
Decoder Implementation for Cloud Based
Architectures

Dirk Wübben1, Henning Paul1, Philippe Balleydier2, Valentin Savin2, Peter Rost3
1University of Bremen, 2CEA-LETI, 3NEC Laboratories Europe

Abstract—Implementation of radio access network func-

tions on centralized cloud platforms is envisioned for on-
demand provisioning of computing resources in mobile net-
works. In principle, this allows for more advanced algorithms
and offers the ability to balance the computational load, but
also imposes challenges on the design of the applied algorithms.
In this paper, we analyse the implementation of decoding algo-
rithms on general purpose hardware, as decoding draws the
main computational burden of signal processing in the uplink.

I. INTRODUCTION
For the evolution towards 5G mobile networks several

technologies are currently investigated. The dense deploy-
ment of small cells in combination with (partly) centralized
processing is one promising candidate. In centralized radio
access networks (C-RAN) part of the digital baseband pro-
cessing is shifted from the radio access points (RAPs) to a
central processing unit. Although this allows for efficient
resource usage and advanced multi-cell algorithms, dedicat-
ed and special hardware like DSPs is still required [1]. As a
long term goal, the deployment of cloud computing plat-
forms running on general purpose hardware (GP-HW) lead-
ing to Cloud-RAN systems would be more beneficial [2].

In cloud platforms the required computational resources
are provided on-demand by introducing the concept of virtu-
alization. Thus, Cloud-RAN will allow deploying algorithms
that scale with the current needs and leverage massive paral-
lelism. On the other hand, cloud-implementations also im-
pose challenges for implementing baseband processing on
GP-HW due to the tight constraints caused by the protocol
stack of mobile communication standards. For example, in
3GPP LTE the hybrid automatic repeat request (HARQ) pro-
cess requires to execute all physical processing of codewords
within 3 ms [3]. Due its complexity, this poses a significant
challenge especially for FEC decoding which is usually im-
plemented on specialized hardware such as ASICs or
FPGAs. In order to meet the stringent requirements on data
rates, cloud-based FEC decoders will need to fully exploit
the available parallelism of a cloud-computing platform. In
this context, Low Density Parity Check (LDPC) and Turbo
Codes (TC) are two promising candidates because both allow
for accommodating various degrees of parallelization.

In this paper, we discuss the challenges of cloud-
implementation of FEC decoders and present current results
for implementing message passing algorithms for LDPC
codes and for implementing LTE Turbo Decoder.

II. IMPLEMENTATION OF DECODING ALGORITHMS

A. Parallel Decoding on Multiprocessor Platforms
Two main approaches can be used to exploit parallelism

in multiprocessor/multicore platforms as visualized in Fig.
1. First, fully or partially parallel decoders can be imple-
mented through the use of concurrent threads, with every

processor or core executing a separate thread. The efficiency
of such a parallel implementation depends also on the de-
gree of parallelism allowed by the implemented algorithm.

Fig. 1. Two approaches to exploit parallelism in multiprocessor platforms

The second approach consists of using multi-codeword
decoders, with each processor running a separate image that
decodes a different codeword. Both approaches allow in-
creasing the throughput, although in two different ways: the
first by reducing the latency per decoded codeword, the sec-
ond by increasing the number of codewords decoded within
the same latency period. In addition, both approaches can be
combined, depending on the implemented algorithm and the
specific characteristic of the computing platform.

B. LDPC decoder
This section presents experimental results on the achievable
throughput of software-based LDPC decoders. Due to com-
putational complexity and convergence speed reasons, the
Min-Sum decoder with layered scheduling has been chosen
for our investigation. In order to assess the achievable
throughput on GP-HW, a C++ implementation of a multi-
codeword decoder has been carried out. Multithreading was
implemented by using Message Passing Interface (MPI) and
Open Multi-Processing (OpenMP) directives. The maximum
number of decoding iterations has been set to 20. The decod-
er stops when whether a codeword have been found (syn-
drome equal zero) or the maximum number of iterations is
reached. In particular, the average number of decoding itera-
tions decreases with increasing SNR, or equivalently, with
improving error correction performance. The performance of
the Min-Sum decoder for WiMAX LDPC codes with rate 1/2
and 5/6 is presented in Table I, in terms of required SNR for
a target frame error rate (FER) of 10-2 and 10-4 (QPSK modu-
lated A). The corresponding average number of decoding
iterations is also shown in the table.
Table I: Required SNR and average number of decoding iterations for target

FER of 10-2 and 10-4

Required SNR Ave Iter Nb Required SNR Ave Iter Nb

LDPC@rate 1/2 2.1 dB 6.9 2.5 dB 5

LDPC@rate 5/6 5.9 dB 4 6.3 dB 2.8

Target FER = 10-2 Target FER = 10-4

 The Min-Sum multi-codeword decoder has been run on
two Intel Xeon x5650 @2.67GHz processors, each one com-
posed of 6 physical cores. Each physical core is further com-

posed of 2 logical cores, which leads to a total of 24 logical
cores divided in two processors.

Fig. 2. Average Throughput as function of the number of cores,

Threads decoding different codewords are synchronized,
in the sense that they all start in same time and wait for the
slowest one to complete decoding (since codewords decod-
ed by different threads can take a different number of de-
coding iterations). The average throughput, as function of
the number of cores is presented in Fig. 2 for SNR values
reported in Table I. The throughput is expressed as number
of useful (information) bits per second. The difference be-
tween rate-1/2 and rate-5/6 throughput is explained by (i)
the faster convergence of the rate-5/6 decoder, which results
in a reduced average number of decoding iterations, and (ii)
the increased number of information bits for each decoded
codeword. It can also be observed that the achieved
throughput significantly increases when the FER improves
from 10-4 to 10-2, corresponding to an SNR increase of about
0.4 dB. For an SNR of 6.3 dB (FER = 10-4), the rate-5/6
decoder achieves an average throughput of 140 Mbits/s, by
decoding 22 codewords in parallel (22 logical cores are
used).

C. LTE Turbo Decoder
In order to assess the computational diversity offered by

multi-core implementations we present experimental results
for spectral efficiency and required computational com-
plexity of an 3GPP LTE uplink decoder. The turbo decoder
has been implemented on a default VMWare ESXi server
with Ubuntu Linux host operating system, GNU C++ com-
piler, and codeword multi-threading in order to account for
the virtualization overhead. We measured the required CPU
time to decode one codeword and determined the average
CPU time within the 90% confidence interval.

Fig. 3. Spectral Efficiency achieved for turbo decoding on GP-HW

Fig. 3 shows the achievable spectral efficiency for a given
SNR (AWGN, no fading) and target block error rate
BLERtar = 0.01 for two cases: maximum throughput and low
complexity by limiting the number of iterations to 2. Obvi-

ously, reducing the complexity results in a performance
penalty of 1-2 dB.

Fig. 4. Required number of CPU cores for turbo decoding on general

purpose hardware

In Fig. 4, we show the required computational resources
for a 10MHz 3GPP LTE system. The required complexity
strongly depends upon the SNR. Firstly, it increases linearly
with the number of information bits which implies a loga-
rithmic increase of complexity in SNR. Secondly, the com-
plexity increases with the number of iterations that are nec-
essary to decode a codeword. Markers show the SNR where
the next higher MCS has been chosen. We can notice at
each of these markers an increase of the computational de-
mand which is then quickly decreasing in SNR. Apparently,
this strongly varying computational demand allows for ex-
ploiting multi-user computational diversity at the centralized
processor. For instance, computational load balancing
across multiple users to reduce the ratio of peak to average
computational efforts can be performed or the computation-
al demand can actively been shaped by selecting MCS to
satisfy a computational constraint.

III. CONCLUSION AND OUTLOOK
Cloud-RAN offers massive parallel computing and al-

lows for computational load balancing. We present through-
put and complexity results for decoder implementations on
commodity hardware and point out design criteria that allow
for flexible load balancing.

ACKNOWLEDGMENT
The research leading to these results has received funding

from the European Community's Seventh Framework Pro-
gram FP7/2007-2013 under grant agreement n° 317941 –
project iJOIN. The European Union and its agencies are not
liable or otherwise responsible for the contents of this docu-
ment; its content reflects the view of its authors only. We
gratefully recognise the great contributions of many col-
leagues from iJOIN, who in fruitful cooperation, contributed
with valuable insight, surveys and vision.

REFERENCES
[1] K. Chen, C. Cui, Y. Huang, and B. Huang, “C-RAN: A Green RAN

Framework,” in Green Communications: Theoretical Fundamentals,
Algorithms and Applications, J. Wu, S. Rangan, and H. Zhang, Eds.
CRC Press, 2013.

[2] P. Rost, C.J. Bernados, A. De Domenico, M. Di Girolamo, M. Lalam,
A. Maeder, D. Sabella, and D. Wübben, “Cloud technologies for
flexible 5G radio access networks”, IEEE Communications Magazine,
vol. 52, no. 5, May 2014.

[3] D. Wübben, P. Rost, J. Bartelt, M. Lalam, V. Savin, M. Gorgoglione,
A. Dekorsy, and G. Fettweis, “Benefits and Impact of Cloud
Computing on 5G Signal Processing”, IEEE Signal Processing
Magazine, submitted.

