requirements 
must be supported 

■■ intercell interference 
coordination (ICIC) based on 
changing quality of channel 
state information 

■■ Changing computational 
complexity
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I/Q forwarding (a)
By immediately forwarding the time-domain receive signals 
that have been downconverted to the baseband and analog-to-
digital (AD) converted (indicated by block RF/AD), the complete 
receive frame including the cyclic prefix (CP) has to be trans-
mitted over the BH link to the cloud-platform. This approach is 
usually referred to as radio-over-fiber (RoF) and is used in the 
common public radio interface (CPRI) standard [19]. The main 
benefit of this split is that almost no digital processing devices 
are required at the RAPs, potentially making them very small 
and cheap. If a flexible split varying over time is envisioned, the 
processing devices would have to be available at the RAPs any-
way, nullifying this benefit. Also, the required BH data rate for 
I/Q forwarding is comparatively high and given as 
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subframe forwarding (B)
By removing the CP and transforming the Rx signal to fre-
quency-domain using fast Fourier transformation (FFT), guard 
subcarriers can be removed (block CP/FFT). Since the number 
of guard subcarriers in LTE is %,40.  this decreases the 
required BH data rate significantly. 
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As an FFT can be implemented on dedicated hardware very effi-
ciently, the implementation in the RAP is worthwhile compared to 
the split option I/Q forwarding (A). As the per-cell based processing 
does not depend on the actual load of the RAP, load balancing 
gains can be only achieved if RAPs are completely turned off. 

Rx Data forwarding (C)
If only a part of the resource elements (REs) are actually uti-
lized by the user equipment (UE) in a cell, only these REs 
remain after RE demapping (block RE Demap) and have to be 
forwarded to the cloud-platform. The required BH data rate is 
directly given by the fraction of utilized RE and thus, the subse-
quent splits can profit from load balancing gains. 

	 . .D D 720 0 5 360· Mbit/s · Mbit/sC B
BH BH h= = = � (3)

To allow for a joint processing of received signals from multiple 
RAPs, it has to be ensured that only REs of UE not considered 
for joint processing are removed, even if they are not (primar-
ily) associated with the current RAP. 

Soft-Bit forwarding (D)
The receive processing (block Rx Proc) per user consists of equal-
ization in frequency domain, inverse discrete Fourier transforma-
tion (IDFT), MIMO receive processing, and demapping. In a MIMO 
scheme utilizing receiver diversity, the signals of multiple antennas 
are combined during channel equalization, thus removing the 
dependency on the number of receive antennas. This results in a 
reduced BH load of /D D NCD

BH RBH = .180 Mbit/s=  In contrast, for 
spatial multiplexing with NS  layers per UE, the BH would corre-
spond to / .D D N N·D C

S RBH BH=  By this split, only joint decoding of 
soft bits forwarded by several RAPs is possible in the cloud-plat-
form. Also note that usually the number of soft bits per symbol 
would depend on the modulation scheme (e.g., three soft-bits per 
information bit), and thus NQ and the BH data rate would depend 
directly on the modulation order, which in turn depends on the 
access channel quality due to radio resource management (RRM). 

MAC (E)
During forward error correction (FEC) decoding (block DEC), 
data bits are recovered from the received symbols and redundant 

[Table 2]  Exemplary transmission parameters for 
calculating the impact of functional split choices 
on the BH data rate.

Parameter Symbol Value 
Bandwidth B 20 MHz

Sampling frequency fs 30.72 MHz

Oversampling factor No 2

Number of used subcarriers NSc 1,200

Symbol duration Ts .66 6 sn

Quantization/soft bits per I/Q Nq 10

Rx antennas NR 2
Spectral efficiency S 3 bit/cu

Assumed RB utilization h 50%

RF
and A/D 

CP
and FFT 

RE
Demap

Rx
Proc.

DEC MAC 

User  Processing Cell Processing 

(A) (B) (C) (D) (E) 

[Fig1]  The functional split between RAPs and the cloud-platform for UL transmission.



	 IEEE SIGNAL PROCESSING MAGAZINE  [39] no vember 2014

bits are removed, resulting in the pure MAC payload at the 
decoder output. The resulting BH data rate depends largely on the 
used modulation and coding scheme (MCS), which is reflected 
here by the exemplary spectral efficiency .S 3 bit/cu=
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FEC decoding is a complex task that is commonly performed 
on dedicated hardware and hence a centralized decoding on GPPs 
has not been considered in C-RAN. However, as outlined later in 
this article, recent results show that it can be performed on GPPs. 
On the other hand, performing decoding in the RAPs according 
to the split option MAC (E) terminates the possibility for joint 
PHY-layer processing in the cloud-platform and only cooperation 
on higher layers, e.g., joint scheduling, remains possible. As PHY-
layer cooperation mainly revolves around interference mitigation, 
this option is beneficial in scenarios were RAPs are well separated, 
e.g., for indoor deployments or in narrow street canyons. 

Obviously, the required BH data rate and the required process-
ing power in the cloud decreases significantly when the func-
tional split is shifted to the higher PHY processing layers or even 
to the MAC. However, this is traded off with lower centralization 
gains in terms of spectral efficiency and computational load bal-
ancing. The advantage of a flexible split is that we can reap the 
benefits of both extremes: load balancing for low traffic situations 
and high spectral efficiency by cooperative processing for high 
traffic. Since current BH standards like CPRI only support a very 
specific functional split, new and more flexible standards will have 
to be defined to enable cloud-RAN architectures. 

The huge BH bandwidth requirements of functional shifts on 
the lower PHY layers also shows that improved and optimized 
BH technologies are required. While technologies offering suffi-
cient bandwidth are already available [10], a joint design of radio 
access and BH links should be also considered to use the 
deployed capacity as efficiently as possible. Additionally, to fur-
ther limit the BH rate between the RAPs and the cloud-platform, 
cooperative processing strategies could be used to directly 
exploit lower-layer interaction between RAPs. This would allow 
the use of heterogeneous BH technologies to interconnect the 

RAPs and implement joint distributed detection techniques as 
depicted in Figure 2 and discussed in the next section. 

SIGNAL PROCESSING IN THE CLOUD 
The difficulty of implementing RAN functionality in a cloud-plat-
form lies in the tight constraints caused by the 3GPP LTE protocol 
stack. This implies that individual tasks need to finish within a 
predefined time window. Figure 3 shows relevant parts of the 
3GPP LTE protocol stack and two exemplary functional splits that 
correspond to options (C) and (D) in Figure 1. In the following, we 
discuss the benefits and challenges of a cloud implementation of 
three representative parts of the signal processing chain. 

HYBRID Automatic repeat request
Among all the timers defined in LTE, the one associated to the 
acknowledgment (ACK) of a UL physical frame at the MAC layer 
is the most critical one. The reception status of any frame sent 
through the air interface needs to be fed back to the transmitter, 
to proceed to the transmission of a new frame ACK or to 
attempt a retransmission negative ACK (NACK). This hybrid 
automatic repeat-request (HARQ) operation is performed at the 
MAC level, after all the physical processing of a codeword is 
done (detection, demodulation, and FEC decoding). In LTE, 
each frame sent at subframe n  needs to be acknowledged (ACK 
or NACK) at subframe n 4+  in both UL and DL directions, a 
subframe lasting 1 ms [20]. Hence, the overall receive process 
has to finish in 3 ms to stay compliant with the 3GPP LTE 
HARQ timing. This timing includes the processing at the RAPs 
of the physical blocks located before the split (see Figure 3 and 
both functional split options therein), the processing at the 
cloud-platform of the physical blocks located after the split and 
the round-time trip through the BH. However, some algorithms 
such as turbo-decoders underly a computational jitter which 
implies that the decoding time may vary. Hence, it may happen 
that packets are retransmitted even though they would have been 
decoded with more computational resources, i.e., either more 
time or more parallel processors. This computational jitter also 
adds up to the overall delay that needs to be considered. 

To relax the timing constraint for the receive processing, we 
may adapt the HARQ process. The authors in [17] suggest for 

RAP 1

RAP 2

RF
and A/D

RF
and A/D

CP
and FFT

CP
and FFT

RE
Demap

RE
Demap

Rx
Preprocessing

Rx
Preprocessing

RANaaS

Final
Rx

Processing
MAC

[Fig2]  The cooperative Rx preprocessing among RAPs with final Rx processing in the central processor.



	 IEEE SIGNAL PROCESSING MAGAZINE  [40] no vember 2014

example to suspend the HARQ process until the end of the receive 
processing. In the case that the receive processing is not finished 
in time, an ACK is sent after 3 ms to meet the timing require-
ments while receive processing is continued. If, at the end, suc-
cessful decoding is not possible, a NACK is sent. As the UE does 
not immediately drop out a package when receiving an ACK to 
cope with transmission errors on the feedback channel, a retrans-
mission of the particular packet can be scheduled later. However, 
this approach halves the achievable UE peak rate [17]. This draw-
back can be avoided by a preliminary HARQ process, where the 
initial feedback message is determined by estimating the decoding 
success based on the quality of the received signals (e.g., using 
models from link level simulations [21]). If correct decoding is 
likely, a preliminary ACK is sent to the UE, otherwise a prelimin-
ary NACK. Again, the standard techniques capturing feedback 
errors automatically handle erroneous preliminary feedback mes-
sages. This approach relaxes the timing constraints for the receive 
processing chain. It separates the most complex processing parts 
and the most latency-critical parts but still allows for high data 
rates depending on the reliability of preliminary ACK/NACK. 

FORWARD ERROR CORRECTION 
The tight requirement of finishing the overall detection within 
3 ms poses a significant challenge for executing FEC decoding 
within the cloud-platform due to its high complexity. Usually, 
FEC decoders are implemented in specialized hardware, such as 
application-specific integrated circuit (ASIC) designs or field-pro-
grammable gate array (FPGA) implementations [22]. However, 
the introduction of many-core architectures opens new perspec-
tives for massively parallel implementations. To meet stringent 
requirements on data rates, cloud-based FEC decoders will need 
to fully exploit the available parallelism of a cloud-computing 
platform. In this context, low-density parity check (LDPC) [23] 
and turbo codes [24] are two promising candidates because both 
allow for accommodating various degrees of parallelization. 

From a high-level perspective, two main approaches can be 
used to exploit parallelism in multicore platforms. The first 
approach parallelizes the decoder itself through decomposition of 
the decoding algorithms into multiple threads that run in parallel. 
Second, multiple codewords may be decoded in parallel. The first 
approach decreases the latency per codeword but introduces more 
synchronization overhead across different threads. By contrast, 
the second approach uses less synchronization objects and there-
fore increases the parallelization gain. However, it may introduce a 
higher latency per codeword compared to the first approach. 

For very high throughput applications, LDPC codes are known 
to compare favorably against turbo codes because LDPC decoding 
allows for a higher degree of parallelism [25], [26]. Hence, LDPC 
codes are suitable for the first approach of decoder parallelization. 
However, software-based parallel LDPC decoders barely achieve 
throughputs of a few tens of Mbit∕s, as reported in [27] for graphi-
cal processing units (GPUs), or in [28] for the signal processing 
on-demand architecture (SODA). In both cases, the main reason is 
the need for synchronization across different threads to access 
shared objects that results in scalability issues [27]. 

By contrast, parallelizing multiple codewords eliminates the 
need for synchronizing objects. This results in better scalability 
properties and the throughput of the multicodeword decoder is 
known to increase almost linearly with the number of cores [29]. 
Furthermore, it allows for different codes, algorithms, and con-
figurations running in parallel. Multicodeword LDPC decoders 
have been reported to achieve throughputs up to 80 Mbit/s on 
the IBM CELL Broadband Engine [27], [30], with 24–96 code-
words decoded in parallel. Recently, central processing unit 
(CPU) and GPU implementations of multicodeword turbo decod-
ers have also been reported in [31] with a peak throughput from 
55 Mbit/s  to ,122 Mbit/s  as the number of decoding iterations 
decreases from eight to four. 

Figure 4 shows experimental results for spectral efficiency and 
required computational complexity of an 3GPP LTE UL decoder. 
To obtain these results, the turbo-decoder has been implemented 
on a default VMWare ESXi server with Ubuntu Linux host operat-
ing system, GNU C++ compiler, and codeword multithreading to 
account for the virtualization overhead. We measured the 
required CPU time to decode one codeword and determined the 
average CPU time within the 90% confidence interval. 

Figure 4(a) shows the achievable spectral efficiency for a given 
signal-to-noise ratio (SNR) (additive white Gaussian noise, no fad-
ing). We illustrate the results for two cases: maximum through-
put (high number of iterations possible) and low complexity 
(number of iterations limited to two). Reducing the complexity of 
the decoding process results in a performance penalty of 1–2 dB. 
In Figure 4(b), we show the required computational resources for 
a 10-MHz 3GPP LTE system. The required complexity strongly 
depends upon the SNR. First, it increases linearly with the num-
ber of information bits, which implies a logarithmic increase of 
complexity in SNR. Second, the complexity increases with the 
number of iterations that are necessary to decode a codeword. As 
shown in [32], the complexity increases superlinearly with 
decreasing SNR (in decibels) for a fixed MCS. In Figure 4(b), 
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[Fig3]  The LTE protocol stack and exemplary functional splits. 
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markers show the SNR where the next higher MCS has been cho-
sen. We notice at each of these markers an increase of the com-
putational demand, which is then quickly decreasing in SNR. 

Apparently, this strongly varying computational demand allows 
for the exploitation of multiuser computational diversity at the cen-
tralized processor. For instance, the central processor can perform 
computational load balancing across multiple users to reduce the 
ratio of peak-to-average computational efforts. Furthermore, the 
central processor can actively shape the computational demand by 
selecting MCS to satisfy a computational constraint, e.g., in the 
case of a traffic burst the computational requirements may signifi-
cantly increase and may exceed the available resources if MCSs are 
chosen based on maximum throughput. Finally, the computational 
load can be actively shaped by adjusting the number of quantiza-
tion bits NQ used for forwarding the Rx signals from the RAP to 
the cloud-platform over the BH. Figure 5 shows the tradeoff 
between number of turbo iterations and quantization bits NQ for 
different modulation schemes at a target bit error rate (BER) of 

.10 4-  Obviously, the decoding latency can significantly been 
reduced by increasing the number of quantization bits NQ on the 
cost of a higher BH transmission rate. 

MultiUSER DETECTION 
Consider again the functional split option, Rx Data Forwarding 
(C) in Figure 3. In this case, I/Q samples are forwarded over high-
capacity BH links to the central processor that performs joint 
multiuser detection (MUD) using the Rx signals of several RAPs. 
The joint processing of many RAPs implements a virtual MIMO 
architecture and the huge computational power offered by the 
cloud-platform allows for aggressive RRM across the RAPs. How-
ever, due to the heterogeneous nature of BH networks, it is also 
beneficial to use a mix of local processing at RAPs, cooperative 
processing among RAPs, and central processing in the cloud-plat-
form. Promising techniques that are adaptable to changing BH 
and radio access parameters are, among others, multipoint 
turbo detection (MPTD) and in-network processing (INP). 

The underlying idea of MPTD [33] is to schedule (edge) 
users attached to different RAPs on the same resource. Then, a 
joint detection of these users through a turbo processing 
approach is performed [21], [34]. Such processing could be 
done either centrally on the cloud-platform or locally in each 
RAP. If it is fully centralized, MPTD benefits from high degree 
of spatial diversity due to the different locations of the 
involved RAPs. Due to this spatial diversity increase, the cen-
tralization gain can be quite significant compared to a clas-
sical distributed detection. 

This split of functionality may offer significant centraliza-
tion gains compared to distributed detection methods. This is 
illustrated in Figure 6 for an UL scenario with N 2UE =  users 
each equipped with N 1T =  transmit antenna. Both users 
interfere with each other at N 2RAP =  RAPs each equipped 
with N 2R = receive antennas. We assume the worst case of 
identical path-losses. In addition, these results consider Ray-
leigh channel fading and LTE-compliant MCSs [20]. Figure 6 
shows that at a frame error rate (FER) of 0.01 a centralization 

gain of about 17 dB can be achieved by MPTD compared to a 
linear minimum mean square error (MMSE) filter with inter-
ference rejection combining (IRC) [35]. 

An alternative approach that faces the joint MUD problem 
from an optimization perspective is INP. It allows for the solution 
of general estimation problems in a distributed, decentralized way 
within a network. The special class of consensus-based algorithms 
achieves this by iteratively reaching consensus of the estimates 
among the processing nodes [36], [37]. The adaptation of INP for 
an iterative distributed MUD has recently been presented in [38]. 
Due to its generic structure, INP can also be implemented with 
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the desired mix of local, cooperative, and central processing 
within the distributed architecture in Figure 2 allowing for shift-
ing the BH traffic flexibly within the network. 

By combining for each RE the NT  transmit signals of all 
NUE  users into the signal vector ,x  the receive signal vector at 
RAP j  is given by y H x nj j j= +  with H j  denoting the effective 
channel matrix and n j  representing the additive noise vector. 
In case of a fully centralized solution, the receive signals yj  of 
all NRAP  RAPs have to be forwarded to the central processing 
node and can be collected into the receive signal vector 
y y y Hx nH

N
H H

1 RAPg= = +6 @ , where H  and n  denote the stacked 
channel matrix and the stacked noise vector. The solution of a cen-
tralized least squares (LS) problem 

	 argminx y Hx
x

2= -t � (5)

is given by x H y= +t  with the Moore–Penrose pseudo-inverse 
( ) .H H H HH H1=+ -  For a distributed calculation of this central 

solution, local estimates x ju  per node j  are introduced to refor-
mulate the LS problem by a set of local optimization problems 

	 argminx y H x
|x

j
j

j j j
j

N
2

1Jj

RAP

= -
! =

t
" ,

/ � (6a)

	 , ,x x j is.t. J Nj i j6 ! != � (6b)

where J  denotes the set of all RAPs and N j  the set of all RAPs 
connected with RAP .j  The consensus constraint (6b) directly 
couples estimates of neighboring nodes guaranteeing that the esti-
mates of all nodes converge to the central LS solution (5). In [37], 
the distributed consensus-based estimation (DiCE) algorithm has 
been introduced, which allows for parallel processing across the 
involved RAPs. Furthermore, the required information exchange 
is reduced by the reduced-overhead-DiCE (RO-DiCE) [39] 
approach and the fast-DiCE implementation improves the conver-
gence speed [40]. 

Figure 7 shows the BER for uncoded  binary phase shift keying  
transmission with N 2UE =  users with N 2T =  transmit antennas 
to N 4RAP =  RAPs with N 4R =  over Rayleigh-fading channels and 
fully connected mesh network of RAPs. It further compares the 
three different DiCE implementations for a fixed SNR of 10 dB ver-
sus the number of signals exchanged among the RAPs. Obviously, 
with an increasing number of iterations the BER performance 
improves at the cost of an increased communication overhead. In 
particular, the Fast-DiCE approach allows for a faster convergence 
and the RO-DiCE reduces the overhead by 60% at the same BER. 

MUD imposes new challenges on signal processing within a 
cloud-computing environment. Among other challenges, syn-
chronization needs to be maintained and taken into account. 
Furthermore, the data exchange between virtual machines 
needs to be orchestrated to allow for low delays during the MUD 
process. Scalability and resource pooling are two major advan-
tages of cloud computing. This requires a hypervisor that takes 

into account requirements and con-
straints from the RAN functionality and 
distributes the work load accordingly, e.g., 
resources per virtual machine, assign-
ment of users to virtual machines, map-
ping of communication clusters to virtual 
machines, and massive parallelization 
across multiple virtual machines and pos-
sible different hardware racks. 

CONCLUSIONS 
This article discussed benefits and chal-
lenges that may be implied by cloud-com-
puting platforms on signal processing 
algorithms. The novel RANaaS concept was 
introduced, which realizes cloud technolo-
gies in 5G mobile networks and allows for a 
flexible functional split between RAPs and 
the centralized cloud-platform. This allows 
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for centralization benefits, but also introduces challenges due to 
the strict timing constraints imposed by the 3GPP LTE protocol 
stack. These challenges were identified and enabling technologies 
were discussed. 
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